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Most conventional malaria models examine the dynamics of infected humans
within one population. These models are mainly aimed at understanding the
mechanisms that play a role in the distribution of malaria and determining points at
which control measures can be applied. Currently a number of models take a different
approach; examining malaria risk at a larger spatial scale these models are mainly
aimed at assessing the effect of large-scale changes (most prominently climate
change) on the number and location of people at risk currently and in the future. The
LEMRA (Local Eco-Epidemiological Malaria Risk Assessment) model presented in
this paper takes an approach somewhere halfway these two extremes; it explicitly
examines the disease dynamics in the human population, in the context of a spatial
setting where the local condition determine the risk for the population to be exposed
to malaria. The spatial scale of analyses is such that it can include processes (like the
effect of human circulation behaviour) that cannot be examined as easily in the
former two approaches.

Introduction
Each year 1.5 to 2.7 million people die from malaria (WHO 1997). This is only a

small proportion of the 300 to 500 million people who suffer from this disease.
Malaria is constantly present in at least 91 countries, exposing approximately 40% of
the world population to the risk of contracting the disease. By undermining people’s
health and capacity to work, malaria significantly hampers the social and economic
development of the countries involved (Wang'ombe and Mwabu 1993; Gallup and
Sachs 1998).

Future changes might have a significant influence on malaria risk. For example, it
has been estimated that climate change might lead to an increase in malaria in
especially the highlands (Lindsay and Martens 1998), but also more local changes like
migration have already shown to lead to considerable (temporal) increases in for
example brazil (McGreevy et al. 1989). To give a good assessment of future malaria
risk, it is necessary to take account of the various processes that take place in an area;
integrating the environmental, social and economic factors and processes that
underlay malaria risk. In an Integrated Assessment approach (Rotmans 1998) we not
only try to describe the cause-effect relationship of a specific problem (i.e. the relation
between malaria risk and its underlying factors), but also the crosslinkages and
interactions with other problems or processes. An IA approach is used in the LEMRA
(Local Eco-Epidemiological Malaria Risk Assessment) model (de Vries and Martens
2000) that is presented in this paper. The LEMRA model is not being development as
a predictive model, but as a tool to experiment with different possible futures and the
consequences of these futures for malaria risk. This paper provides an outline of the
model and the direction in which it will be evolve further.

A number of spatial explicit models for the assessment of future malaria risk have
been developed (Matsuoka and Kai 1994; Martens et al. 1995; Martin and Lefebvre
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1995; Craig et al. 1999; Martens and Hall 1999; Martens et al. 1999). These models
focus mostly on the impact of climate change at either the global or regional scale.
The LEMRA model focuses on a smaller spatial scale than these models, and, as
consequence of the chosen scale, is able to include a number of processes that are
hard to include at a larger scale (for instance the development of immunity within the
population). This is illustrated in this paper by partly applying the model to an area in
Kenya.

Malaria Risk
Malaria is a disease caused by a parasite that is transmitted from one human to the

other by blood sucking mosquitoes. The spread of malaria is a complex process that
depends on a great number of factors from a diverse set of domains. A rough
classification of these factors can be made by splitting the factors in two groups: the
factors that influence the transmission risk, i.e. the potential for the transmission of
the malaria parasite, and the factors that influence the disease risk, i.e. the potential
morbidity and mortality in the population as a consequence of this transmission of the
parasite.

The transmission risk depends on the mosquito population and its interaction with
the human population (i.e. stinging). The mosquito population size is influenced by
ecological factors (temperature, rainfall and landcover), but also by social-cultural and
economic factors (local knowledge of the mosquito life cycle and the means to apply
this knowledge for control measures). The interaction between the human population
and the mosquito population depends on ecological and biological factors (mosquito
characteristics and behavioural patterns), and on social-cultural and economic factors
(landuse, human behaviour or local knowledge about the malaria–mosquito link and
the means to apply this knowledge for protection measures). Future development of
transmission risk will therefore depend on phenomena like deforestation, climate
change, changes in the educational and malaria monitoring/control system etc.

Transmission risk is mostly associated with the local conditions at a spatial
position and is therefore considered homogeneous for the human population at this
location, in contrast the disease risk affects population groups in the same area
differently, therefore the heterogeousness of the population plays an important role in
estimating this risk. For example the age distribution of the population can
significantly alter the number of deaths, since in high endemic areas (area with a large
transmission risk) infants have the highest malaria related mortality. Disease risk is
mainly influenced by social-economic and social-cultural factors (local health
knowledge and the (financial) capability to apply this knowledge, human migration
and circulation patterns, or the wealth distribution over the population). Disease risk
and its distribution over the population might change due to processes like economic
growth, degradation of the health system, changes in the labour market, etc.

The LEMRA model uses the two risk concepts described above to assess malaria
risk. For simplification it uses only a subset of the described factors. The next two
sections describe how the two risks are estimated. Although both risks are described
the focus is on the disease risk.

Transmission Risk
Most malaria models are either directly related to the Ross-MacDonald model

(Ross 1909 ; Macdonald 1957) or borrow many of their concepts from this model.
Although this model is conceptually very strong and includes those factors that
directly influence malaria risk (for instance mosquito deathrate, biting frequencies or
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parasite development rate), it is very hard to estimate the various parameters used in
this model and to relate them to underlying factors like landcover or rainfall. To
enable the investigation of the effect of changes in the underlying factors, the model
presented here abstracts from the detailed description used in this kind of models and
makes a more direct estimation of the relation between the underlying factors and
transmission risk. This estimation is described here only shortly. For a more detailed
description see (de Vries and Martens 2000).

Landcover provides breeding places for the mosquito and microclimates for the
mosquito to live in; it influences the human-mosquito contact by its suitability for
mosquitoes and its attraction to humans for certain human activities. On bases of the
local landcover an initial transmission risk is determined (ranging from 0 to 4)
according to Table 1. This transmission risk is adjusted for each month on the basis of
the monthly mean temperature.  Temperature influences malaria risk by affecting the
survival chances of the mosquito, its biting rate, and the developmental rate of the
parasite inside the mosquito.

A certain minimal amount of rainfall is needed for the mosquito population to
survive or grow. However, the mosquito population will diminish if too much rain
falls in a short period, because the mosquito eggs and larvae will be flooded out of the
potential breeding places. The optimal rainfall for the mosquito depends on the type
of landcover. Currently, the model only implements a minimal threshold of monthly
rainfall related to the local landcover (Table 1). If the mean monthly rainfall stays
below this threshold no risk of transmission is present.

Landcover TR Suitability
Threshold
(mm/month)

Water 0 0
Forest 1 20
Cash Crops ( Tea / Coffee / Sugarcane /

Maize )
1 60

Grassland 2 80
Small scale agriculture 4 80
Rice 4 120

Table 1 Values associated with the various landcovers in the area.

In short, assuming that the human host is available in sufficient quantity for
transmission to take place, landcover determines which transmission risks are
possible, and temperature and rainfall control the fluctuation of this risk over time. In
the next session the influence of and the effect upon the human population is taken
into account by explicitly modelling the human population in order to determine the
disease risk.

Disease Risk
Not everyone infected with malaria becomes badly ill or dies. Individuals show a

wide range of responses on first contact with the malaria parasite; from seemingly no
effect to death. These individual differences can either be genetically determined, or
obtained through environmental influences. Immunity against malaria can also be the
result of regular exposure to the malaria parasites. This, contact dependent, form of
immunity is called acquired immunity. Due to this kind of immunity, the temporal
pattern of exposure plays an essential role in the impact of an infection on the health
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of the exposed human; a temporal high exposure preceded by no exposure during a
substantial period results in a high probability for the human to become ill, while the
same temporal high exposure might not have any effect on an individual that has been
exposed for many years already. This effect makes the prediction of effects of control
measures or changes in general very difficult; after all, might not lead a decrease in
exposure to a decrease in immunity and subsequently in an increase in morbidity and
mortality? Acquired immunity is also responsible for a not homogeneous distribution
of the disease over the population. For example, in a stable endemic situation (ie year
round high transmission risk), it are the children who are affected mostly by malaria,
since they had the least time to build up immunity, while in unstable epidemic areas
(ie. transmission risk during a limited period) the effects are visible in the whole
population. Again this complicates the prediction of the effects of control measures
and other changes; if transmission is limited for part of the population (for example
due to bednet provision programs) how is this group affected and how does it effect
the transmission probabilities for other groups in the population.

The current knowledge about the immunology of malaria is rather limited.
Although research on the molecular and cellular level has increased during last few
years, so far it has not brought us major insight that not already could be derived from
epidemiological, clinical and experimental evidence. Since the immunity model that is
introduced in this chapter is limited to a very simple mechanism for building up
immunity, it is not justified to discuss in any detail the molecular and cellular working
of immunity and we will restrict ourselves here to a population level analysis of our
current knowledge.

In general it appears that three types of immunity can be distinguished (Gupta and
Day 1994; Snow and Marsh 1998; Gupta et al. 1999): anti–infection, anti-mild
disease, and anti-severe disease. Since the protection provided by anti-infection
immunity is almost never complete, it is assumed that a lower parasite load in an
individual does not influence the transmission probabilities and the effects of anti-
infection immunity are ignored. The last two types of immunity, called clinical
immunity, will be modelled. Various studies indicate that immunity against life-
threatening diseases develops much faster than that against mild disease (Gupta et al.
1999, Snow). Currently, only the anti-mild disease immunity is implemented.

The conventional and most common approach to modelling the epidemiology of
malaria within the human population is the use of mathematical models (Bailey
1982). These models take (subsets of) populations as the unit of calculation. In
contrast, the population model presented here focuses on individual humans as unit of
calculation. This approach is known under various names. Currently it is most often
referred to as “agent based” modelling; however, in this particular case, a more
appropriate designation might be “individual-based” modelling. Unlike the term
“agent”, “individual” is not associated with autonomy, decision making, intentions
etc., while at the same time stressing the importance for the model of individual
behaviour and differences between individual entities.

The individual-based approach enables a more or less natural translation of
processes into model terms: for instance, infection probability, can be described at the
level of an individual and individual differences like age, bednet use etc. can be taken
into account explicitly. Analyses of the model can take place at the level of the
individual as well as the level of the population as a whole or of subgroups of the
population (for instance age groups). These various possible levels of analyses
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facilitate comparison with a larger range of research results from the field than if only
population wide process descriptions are used.

The aim of the presented immunity model is to provide a simple flexible system
capable of catching some important characteristics of malaria immunology. Its aim is
not to be a precise representation of the complex immunology system. The immunity
module can be seen as a metamodel (Rotmans et al. 1997), i.e. a simplified
representation of the more sophisticated immunity models

The central computational units in the population model are the individually
simulated humans. Here we will use the denotation HUMAN to distinguish a simulated
human from its real world counterpart. In the simplest form the model entity HUMAN

has the following properties:

•  Gender
•  Age
•  Infected

Is true when infected by the malaria parasite, is false when not infected.
•  Infection time left

The amount of time left, before the individual looses its infection.
•  Ill

Is true if HUMAN is ill (i.e. shows clinical symptoms of malaria), is false when not
ill.

•  Illness time left
The amount of time left until the individual is no longer ill.

•  Immune
A number between 0 and 1 indicating the amount of immunity, i.e. 0 is no
immunity and 1 is full immunity.

At birth a HUMAN is not infected and has an immunity of 0. The transmission risk
to which the population is exposed, combined with the proportion of infected HUMANS

in the population, form the risk for an individual HUMAN to contract malaria. Each
month a HUMAN is exposed to this infection risk Pinf . Pinf, the probability of infection,
is defined as
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where POPinfected and POPtotal are the number of infected individuals and the total
number of individuals in the population of a cell respectively, risk is the transmission
risk to which the population is exposed, MaxRisk is the highest transmission risk
possible, and α incorporates other factors that influence an individual’s chance of
contracting the disease, for instance an individual’s use of anti-malarial drugs, its use
of bednets, the kind of labour it is involved in etc. Once infected a HUMAN stays
infected for infectionPeriod time.

Everytime that a HUMAN is infected its immunity increases in accordance with the
function immunityIncrease(), every time the HUMAN is not infected the immunity
decreases following the function immunityDecrease(). These two functions can be
altered to reflect various possible assumptions about acquired immunity. For the
current analyses of the model simple linear functions are used:

If HUMAN is infected then
        immunity(t) = immunity(t-1) + 1/ImmunityIncrease
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If HUMAN is not infected then
         immunity(t) = immunity(t-1) – 1/ImmunityDecrease

(where 0 <= immunity <= 1)

Since immunity is updated every month, a value of 12 for ImmunityDecrease
means that a fully immune HUMAN who is not exposed to any infection loses its
immunity in 12 months. Equivalently, a non-immune HUMAN who is continuously
exposed to infection becomes fully immune in ImmunityIncrease months (24, see
Table 2). See Figure 1.

Decrease and Increase of immunity
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Figure 1 The increase and decrease of immunity for an individual under the
assumption of continues infection and continuous non-infection respectively.

Finally, a changing immunity level leads to a change in  morbidity and mortality.
The following formula is used to determine whether at the moment of infection, a
HUMAN becomes ill, and for how long it stays ill:

pill= (1 – immunity) * MaximumDiseasePeriod

Where pill is the period of illness after the initial infection, immunity is the
immunity of the HUMAN and MaximumDiseasePeriod is the maximum amount of time
a HUMAN can be ill.  Note that it is possible for human to be infected with a malaria
parasite without being ill, either because it has full immunity or because it “looses” its
illness before it looses its infection.

name value unit description
ImmunityIncrease 24 months number of infections needed to gane full 

immunity when continuous infection takes place
ImmunityDecrease 12 months number of non-infections needed to loose full 

immunity when no infections takes place
infectionPeriod 1,5 months period needed to loose infection
MaximumDiseasePeriod 2 months maximum length of period during which an 

infected person can become ill
alpha 0.8 [0..1] modulator
Initialisation
initialFractionInfected 0.5 [0..1] initial fraction of the population that is infected
initialPopulationSize 500 integer size of initial population

Table 2 Parameter values used to produce the presented results.
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From transmission risk to disease risk
Figure 2 shows for five different transmission risks (ranging from no risk 0 to the

highest risk 5) the percentage of infected humans in a population over time. Two
discrepancies with the real world situation can be noticed. Firstly, the percentage of
infected humans does not decrease as would be expected for a population that is
exposed to a high transmission risk over a long time interval. This is a consequence of
the choice for only modelling clinical immunity and excluding anti-infection
immunity from the model. Secondly, it can be observed that except for the highest
transmission risks, malaria infection cannot be maintained in the population. This is
caused by the omission from the model of patent infections and of human population
movement.

Figure 2 Percentage infected humans in a simulated population exposed to 5
different Transmission Risks (TR).

The effect of human population movement is illustrated further on in this paper
when a spatial setting for the model is introduced and circulation of humans becomes
possible. Patent infections are known to exist in areas with low seasonal endimicity,
where is has been shown that the malaria parasite is still present in part of the
population during the dry season when no transmission takes place (Roper et al.
1998). To take account of this effect an influx of infected humans is introduced. Only
during the calculation of the infection probability for a human (Pinf) it is assumed that
a minimum of infectionInflux (0.02) percentage of the population is infected. (Thus,
after calculating Pinf, unless these individuals got infected, they loose their infection
again). How this changes the outcome of the model is visualised in Figure 3.

No change can be observed for the highest transmission risk while the lowest
transmission risk the infection does not disappear from the population anymore.
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Figure 3 Percentage infected humans in a simulated population exposed to 5
different Transmission Risks with an infectionInflux of 0.02.

Figure 4 shows the percentage of humans that becomes ill when the population is
exposed to the various transmission risks. For the lower transmission risks this
corresponds closely to the percentage of infected humans, since individuals are not
long enough exposed to build up immunity. For the highest transmission risk,
however, the percentage of ill humans drops dramatically after an initial period during
which immunity is build up by the individuals. Although this pattern shows a close
qualitative correspondence to the real world situation, considerably tuning of the
model will be needed to make a more quantitative correspondence (for example the
drop in ill humans for the highest risk class is much to large). However the produced
pattern can already be used to investigate some of the consequences that various
transmission risks can have for the distribution of malaria disease over the population.

Figure 4 Percentage of ill humans in a simulated population exposed to 5
different Transmission Risks with an infectionInflux of 0.02
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Figure 5 shows the fraction of HUMANS that are ill by age class for the two highest
risk regimes. Clearly there is a large difference between the two regimes with respect
to the ages that are affected.

a b

Figure 5 Number of humans per age and number of those people that are infected by
malaria. (a) Above average transmission risk (risk=3); (b) High transmission

In reality transmission risk is often not continuous but fluctuating over time,
either seasonal or with irregular intervals of a few years. Figure 6 shows three typical
patterns of transmission risk and Figure 7 the resulting percentages of ill humans.

Figure 6  Five typical temporal patterns of transmission risk.
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Figure 7 The percentage of ill humans in populations exposed to the transmission
risk patterns described in Figure 6.

Spatial explicit simulation
Up till now the presented model did not take space into account. However, the

dynamics of malaria can be subject to substantial local variation, resulting from
various local differences. For example differences in the characteristics of
mosquitoes, the environmental situation or the housing conditions of people. By
imposing a grid on the area of research and applying the model for each separate
gridcell, the model is made spatial explicit.

The size of a gridcell is 1x1 km, small enough to reflect local differences, and
large enough to make abstraction from the complicated field situation possible. Given
the size of the gridcell we cannot consider the malaria situation in one cell
independent of the malaria situation in neighbouring cells, especially if we consider
the fact that the flight range of a mosquito is somewhere between the 2 and 5 km
(Thomas and Lindsay 2000). Therefore an additional step is put between the
determination of the transmission risk and the calculation of the disease risk. A distant
decay function bassed on the mosquito flight range is used to determine the weighted
mean of the cell’s risk and the risk in its neighbouring cells. This weighted mean is
subsequently used to calculate the infection probability (Pinf) like described before.
Note that this implies that the correction for neighbour influence only concerns
mosquito behaviour and not human migration, which is modelled separately.
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Figure 8 The transmission risk for one specific month calculated by the LEMRA
model for an area near Kisumu, Kenya.

Figure 8 shows the spatial distribution of transmission risk calculated for an area
in Kenya (near Kisumu). The shown area exists of lowland surrounded by mountains.
Notice that the highest transmission risk is in the centre of the area, ie the lowlands,
while in the highlands no or only a low risk is present. This is mainly explained by the
temperature differences caused by the altitude difference.

Comparison of this spatial explicit outcome of the model with what is known
from the area shows two points. Firstly, the figure shows a static picture of the
situation in one specific month, while most available field results present number of
infected and ill humans that were exposed to a dynamic changing transmission risk.
This illustrates the importance of the disease model for validation and interpretation
of the model results. Secondly, many places are misclassified, for example Kericho
(in the South-East) is classified as a low risk area, while it is known that epidemics
take place in this area every few years. One possible explanation of this
misclassification is that human circulation patterns are not taken into account.
Humans travelling from the valley to the highlands and visa versa might substantially
influence the malaria dynamics in the area. In the next section a model of human
circulation in an artificial world is shown that, if further improved, might explain
some of the discrepancies mentioned.

The Effects of Circulation
People who move can spread malaria in two ways. In the first case the mover

harbours the malaria parasite and transmits the disease through its movements to areas
of low or sporadic transmission. In the second case, the movers originate from these
areas of low and sporadic transmission and expose themselves to the disease through
their movements to areas of high transmission. These people may have a low level of
immunity or they may not be immune at-all, increasing their chances of acquiring the
disease.

Circulation is a temporary movement from home and has been defined as “a great
variety of movements, usually short-term cyclical in character, but all having in
common the lack of any declared intention of a permanent or long-standing change of
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residence” (Zelinsky 1971). Circulation has three dimensions: duration, frequency and
seasonality (Bell and Ward 2000), in the ideal model individuals would vary over all
these three dimensions. In the current analyses circulation is restricted to daily
movement without seasonality, for instance normal daily commuting.

Each gridcell contains a population of 1000 HUMANS. The effect of circulation on
the malaria situation in an area is examined by assigning some of the HUMANS an
additional location. In addition to the cell associated with its population, the HUMAN is
assigned a location representing, for instance, the work place of the HUMAN. This
second location is selected randomly from the gridspace. If we assume that the
probability of infection is independent of the date and the time of the day, we can use
the following algorithm to determine the infection chance for a HUMAN that is located
at two positions:

totalTime

PtimeSpendPtimeSpend
P xx

x

2
inf

21
inf

1 ** +=

where xP is the chance of infection for HUMAN x, i
xtimeSpend the time during which

HUMAN x was at position i, and iPinf is the infection chance at position i. In the
experiments shown 21

xx timeSpendtimeSpend = , that is HUMAN x spends as much time at

home (position 1) as at work (position 2). This approach is limited in the sense that it
does not fully exploit the possibilities of the individual-based approach, like moving
individual from one place to the other, however, it is sufficient for showing the
importance of circulation.

In an artificial world of 15x15 cells, two different trends of circulation are
compared: (1) no circulation takes place; the populations in each cell are isolated from
each other, and (2) circulation does take place by 10% percentage of each population.
The population model is applied for each of the cells in the 15x15 grid. The grid is
divided in 5 regions of different transmission risks (Figure 9a). Figure 9b and c show
the outcome of the experiment.

a  b  c

Figure 9 The model applied in an artificial grid world of 15x15 cells. (a) The
transmission risk; no risk in the south to the highest risk in the north.

Percentage of ill people in the populations after 20 years of simulation: (b) without
circulation, (c) with circulation.

After 20 years without circulation, malaria has disappeared from the low risk
areas, and a relatively small number of HUMANS become ill in the high-risk area
(Figure 9b). In the case where circulation took place during 20 years the situation is
quite different (Figure 9c): the number of malaria cases in both the low and high-risk
areas is much larger. In the low risk areas this is due to humans importing malaria
infections into the area. In the high-risk areas the increase in malaria incidence is the
consequence of non-immune humans entering the area and acquiring the disease.

Conclusion
A spatial explicit malaria model has been introduced in which it is possible to

relate various factors to transmission risk and disease risk. As is the case with many
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other malaria models it is difficult to find proper parameter values, and considerably
fine-tuning is needed to make the model more realistic. Nevertheless the model shows
a reasonable qualitative correspondence to real world situation, various processes, that
are less easy implemented using other model paradigms, for instance the circulation
behaviour, can be simulated, and the effects of various changes in the underlying
factors can be investigated. The next step in the development of the model is testing
the model’s applicability by further tailoring the model for the area in Kenya.

Martens (1998) distinguishes eco-epidemiology from conventional epidemiology.
Among the differences he indicates are the use of ecological aspects to estimate future
health risks (1), a focus on global and regional risk instead of local risk (2), and a long
time horizon (3). The malaria risk assessment described here can be placed in this
tradition.

(1) The transmission risk takes into account ecological factors as well as social-
economic factors. The health impact for the population determined in the disease risk
estimates includes some additional factors. Although the presented model cannot
provide the precision and completeness that some of the conventional models can
offer in their field of application, the integration of the various factors in the LEMRA
model provides a more complete overall picture, and has the potential for a direct link
with real world data and problems.

(2) Making the model spatial explicit transforms the local model into a regional
one. Regional patterns become clear, for instance the analyses in Kisumu area shows
the distribution of risk over the region and makes if possible to asses the risk in the
region as a whole. Furthermore, the example of circulation shows how processes that
take place at a larger spatial scale can be taken into account in such a spatial explicit
setting.

(3) For a long-term assessment of malaria risk the model should be extended with
some of the causal processes that influence the factors underlying malaria risk.
Currently, scenarios are being developed to describe changes in some of these factors.
Applying the model to the area in Kenya should make clear where our current gaps in
knowledge are, what additional field data is needed, and whether the current model
presents the proper balance the between simplicity and complexity, and between
completeness and understandability.
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