
Part I

Hamilton





2

Hamilton’s Indicators of the Force of Selection

2.1 Introduction

To quantify the force of selection, Hamilton derived expressions for the
change in fitness with respect to age-specific mutations. Hamilton’s in-
dicators are decreasing functions of age. He concluded that senescence
is inevitable: survival and fertility must decline with age. I show that
an alternative parametrization of mutational effects leads to indica-
tors that can increase with age. I then consider the case of deleterious
mutations with age-specific effects. In this case, it is the balance be-
tween mutation and selection pressure that determines the equilibrium
number of mutations in a population. In this balance the effects of
different parameterizations cancel out, but only to a linear approxima-
tion. I show that mutation accumulation has little impact at ages when
this linear approximation holds. When mutation accumulation mat-
ters, nonlinear effects become important and the parameterizations of
mutational effects make a difference. The results also suggest that mu-
tation accumulation may be relatively unimportant over most of the
reproductive lifespan of any species.

Senescence can be defined as an increase in mortality and/or a de-
crease in fertility with age. Is senescence a universal characteristic of
life? It is not obvious from an evolutionary perspective why it should
be. Early in life, when individuals develop and grow, mortality falls
and reproductive potential increases. Why is it that these age-patterns
cannot persist, in some form, with mortality continuing to decline and
reproductive capacity continuing to increase? George C. Williams [212,
p. 398] wrote:
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“It is indeed remarkable that after a seemingly miraculous feat of
morphogenesis a complex metazoan should be unable to perform the
much simpler task of merely maintaining what is already formed”.

William D. Hamilton’s influential article on “The Moulding of Senes-
cence by Natural Selection” [75, 76] provides a reason why senescence
“cannot be avoided by any conceivable organism”. Hamilton combines
insights about the evolution of senescence [126, 212] with concepts and
models of population dynamics [115]. Hamilton asserts that “ senes-
cence is an inevitable outcome of evolution”. Did Hamilton genuinely
prove that senescence is theoretically inevitable?

2.2 Hamilton’s Derivations

How does a mutation that acts only at a specific age a influence the
evolutionary success of an individual? Does it matter if this age is early
or late in life? Hamilton [75] built on the insight of Medawar [126] that
later-acting genes should be under weaker selection than earlier-acting
ones due to the unavoidable decline in the number of survivors at higher
and higher ages. A genetically-determined fatal disease that struck only
at post-reproductive ages would be entirely out of reach of the force of
selection.

2.2.1 The Framework

To quantify the force of selection Hamilton considered age-specific,
mutation-induced changes in fitness. Hamilton used the most widely-
accepted measure of Darwinian fitness, the intrinsic rate of population
increase r, implicitly defined by the discrete version of the Lotka equa-
tion

∞∑
x=0

e−r x lx mx = 1 . (2.1)

The function lx gives the chance of survival to age x. The function mx

measures the amount of reproduction at that age. If the population
is stable, as assumed by Hamilton, then each combination of an age-
specific maternity function mx and an age-specific survival function lx
is associated with exactly one real r that satisfies (2.1).



2.2 Hamilton’s Derivations 21

The survival function lx is defined as the product of the probabilities
pa of survival from age a to a + 1:

lx = p0 p1 . . . px−1 , (2.2)

with
l0 = 1 .

The age-specific survival probabilities pa depend on the instantaneous
death rate μt, the force of mortality between age a and a + 1, via

pa = e−
∫ a+1

a
μt dt = e−μ̄a . (2.3)

The cumulative mortality in the exponent reflects the average mortality
during that time interval, denoted by μ̄a.

2.2.2 Hamilton’s Indicator of Survival

By taking the derivative of (2.1) with respect to ln pa and rearranging,
Hamilton derived his basic result:

H† ≡
d r

d ln pa
=

∑∞
x=a+1 e−r x lx mx∑∞
x=0 x e−r x lx mx

. (2.4a)

Note that (2.3) implies that H† can also be expressed as:

H† ≡ −
d r

d μ̄a
. (2.4b)

The value of H† is a measure of the force of selection. It captures
the change in fitness r induced by an increase in ln pa. An increase in
ln pa is equivalent to a reduction in average mortality μ̄a between age a
and a + 1. This sensitivity of fitness to changes in age-specific survival
is captured by the ratio of remaining reproduction, the numerator in
(2.4a), to generation time, the denominator. Because H† declines as age
increases, Hamilton concluded that the force of selection must decline
with age.
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2.3 Alternative Indicators

2.3.1 Different Parametrization

Hamilton’s conclusion hinges on the particular parametrization he
chose for the nature of the effect of a mutation. Equally reason-
able, alternative forms would have been dr/dpa, dr/dqa, dr/d ln qa or
dr/d ln μ̄a, where qa is the probability of dying (qa = 1 − pa) and μ̄a,
as noted above, equals − ln pa. The results are as follows:

d r

d pa
=

1

pa
H†, (2.5a)

d r

d qa
= −

1

pa
H†, (2.5b)

d r

d ln qa
= −

qa

pa
H† (2.5c)

and

d r

d ln μ̄a
= − μ̄a H† . (2.5d)

Strikingly, the expressions in (2.5a-d) can increase in absolute value
with age – in contrast to H†, which always declines.

2.3.2 When Selection Pressure Increases

Consider, for instance, (2.5d). At pre-reproductive ages the value of
dr/d ln μ̄a is entirely determined by μ̄a, as H† is constant before matu-
rity. At reproductive ages the change in fitness with respect to mortality
increases from age a to a + 1 if∣∣∣∣ d r

d ln μ̄a

∣∣∣∣ <

∣∣∣∣ d r

d ln μ̄a+1

∣∣∣∣ .
Substituting (2.5d) and (2.4a), and using the notion of reproductive
value,

va =
er a

la

∞∑
x=a

e−r x lx mx , (2.6)

this inequality can be rearranged to give the following condition,(
μ̄a+1 − μ̄a

μ̄a+1

)
va+1

ma+1
> 1 . (2.7)
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Hence, the value of dr/d ln μ̄a will increase with age if μ̄a < μ̄a+1 and
if future reproductive value is sufficiently large compared to fertility
ma+1. Taking into account the fact that (2.1) must hold, the inequality
in (2.7) can be rearranged as(

μ̄a+1 − μ̄a

μ̄a+1

)
er(a+1)

la+1

(
1 −

a∑
x=0

e−r x lx mx

)
> ma+1 . (2.8)

This inequality determines trajectories for ma+1 that lead to increasing
sensitivity of fitness to changes in mortality over age given a specified,
increasing path for μ̄a. The survival and fertility functions plotted in
Fig. 2.1 and the resulting indicators dr/d ln μ̄a and dr/d ln pa plotted
in Fig. 2.2 provide an illustrative example.

5 10 15 20 25 30 35
age

0.5

1

1.5

2

la and ma

Fig. 2.1. Example of survival and maternity functions la and ma (If age-
specific survival probabilities pa change according to pa = pa

0 with p0 < 1,
then the average force of mortality between age a and a + 1 is given by
μ̄a = − ln pa

0 = −a ln p0. Maternity ma+1 was chosen to be 0.01 units smaller
than the left-hand side of the inequality in (2.8), setting r = 0, p0 = 0.99 and
m0 = 0. By age 34, survival falls to 0.25%. After age 34, I fixed age-specific
survival pa at its level of p35 = 0.70 corresponding to μ̄35 = 0.35 and adjusted
ma to a constant level of 133.265 such that (2.1) is fulfilled.)

2.3.3 Fertility Indicators

The quantity Hamilton derived for the force of selection on age-specific
mutations that affect fertility is

H∗ ≡
d r

dma
=

e−r a la∑∞
x=0 x e−r x lx mx

. (2.9)
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Fig. 2.2. Comparison of H† = dr
d ln pa

(dashed line) with dr
d ln μ̄a

(solid line)

(While Hamilton’s indicator H† declines, the alternative one increases until
age 34. The increase would have continued if ma+1 had been further deter-
mined by the inequality in (2.8). This, however, would result in a trajectory
for ma that would rise to enormous heights. Also note that Hamilton’s indi-
cator is greater than the alternative indicator, especially before age 35. This
implies a considerably stronger force of selection on age-specific mutations
that affect mortality.)

Hamilton considered survival effects on a log scale: He could have done
the same for reproduction, calculating

d r

d ln ma
= ma H∗ . (2.10)

Hamilton’s indicator in (2.9) necessarily declines with age but the al-
ternative indicator in (2.10) can increase with age, depending on the
trajectory of ma.

Table 2.1 summarizes the direction of changes over age of the various
indicators of the force of selection. The differences in the dynamics are
due to the nonlinearity of logarithmic and exponential transformations.

2.3.4 Are Some Indicators Better?

Charlesworth [27, p.191], who reconstructed Hamilton’s results, sug-
gested that “genetic effects on survival probabilities are more likely
to be additive on a log scale.” His conjecture implies that mutations
have additive effects on mortality. Indeed, both of Hamilton’s indicators
H† = −dr/dμ̄ and H∗ = dr/dm can be interpreted as assuming that
mutations additively affect average mortality μ̄ and fertility m. This
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Table 2.1. Various indicators
of the force of selection in
Hamilton’s framework

Indicator Change with age a

d r
d ln pa

−

d r
d pa

+ or −*

d r
d qa

+ or −

d r
d ln qa

+ or −

d r
d ln μ̄a

+ or −

d r
d ma

−

d r
d ln ma

+ or −

* “+ or −” means that the
change with age can be posi-
tive or negative, depending on
the trajectories of mx and lx.

is plausible because additive risk models are widely used, most com-
monly in evolutionary modeling [23, 29]. The indicators μ̄H† and mH∗

capture the effect of a proportional change in μ̄ and m. Proportional-
hazard models in general and Cox proportional-hazard models [45] in
particular are frequently used in demographic and epidemiological re-
search.

Deleterious mutations influence the internal condition of an organ-
ism. Internal conditions are known to interact with the environment
[163, 214]. These interactions affect mortality in a non-additive man-
ner. The idea that traits are likely to combine non-additively is also
supported by recent work by Promislow [160] and Spencer and Promis-
low [184] which concerns the network structure of genes and epistasis
respectively.

Whether age-specific mutations act proportionally or additively has
been a question for empirical research. Support for the preeminence of
proportional hazards comes from Drosophila. The study by Promislow
and colleagues [161] of additive genetic variance favors proportional
hazards. In the papers by Good and Tatar [68] and Mair et al. [116]
change in current nutrient conditions affects mortality in a proportional
manner. Furthermore, many mutants extend lifespan in Drosophila be-
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cause they reduce mortality proportionally [87, 112, 170]). An excep-
tion is the work on the mutant chico [197]. Evidence for proportional
hazards also comes from baboons [14] and mice [60] 1.

Numerous demographic and epidemiological analyses of risk factors
have found that proportional effects are more common than additive ef-
fects. In particular, the impact of genetic polymorphisms, such as ApoE
2, 3 and 4, on mortality has been modeled by proportional hazards [66].
Empirical results reviewed by Promislow and Tatar [158] support the
proportional-hazard assumption, suggesting that mutations act addi-
tively on log-mortality rather than log-survival. Hence, it seems plau-
sible that the indicators μ̄H† and mH∗ will prove at least as valid as
Hamilton’s indicators.

2.3.5 Optimization vs. Mutational Burden

How mutations affect fitness is the focus of a vast literature [17, 27,
46, 54, 73, 74, 96]. Since Medawar [126] and Hamilton [75], many bi-
ologists have considered the sensitivity of fitness with respect to age-
specific changes in survival or fertility [23] as an indicator of selection
pressure. A key issue is whether age-patterns of mortality and fertil-
ity are molded by adaptive optimization processes or by the burden of
non-adaptive mutations [2, 27, 147, 148]. Note that, in either case, an
increase in mortality or a decrease in fertility is a byproduct of evo-
lutionary processes. In the former case, senescence can arise as a side
effect of an optimal balance between linked traits that effect fitness,
and in the latter case senescence emerges as the weakening selection
pressure is less and less successful in eradicating deleterious mutations.

Optimization models can be solved without using Hamilton’s indi-
cators [200]. If the age-patterns mainly reflect the age-specific burden
of mutations, then Hamilton’s indicators are not sufficient. Age-specific
levels of birth and death rates depend not only on the selection pres-
sure but also on mutation rates. In the following section I analyze this
balance.

2.4 Mutation–Selection Balance

How do the alternatives of parametrization in Table 2.1 affect the equi-
librium number of deleterious mutations at each age? In particular,

1 I thank Marc Tatar for emphasizing the preeminence of proportional hazards and
for pointing me to the relevant empirical evidence.
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is the magnitude of mutation accumulation great enough to mold the
trajectory of mortality?

The equilibrium number of mutations under mutation–selection bal-
ance can be approximated by the ratio of the total mutation rate ν
(i.e., the hazard of a mutation from a set of possible mutations) and
the change in fitness r:

n̄ ≈
ν
dr
dn

, (2.11)

where n denotes the number of mutations and n̄ denotes the equilibrium
number [27, pp. 125-126]. The approximation holds if ν and n̄ are small.
Using the chain rule, the derivative in (2.11) can be factored into the
change in fitness with respect to survival or fertility and the effect on
survival or fertility of having n mutations:

dr

dn
=

dr

df

df

dn
, (2.12)

where f could be any of the denominators in Table 2.1.

2.4.1 Additive vs. Proportional Parametrization

Consider a mutation that has a small effect δ on mortality. Then f is
equivalent to

μa(n) = μa(0) + n δ (2.13a)

in the additive case and

lnμa(n) = ln μa(0) + n δ (2.13b)

in the proportional case. From (2.11), (2.12) and Table 2.1 it follows
that

n̄ ≈
ν

h†
a δ

(2.14a)

in the additive case and

n̄ ≈
ν

μa(0)h†
a δ

(2.14b)

in the proportional case. In these ratios h†
a denotes remaining repro-

duction at age a of an individual with no deleterious mutations. It is

related to Hamilton’s indicator via h†
a = H†

aT , where T captures gen-
eration time.
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Combining (2.13) and (2.14) leads to the result

μa(n̄) ≈ μa(0) +
ν

h†
a

(2.15a)

in the additive case and

μa(n̄) ≈ μa(0) exp

(
ν

μa(0)h†
a

)
(2.15b)

in the proportional case. If mutations are rare, i.e. if ν/μa(0) is small,
then the formula for the proportional case can be approximated by

μa(n̄) ≈ μa(0)

(
1 +

ν

μa(0)h†
a

)
= μa(0) +

ν

h†
a

. (2.16)

Hence, if ν and n̄ are small enough that the approximations in (2.11)
and (2.16) hold, then mutation accumulation will result in about the
same age-specific mortality regardless of whether mutations have addi-
tive or proportional effects.

2.4.2 A Simple Box Model

If n̄ is large, an alternative approach is necessary. Several helpful models
have been developed (e.g. [95, 127, 128, 142]); for a review see [17, 27]. A
recent general model by Steinsaltz, Evans, and Wachter [187] includes
earlier models as special cases.

A solution based on a simple box model similar to that of Kimura
and Maruyama [95] can be readily developed. Assume a haploid, asex-
ual population that is stationary in size. Further assume that muta-
tions affect only one age class, to ensure that the equilibrium numbers
of mutations are independent across ages. Focus on a single age a. In-
dividuals are sorted into boxes according to their number of mutations
at age a. Let N(n) be the number of individuals in box n and let N
be the total, constant population size at age a. In mutation–selection
balance, the proportions N(n)/N are fixed. Denote the lifetime repro-
duction of an individual in box n by R(n). Let ν be the probability
of passing on a new, additional mutation to the next generation. As-
sume that mutations occur successively, i.e. it is not possible to jump
over boxes. Ignore back mutations. Mutations are deleterious, therefore
R(0) > R(1) > R(2)... > R(K), K being some maximum number.
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The number of individuals N(n) in box n is given by the inflow of
individuals minus the outflow per generation,

N(n) = N(n − 1)R(n − 1) ν + N(n)R(n) (1 − ν) . (2.17)

It follows immediately that reproduction in box zero is

R(0) =
1

1 − ν
. (2.18)

In the case of mutations that affect mortality, the lifetime reproduction
of individuals in the n’th box is given by

R(n) =

a−1∑
x=0

lx mx + eμa(0)−μa(n)
∞∑

x=a

lx mx . (2.19)

This result can be expressed as

R(n) = R(0) − Δ(n)h†
a , (2.20)

where Δ(n) is the fraction of remaining reproduction h†
a that is lost

due to carrying n mutations. In the additive case

Δ(n) = 1 − e−δ n (2.21a)

and in the proportional case

Δ(n) = 1 − e−μa(0) (exp[δ n]− 1) . (2.21b)

It follows from (2.17) and (2.20) that

N(n) =
N(0)∏n

k=1 Δ(k)
R(0)n+1

( ν

h†
a

)n
n−1∏
k=1

(R(0) − Δ(k)h†
a ) . (2.22)

The equilibrium number of mutations is the average over all boxes, i.e.

n̄ =

∑K
n=0 n N(n)∑K
n=0 N(n)

. (2.23)

Figure 2.3 plots the equilibrium number of mutations over age in the
additive versus proportional case for the example presented in Fig. 2.1
and 2.2. As a second example I consider female mortality, as given in
the Swedish life table for 1778-82. Results are shown in Figs. 2.4 and
2.5.
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Fig. 2.3. Equilibrium number of mutations: additive (dashed), proportional
(solid) (I assume that mutation pressure ν = 0.001. Furthermore, I assume
that a mutation at any age reduces remaining reproduction by about ten
percent in both the additive and proportional case. This refers to an average
reduction in the proportional case since Δ(n) depends on the level of mortality
at age a, as can be seen from (2.21b). Specifically, δ = 0.1 in (2.21a) and
δ = 0.35 in (2.21b). While in the Hamiltonian case of an additive hazard the
number of mutations remains low and then increases with age, proportional
effects lead to an age-specific mutational load that declines at young ages. In
the example only one quarter of one percent of individuals are alive at age 34.
Before this age the mutational load is close to zero. After this age, however,
the equilibrium number of mutations rises sharply.)

The values of h† that determine the number of mutations in Figs.
2.3 and 2.4 are calculated using specific initial fertility and mortal-
ity schedules. The mutations, however, will raise mortality, producing
a new schedule that determines a new h†, as illustrated in Fig. 2.5.
These dynamics are beyond the scope of this chapter. Note, however,
that higher hazard rates would reduce the fitness costs of a change in
age-specific mortality. Thus, more mutations would accumulate and the
difference between additive and proportional parameterizations would
be larger than predicted by my conservative estimate. A general treat-
ment that takes into account interactions between ages is given by
Steinsaltz, Evans, and Wachter [187].2

2 I thank Kenneth W. Wachter and Brian Charlesworth for helping me considerably
with this section.
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Fig. 2.4. Equilibrium number of mutations: additive (dashed), proportional
(solid) (The example is based on female mortality as given in the Swedish
life table for 1778-82, for seven 5-year age-groups, beginning at age 15. Since
the Swedish population was growing at that time, I normalized reproduction
to ensure R = 1.00. I consider a deleterious mutation that reduces remaining
reproduction at any age by about one percent, either in an additive or in a
proportional way, i.e. δ = 0.01 in (2.21a) and δ = 0.7 in (2.21b), and I assume
a mutation pressure of ν = 0.001. The difference between the additive and
proportional case increases at higher ages, as levels of remaining reproduction
decline. A slight decrease in the equilibrium number of mutations from the
first to the second age-group can be observed.)
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Fig. 2.5. Mortality: additive (dashed), proportional (solid), initial mortality
μa(0)(dotted) (Initial mortality is from the Swedish life table for 1778-82,
females, for seven 5-year age-groups, beginning at age 15.)
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2.5 The Importance of Mutation Accumulation

The age-trajectory of mortality can be decomposed into three parts: one
component is due to the accumulation of unfavorable mutations, an-
other fraction results from selection processes that optimize the trade-
offs necessitated by resource limitations, and the remaining fraction
can be attributed to unavoidable, external risks of death. How strong
is the influence of mutation accumulation?

The relative impact of mutation accumulation on the molding of the
mortality trajectory is crucially determined by the ratio of mutation

pressure ν to remaining reproduction h†
a, as indicated by (2.14). The

larger the value of ν, the more influential is mutation accumulation. But
what is the magnitude of ν? Keightley and Charlesworth [92] point
out that the rate of deleterious mutations per haploid genome in C.
elegans in protein coding genes is about 0.5 per generation. Kimura and
Maruyama [95] and Drake et al. [51] suggest mutation rates per genome
per generation of about 0.1 and between 0.1 − 100, respectively. More
recent publications estimate the genomic rate of deleterious mutations
in humans to be at least 1.6 [55] or even 3 [133] per generation.

If the fraction of mutations that exclusively affect mortality at a
specific age is low, then these values could be consistent with a value
of ν = 0.001. If ν is 0.001, then Fig. 2.6 suggests that the influence of
mutation accumulation is likely to be small over the major part of re-
productive life. This remains speculation, however, until the magnitude
of ν is estimated empirically. Abrams [2] provides suggestive evidence
that the importance of mutation accumulation is likely to be small
relative to the importance of optimization among trade-offs. Partridge
[147] points out that little evidence can be found in favor of mutation
accumulation but considerable evidence can be found to confirm the
importance of trade-offs.

The conclusions drawn above and in the previous section were
reached on the basis of a specific model of mutation accumulation. In
general cases covered by the solutions given by Steinsaltz, Evans, and
Wachter [187], the form of the mutation–selection equilibrium depends
on the extent of assumed genetic recombination. At both extremes, in
the absence of recombination (Equation 9 in their article) and in the
presence of free recombination (Equation 27), the parametrization of
the mutational effect, i.e. whether the effect is additive or proportional,
influences the mutation–selection equilibrium.
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Fig. 2.6. Proportion of mortality explained by mutation accumulation: ad-
ditive (dashed) vs. proportional (solid) case (The fraction 1 − μa(0)/μa(n̄)
indicates the proportion of equilibrium mortality that can be explained by
the accumulation of mutations. For the example of Swedish females, when
ν = 0.001, mutation accumulation explains less than a third of total mor-
tality. At ages 45-50, however, when mortality is high and fertility is low,
mutation accumulation accounts for the bulk of total mortality. Note that
this illustrative example does not pertain to actual Swedish mortality but to
the hypothetical outcome of one round of mutation accumulation: see Sect.
3.1 for further discussion.)

2.6 Conclusion

Hamilton stated that the force of selection inevitably has to decline with
age, even “in the farthest reaches of almost any bizarre universe” [76].
He concluded that the declining selection pressure would mold the age-
pattern of mortality in a way that mortality is lowest at reproductive
maturity and “trails upward indefinitely at the right . . . roughly asymp-
totic to the age of the ending of reproduction” [76, p. 119]. Hamilton’s
claim about the inevitability of senescence has been generally accepted,
but it can be disproved, even adopting his restrictive assumptions. As
shown above, alternative indicators can be derived, within Hamilton’s
own framework, that can result, in some circumstances and over some
age ranges, in an increasing force of selection with age, thus contradict-
ing the basis for his claim.

The results of this chapter strengthen the view that demographic
schedules of mortality and fertility appear to be shaped largely by op-
timization of trade-offs rather than by mutation accumulation. Only at
ages when remaining reproduction is low does the influence of mutation
accumulation appear to become predominant. At those ages, different
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parameterizations lead to different conclusions about the equilibrium
number of mutations.

Some important empirical research questions are suggested by the
theoretical findings of this chapter. Does the age-specific mutation rate
ν change with age? If so, what is the age-trajectory of ν?


