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Optimization Models Based on Size

4.1 Size Matters

Hamilton did not prove that senescence is inevitable. Furthermore, it
seems likely that the age-trajectory of mortality is largely shaped by
optimization: only at advanced ages, when the bulk of total lifetime
reproduction has been realized, might mutation accumulation play a
role. So the question arises: could it be optimal for a species not to
follow a senescent life-history strategy?

As Caswell argues, for many organisms “the age of an individual
tells little or nothing about its demographic properties” [23, p. 39].
Often what is important is size or stage of development. He concludes
that “ [s]ize-dependent demography is probably the rule rather than the
exception and is especially pronounced in species with a large range of
adult body size as a result of indeterminate adult growth.”

Trees, for example, continue growing over an extended period of
their life, gaining strength, becoming more robust and thereby reduc-
ing their susceptibility to death. (If trees at sites exposed to wind are
too tall, then their susceptibility to damage and death might increase:
this, however, is a special case.) A larger size (tall, thick stem, more
leaves, longer roots) lowers the risk of death and enables better access
to resources (light, water, nutrients). Larger trees produce more seeds
than smaller trees.

The same is true for some species of fish. For instance, in some
species the young adult fish, still small, has only a few progeny and is
the prey of bigger fish. Over time the fish grows large enough to become
a predator itself, increasing its level of resources and lowering its own
risk of death.
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Small alligators are prey to a variety of predators including rac-
coons, otters, wading birds, and fish. But most dangerous to small al-
ligators probably are predators of their own kind, the larger alligators.
Large alligators also die of cannibalism and fight with each other (see
http://myfwc.com/gators/facts.htm). An individual alligator’s size and
strength determines whether it receives or becomes an additional ration
of food.

In this chapter, I hypothesize that candidate species for non-senes-
cent life histories are species that continue to grow substantially after
the onset of reproduction and for which size is strongly associated with
continued survival and reproductive success. This appears to be the
case for the plant Plantago lanceolata after seasonal effects are removed
[167]. The study of Plantago lanceolata by Deborah Roach was the
particular motivation for me to develop a general life-history model
based on size rather than age to understand whether non-senescence is
theoretically possible.

Evidence for size-dependent mortality is reported for herbaceous
plants in general [44, 77, 173, 182], thistles in particular [162, 171], trees
[88], corals [86] and fish [129, 154]. Sauer and Slade [174] also document
the effect of body mass on reproduction and survival in vertebrates.

For some species mortality may not decrease as size increases: there
may be no relation, or mortality may increase with size. In addition, it is
important to note that, for some species, larger size may not cause lower
mortality. Larger size may have co-evolved with lower mortality, both
resulting from some other aspect of the species’ life history. For some
species, for instance species like Drosophila, which exhibits discrete
developmental stages rather than continuous growth, size may not be a
key determinant of mortality. So a size-based model can shed light on
the life history of only some species. But these species are “conceivable
organisms” and may show non-senescent life-history strategies.

Size is the central state variable in the models I will develop in this
chapter. Size determines mortality and fertility. Age enters the models
only insofar as it takes time to grow – age itself does not matter. Using
size as the state variable in these kinds of models is a first step to
understanding whether any life history could be non-senescent. Note
that the state variable size can be understood not only as physiological
size but more generally as “size and strength”. In Chap. 5, I develop a
new model that is based on “vitality” rather than size.
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4.2 A Size-Based Life-History Model

An optimal life history maximizes lifetime reproductive success. Ac-
cordingly, the energy available to an organism, which is always limited,
has to be distributed among the basic processes of life: reproduction,
maintenance and growth. How evolution solves this allocation problem
determines the optimal trajectory of growth and thereby the optimal
trajectories of the main demographic schedules, mortality and fertility.

All forms of life have to deal with damage. Damage occurs all the
time and is discarded or repaired continuously, sometimes fully, some-
times partially. Models that take into account the influence of damage
on mortality and fertility can do so on the occurrence and/or on the
disposal and repair side. Energy allocation problems imply that dis-
posal and repair of damage decreases when more energy is allocated to
reproduction and therefore less energy remains for processes of mainte-
nance and growth. Models based on the concept of energy allocation do
not necessarily account for where the damage comes from. Reproduc-
tion itself, for instance, can be a direct cause of damage. For simplicity,
the model I am going to develop in this chapter will focus on the en-
ergy allocation trade-off between reproduction, on the one hand, and
maintenance and growth on the other. That is, I treat growth and re-
pair as elements of the same general process and I do not explicitly
model damage resulting from reproductive activities. I assume that the
occurrence of damage increases proportionally with size.

Models based on the concept of optimal energy allocation over
the life cycle represent a fundamental approach in life history mod-
eling. Early applications of this concept were developed more than
three decades ago, for example by Cole [42], Gadgil and Bossert [62],
Schaffer [175], Taylor et al. [192], and Leon [111]. More recent exam-
ples of the application of the concept of optimal energy allocation
include Charlesworth [26], Perrin [152], Perrin and Sibly [153], Ko-
zlowski [102], Chichon [37], Teriokhin [193], Charnov et al. [35], Man-
gel and Stamps[122], Kaplan and Robson [91], Chu and Lee [36] and
Charlesworth [34].

Generally, such life-history models are driven by the trade-off be-
tween reproduction and growth. Depending on the particular research
focus, growth is sometimes further differentiated into growth of ac-
quisition structure, storage structure, defense structure, reproductive
structure and/or cognitive functioning. The central quantity of inter-
est is the fraction of energy allocated to reproduction, the reproductive
effort of an individual.
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Life history models based on the concept of reproductive effort have
been studied intensively (for a review see Charlesworth [27, Section
5.3.4.]). Common to these models is the assumption of a direct, in-
verse relation between survival and reproduction, which is mediated by
reproductive effort. One outcome of these models is that reproductive
effort should increase with age [62, 175]. However, Fragen [61] produced
some counter-examples and Charlesworth and Leon [31] derived condi-
tions that would lead to a decreasing reproductive effort with age, i.e.
to an increase in survival with age. These results illuminate the gen-
eral pattern of how reproductive effort should change with age. But,
as Charlesworth [27, p 214] put it: “The problem of solving for the
optimal life history with this model is a formidable one.”

My research aim is to study the variety of qualitative patterns of
mortality and fertility over age. In particular, I wish to understand
whether it can be optimal for mortality to be constant or to fall over
an extended period of life after the onset of reproduction. Interestingly,
optimal patterns of mortality and fertility were commonly found to
be flat in numerical studies by Charlesworth [26]. In these studies,
reproductive effort increased so slowly, that it appeared to be virtually
constant.

The examples given in the previous section suggest that, for some
species, mortality decreases with size and fertility increases with size.
For species with continued growth that follow this pattern, constant
or falling mortality after the onset of reproduction seems to be opti-
mal, at least for some period of the lifespan. Consequently, the models
developed in this chapter are designed to capture this simple pattern
based on the state variable size.

In contrast to previous reproductive effort models, the link between
survival and reproduction will be mediated by size. The important
implication of this assumption is that an increase in reproductive effort
does not necessarily lead to a decrease in survival, and a decrease in
reproductive effort does not necessarily lead to an increase in survival.
I will emphasize this point in Sect. 4.2.2.

Every organism has to cope with the ubiquitous processes of dete-
rioration. This means that some of the energy invested in “ growth” is
needed to repair damage. Only what is left after the requirements of
maintenance have been met can be used to increase current size. Size
changes according to the balance between repair and damage. Thus, size
in this framework can increase, decrease or remain constant and, conse-
quently, mortality can increase, decrease or remain constant. Whether
mortality increases or decreases is an outcome of the model and not an
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assumption. This is a crucial feature, which distinguishes this model
from previous models.

The importance of size is generally recognized [23, p.39]. A state-
based model that assumes an inverse relation between state and mor-
tality has been developed before by Perrin [152]. However, Perrin im-
plicitly assumes a non-senescent life history because mortality cannot
increase in his model. Perrin’s approach does not account for the oc-
currence of damage and its possible repair. A model that incorporates
damage and repair was developed by Kozlowski [102], Cichon [37] and
Cichon and Kozlowski [39]. In their framework mortality does not de-
pend on state but on accumulated damage and can, at best, remain
constant. Complete repair of current damage is realized only if all en-
ergy is invested in repair, i.e. at the cost of zero reproduction. Otherwise
mortality rises at a pace determined by reproductive effort. An increase
in mortality is inevitable.

An innovative feature of the approach I will be taking is that I
combine the inverse relation of mortality and size with the possible
accumulation of damage and its repair. My research builds on and
further develops Vaupel, Baudisch et al. [200]. Mangel and colleagues
[120, 121] have recently developed other models in which mortality is
the consequence of growth and metabolism and associated damage.

4.2.1 The General Optimization Problem

The general optimization problem can be formalized as follows. Let
ξ(a) denote the size (and strength) of an individual at age a. Let π(a)
denote the fraction of energy allocated to growth at that age. Assume
that the change in size over age depends on investment π(a) and size
ξ(a) but not on age a itself, i.e. that the trajectory of ξ(a) is determined
by the autonomous first-order differential equation

d ξ

d a
≡ ξ̇ = g(ξ(a), π(a)) . (4.1)

Note that the dot indicates a change over age. Initial size is given by
ξ(0). From that size onwards, the age-trajectory of π(a) determines the
age-trajectory of ξ(a).

The optimal trajectory of π(a) over the life course is assumed to
be the strategy that maximizes Darwinian fitness, measured as lifetime
reproductive success, a functional of the form

max R =

∫ ∞

0
f(ξ(a), π(a)) da , (4.2)
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where f(ξ(a), π(a)) depends on the age-trajectories of mortality and
fertility and hence on the age trajectories of ξ(a) and π(a). The age
horizon is potentially infinite, but non-zero mortality insures that every
individual has a finite lifespan.

The general optimization problem is described by the objective as
given in (4.2) and the autonomous first-order differential equation as
given in (4.1), which determines the change in size over age.

4.2.2 The Specific Optimization Problem

The change in size is determined by the fraction of energy invested
in growth, π(a). Energy is allocated between growth and maintenance
on the one hand, and reproduction on the other hand. The fraction of
energy allocated to reproduction, the reproductive effort, is captured
by 1 − π(a), since in this model maintenance and growth are assumed
to be paid out of the same budget. In accordance with the literature,
the change in size is assumed to be inversely related to reproductive
effort.

Larger size implies higher complexity, which is more costly to main-
tain. The rate of occurrence of new damage will be assumed to increase
proportionally with size [101, 210]. A simple way of modeling deterio-
ration is to assume a linear relation with size, i.e.

δ(ξ(a)) = δ0 + δ1 ξ(a) , (4.3)

where δ0 > 0 and δ1 > 0 are constant parameters.
Size is assumed to change proportionally to the level of current size

ξ(a). This implies the assumption that available resources are propor-
tional to size, an assumption also made by Charlesworth and Leon
[31], Gadgil and Bossert [62] and Leon [111]. Furthermore I assume
that the change in size is proportional to the difference between invest-
ment π(a) and deterioration δ(ξ(a)). Growth only occurs if investment
exceeds the current rate of deterioration. Therefore, the change in size
can be specified as

d

da
ξ(a) = k (π(a) − δ(ξ(a))) ξ(a) (4.4)

where k > 0 is a constant scaling parameter. Initial size can be nor-
malized by setting ξ(0) = 1. Substituting (4.3) into (4.4) yields the
following logistic differential equation

dξ(a)

da
= k (π(a) − δ0 − δ1 ξ(a)) ξ(a) . (4.5)
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This equation captures the change in size and specifies the general
function g(·) of (4.1).

Life starts off with growth. Then at some age some energy is invested
in reproduction. This age at onset of reproduction (reproductive ma-
turity) α is determined by the age when π(a) < 1 for the first time.
Figure 4.1 depicts the age-trajectory of size during development. The
curve is given by the solution to (4.5), namely

ξ(a) =

(
δ1

1 − δ0
+

(
1 −

δ1

1 − δ0

)
e−k (1− δ0 ) a

)−1

, (4.6)

taking into account that investment is constant at π(a) = 1 over
that period and ξ(0) = 1 . This logistic function has an upper limit
of (1 − δ0) / δ1, which reflects the size an organism would eventually
approach if it continues to spend all available resources on maintenance
and growth. In size-based approaches, growth functions that have an

Fig. 4.1. Size ξ(a) as a function of age a according to (4.5)

upper bound, such as the logistic function or the von Bertalanffy growth
function, are frequently used, since size cannot increase indefinitely.

To ensure that the initial investment of π0 = 1 actually leads to
growth an additional restriction on the parameters in (4.3) is necessary.
From (4.5) one gets

dξ(a)

da

∣∣∣∣
a=0

= k ( 1 − δ0 − δ1) > 0
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and hence
δ0 + δ1 < 1 . (4.7)

This inequality concurrently guarantees that δ(ξ) < 1.
The general function f(·) given in (4.2) can be specified by the

product of the probability of surviving to age a, l(a), and the amount of
reproduction at that age, m(a). The objective function is then specified
by

max R =

∫ ∞

0
l(a) m( ξ(a), π(a) ) da . (4.8)

The survival function l(a) is determined by the trajectory of mortality
up to age a via

l(a) = e−
∫ a

0
μ(ξ(t)) dt. (4.9)

The age-specific force of mortality, denoted by μ(a), is assumed to
be inversely proportional to ξ(a). As discussed in Sect. 4.1, I focus on
species for which growth enhances future survival. A simple way to
model mortality in this case is to let

μ(a) =
b

ξ(a)
+ c . (4.10)

The constant parameter b ≥ 0 captures the size-dependent, “intrinsic”
component of death and the constant parameter c > 0 captures the
size-independent, “extrinsic” component of death.

The model implies that, if no energy is allocated to growth, then
size deteriorates exponentially and therefore mortality increases ex-
ponentially. However, whether it is optimal to invest all available en-
ergy in reproduction is an outcome of the model. An exponential in-
crease in mortality is not a built-in property of the model. If mortal-
ity increases, it can do so at any pace, exponential being the extreme
case. In the exponential case, the mortality function is the same as
the Gompertz-Makeham function. Exponentially increasing mortality
(“Gompertz Law”) is frequently assumed in the literature, based on
various empirical observations. The general structure of the mortal-
ity function is the same as that used by Perrin [152] (except for an
exponent to size).

In accordance with the literature, I assume reproduction to be pro-
portional to available resources (which are proportional to ξ(a)) and to
the reproductive effort (in this model (1−π(a))). A simple way to spec-
ify reproduction is to assume a linear relation with reproductive effort;
this approach was taken by Charlesworth [26], Perrin [152], Kozlowski
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[102], Cichon [37] and Cichon and Kozlowski [39]. The maternity func-
tion, denoted by m(a), is thus given by

m(a) = ϕ (1 − π(a)) ξ(a) . (4.11)

Note that the constant, positive parameter ϕ can be adjusted to ensure
that the optimal strategy yields a net reproduction rate R = 1. This
implies that population density is assumed to affect lifetime reproduc-
tive success in a proportional manner. Note further that fertility and
mortality are written as functions of age for purposes of brevity only.
To be precise, m(a) = m(ξ(a), π(a)) and μ(a) = μ(ξ(a)).

The pleiotropic effects of size can be summarized as

d

dξ
μ(ξ) < 0,

∂

∂ξ
m(ξ, π) > 0,

d

dξ
δ(ξ) > 0 . (4.12)

A larger size implies a lower risk of death, a higher reproductive poten-
tial but also a higher level of deterioration, which increases the costs of
maintenance. Recall that the mediating effect of size between mortal-
ity, fertility and damage constitutes an important difference to previous
models of reproductive effort, as emphasized at the beginning of this
chapter. Equations (4.3), (4.4), (4.10) and (4.11) imply that an increase
in reproductive effort (1−π(a)) does not necessarily lead to a reduction
in survival. As long as the level of π(a) does not fall below the level
of damage δ(ξ(a)), size does not shrink and therefore mortality does
not increase. Conversely, a declining investment in reproduction does
not lead to improved survival as long as the level of investment π(a) is
below the level of damage δ(ξ(a)).

4.3 An Optimization Model that Leads to

Non-senescence

The optimal solution is a trajectory over age. Therefore, this is a dy-
namic rather than a static optimization problem. Two main approaches
can be distinguished: Bellman’s dynamic programming approach [12]
and Pontryagin’s Maximum Principle [157]. Comprehensive treatments
of dynamic programming methods applied to biological problems are
given in Mangel and Clark [118] and Clark and Mangel [41] as well as
Bulmer [16]. The Appendix to Mangel [119] shows how to connect dy-
namic state variable modeling with the ideas of classical demography
and life history models.
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4.3.1 The State Ratchet

Bellman’s general way of thinking implies a feedback loop strategy.
In any particular given state, make the best possible decision. This
decision will steer the state to some subsequent level. Again, given
this subsequent state, do the best you can do. An optimal trajectory
of decisions can be found by beginning at the last possible state and
working backwards. The most important precondition for this strategy
is that decisions only depend on the current state and potential future
gains and losses but not on the past.

In particular, at each size ξ(a) the amount of energy invested in
growth π(ξ(a)) at that size determines whether size increases, decreases
or is maintained. Depending on this decision, size changes over age ac-
cording to (4.2). The optimal trajectory of energy allocation to growth
determines the optimal trajectory of size over age, which in turn deter-
mines the optimal age-trajectories of mortality and fertility.

Following Bellman’s way of reasoning, the general nature of the
optimal strategy can be understood intuitively. Assume each size is
associated with a unique level of optimal investment and size changes
continuously over age. Then each ξ(a) is associated with a single π∗(a)
(the star indicating ‘optimal’) that determines whether size increases,
decreases or is maintained.

Assume at a particular size ξ(a) that the optimal investment results
in an increase in size to ξ(a+) > ξ(a) at age a+ > a . Assume further
that, at the subsequent bigger size, it would be optimal to shrink. Then
size would shrink to some lower value ξ(a++) < ξ(a+) at age a++ > a+.
However, size is a continuous variable. In order to grow from ξ(a) to
ξ(a+) it must have been optimal to grow at each intermediate size
between ξ(a) and ξ(a+). Shrinking again from ξ(a+) to ξ(a++)) would
imply that this optimality is violated at each level of size between
ξ(a+) and ξ(a++). Each intermediate size would be associated with
two optimal strategies instead of one, which is a contradiction.

This line of reasoning leads to an important result, which I will call
“the state ratchet”. If, for the optimization problem formulated above,
an optimal solution exists and each state is associated with exactly one
optimal strategy, then any continuous, optimal state trajectory must
be a monotonic function over age. Consequently, if the state variable
initially increases, it will never decrease and if the state variable initially
decreases it will never increase. Since maintenance implies that state
does not change, the optimal strategy, which is bound to state only, will
not change over age. Therefore, if, for any finite interval, it is optimal
to maintain the current state, it will be maintained forever.
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The state ratchet has important consequences for any optimal life
history in this framework. Since life begins with growth it can never
be optimal to shrink. Size can only increase and then be maintained at
some point. Since mortality is assumed to be inversely related to size,
mortality can never increase. Senescence is impossible. Intriguingly, this
simple approach challenges Hamilton’s postulate of inevitable senes-
cence. It is possible to overcome the state ratchet, as I will discuss in
a later section of this chapter, but only by making the model more
complicated. Let’s first consider the basic model.

4.3.2 The Maximum Principle

Pontryagin’s way of thinking involves planning the whole future at time
zero, in contrast to Bellman’s backward step-by-step approach. Opti-
mizing all future decisions at time zero requires knowledge about how
decisions, the “control variable(s)”, influence the change in the state
variable(s) over time. The change in state(s) over time is determined by
the so called “equation(s) of motion”, i.e. first order differential equa-
tions that capture the change in any state variable over age. For my
particular problem the control variable is the investment in growth,
π(a). One state variable is size, ξ(a). Equation (4.5) determines the
corresponding equation of motion, the change in size over age.

As in Bellman’s approach, there is an important precondition. The
optimal decision at any age a should only depend on the current state
and potential future gains and losses but not on previous ages. How-
ever, survival to age a, as given in (4.9), depends on the trajectory
of mortality between age zero and age a. Therefore, survival must be
treated as an additional state variable. Note that survival changes over
time according to

d

da
l(a) = −l(a)μ(a) (4.13)

with initial condition l(0) = 1. Equation (4.13) depicts the equation
of motion for the second state variable, survival.

Pontryagin’s Maximum Principle [157] associates a specific function
with the optimal control problem stated above, the “Hamiltonian”

H( ξ, l, π, λ1, λ2 ) = l(a)m(ξ, π)

+ λ1(a) [ k (π(a) − δ0 − δ1 ξ(a) ) ξ(a) ]

−λ2(a) l(a)μ(ξ) . (4.14)

The first term is the contribution of the objective function (given in
(4.8) at age a: This term captures the current gains from a decision
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π(a) at states ξ(a) and l(a). The remaining terms are the weighted sum
of the change in the state variables. The factors λ1(a) and λ2(a) are
costate variables. Costate variables capture the values of a hypothetical
additional unit of ξ(a) and l(a) respectively at age a, the “shadow price”
of size and survival.

Conditions for an Optimum

The Maximum Principle requires that an optimal solution necessarily
fulfills the following criteria:

• The Hamiltonian function is maximized with respect to the invest-
ment strategy. In general, if H(·) is differentiable, then

d

dπ
H(·) = 0 . (4.15)

In particular

Hπ(·) = l(a)mπ(ξ, π) + λ1(a) k ξ(a) = 0 , (4.16)

the subscript π indicating the partial derivative. Clearly, if the
Hamiltonian is linear in the control variable, then the maximum
is attained at the boundaries of the feasible set for the control. Note
that the last term dropped out. The shadow price of survival does
not influence the maximum of the Hamiltonian.

• Furthermore the “adjoint equations”

d

dξ
H(·) = −

d

da
λ1(a), and

d

dl
H(·) = −

d

da
λ2(a) (4.17)

must hold. The change in the shadow price of a state variable must
equal the negative change in the Hamiltonian with respect to that
state. More specifically, the adjoint equations associated with size
and survival, respectively, are given by

λ̇1 = −Hξ(·)

= − l mξ(ξ, π)

−λ1 k (π − δ0 − 2 δ1 ξ )

+ λ2 l μξ(ξ) (4.18)

and
λ̇2 = −Hl(·) = −m(ξ, π) + λ2 μ(ξ) . (4.19)
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• As age approaches infinity the values of an additional unit of size and
survival, as captured by λ1 and λ2, respectively, have to approach
zero. This is reflected in the transversality conditions, given by

lim
a→∞

λ1(a) = lim
a→∞

λ2(a) = 0 . (4.20)

Note that the state, control and costate variables are all functions of
age. However, for brevity they are written as ξ, π, λ1 and λ2 wherever
no confusion arises.

Solution

Taking into account that

k (π − δ0 − 2 δ1 ξ) =
ξ̇

ξ
− k δ1 ξ (4.21)

the solution to the differential Equation in (4.18) gives the shadow price
of an additional unit size at age a,

λ1(a) = −
1

ξ(a)

∫ ∞

a
e−k δ1

∫ t
a

ξ(τ) dτ ξ(t)

× l(t) (λ2(t)μξ(t) − mξ(t)) dt . (4.22)

Equation (4.19) can be solved as

λ2(a) =
1

l(a)

∫ ∞

a
l(t)m(t) dt . (4.23)

The shadow price of survival at age a is equivalent to the reproductive
value at that age. Inserting (4.23) into (4.18) leads to

λ1(a) = 1
ξ(a)

∫∞
a e−k δ1

∫ t
a

ξ(τ) dτ ξ(t) (4.24)

×
(

l(t)mξ(t) − μξ(t)
∫∞
t l(τ)m(τ) dτ

)
dt .

To find an explicit expression for size, (4.5) can be solved, resulting
in

ξ(a) =
exp
{∫ a

0 k (π(t) − δ0) dt
}

1
ξ(0) +

∫ a
0 k δ1 exp

{∫ t
0 k (π(τ) − δ0) dτ

}
dt

. (4.25)

It can be seen that the state variable size increases in a logistic manner.
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Result

With the state ratchet I showed that size must follow a monotonic path.
The same result can be proved applying optimal control theory. For
an infinite horizon autonomous optimal control problem with a single
state variable, the optimal state path must be monotone (Kamien and
Schwartz [90, p. 179] and Léonard and Van Long [114, p. 294]). Recall
from (4.11) that fertility is linear in π. Therefore, the Hamiltonian
function is linear in π, which results in solutions at the boundaries of
the feasible set of investment strategies π, i.e. either one or zero.

Initially, π0 = 1 and π remains at one until maturity. At maturity,
a boundary solution implies that π = 0. If this were so, size would
decrease, contradicting the state ratchet. Therefore, one expects what
is called a “singular solution” in control theory. A singular solution
requires that

Ḣπ = 0 = l̇ m∗
π + λ̇1 k ξ∗ (4.26)

has to be satisfied. It would be natural if π = δ(a) were the singular
solution required. Since size is constant in maintenance mode, the opti-
mal solution would stay on the singular path forever. It turns out that
π = δ(a) is the singular solution, as discussed below.

Since a logistic increase in size implies an upper limit to growth,
there must be an age a∗ at which size is finally maintained,

π = δ(ξ), ∀ a ≥ a∗ . (4.27)

Consequently ξ(a∗) = ξ∗, m(a∗) = m∗ and μ(a∗) = μ∗ will be constant.
If size is constant the reproductive value is simply given by the quotient
of m∗ and μ∗. Since the reproductive value of an individual at age a is
captured by the costate variable λ2(a), this costate will be constant as
well.

Assume π = δ(a) from age a∗ onwards. Taking into account that

l(a) = l(a∗)e−μ∗ (a−a∗), (4.28)

it follows from (4.24) for all a ≥ a∗ that

λ1(a) =
l(a)m∗

(k δ1 ξ∗ + μ∗)

(
m∗

ξ

m∗
−

μ∗
ξ

μ∗

)
. (4.29)
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This expression combined with condition (4.26) leads to an equation
that determines the size at which the optimal investment should switch
to maintenance mode,

m∗
π

m∗
=

k ξ∗

k δ1 ξ∗ + μ∗

(
μ∗

ξ

μ∗
−

m∗
ξ

m∗

)
. (4.30)

The relative change in reproduction with respect to the investment in
growth must equal the weighted difference between the relative changes
in mortality and reproduction with respect to size. Note that this con-
dition does not depend on age: (4.26) will be zero for all ages a > a∗

once maintenance mode is reached.
In this model fertility is given by (4.11). From (4.30) it follows that

a singular solution is determined by

μ(ξ∗a)

k
= (1 − δ0 − 2 δ1 ξ∗a) +

(1 − δ0 − δ1 ξ∗a) b

μ(ξ∗a) ξ∗a
. (4.31)

The individual will grow at full speed until its size satisfies (4.31)1.
Substituting μ(ξ) = b / ξ + c yields a cubic polynomial with three

roots. Generally, these roots can be real and complex. Viable strategies
correspond to real, nonnegative roots. The optimal size at maturity cor-
responds to the root that maximizes life-time reproduction. Strategies
can be determined numerically; I used Mathematica

TM to calculate
the solution.

4.3.3 An Alternative Derivation

The state ratchet implies that if there is a single state variable, then the
optimal investment strategy of an organism has to be growth, possibly
followed by maintenance, i.e. the feasible set of π(a) is

π(a) ∈ [ δ(a), 1 ] . (4.32)

A valuable hint follows from Pontryagin’s Maximum Principle. Since
the Hamiltonian is linear in π(a) the optimal investment maximizes the
Hamiltonian function at the boundaries of the feasible set (4.32). The
upper limit π(a) = 1 is associated with full growth and no reproduction.
The lower limit π(a) = δ(a) switches the organism to maintenance
mode with constant, nonzero fertility and mortality.

1 I thank Anatoli Michalski for his explanations regarding optimal control theory.
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In this case the integral in (4.8) can be solved explicitly. The switch-
ing age, when π(a) drops to δ(a), marks the onset of reproduction, age
α. It follows that

R = l(α)m(α)

∫ ∞

α
exp

{
−

∫ a

α
μ(t) dt

}
da = l(α)

m(α)

μ(α)
, (4.33)

where m(α) and μ(α) are the constant levels of fertility and mortality
in maintenance mode after α.

The age α at which reproduction starts is determined by the value
ξα that maximizes R in (4.33). Using the fact that from age zero to α
there is a one-to-one correspondence between age a and size ξ, one can
express (4.33) as a function of ξα. Inverting the logistic growth function
ξ = L(a) given in (4.6) leads to

a = L
−1(ξ) =

1

k ( 1 − δ0)
ln

(
1 − δ1

1− δ0
1
ξ − δ1

1− δ0

)
. (4.34)

Thus, by substituting α = L
−1(ξα) in (4.33) one can express R = R(ξα)

as a function of size at reproductive maturity ξα. The optimization
problem now can be solved by setting the derivative of R(ξα) with
respect to ξα equal to zero, i.e.,

lξα

m

μ
+ mξα

l

μ
− μξα

l m

μ2
= 0 . (4.35)

Because

lξα =
d

dξα
l(ξα) =

d

dξα
exp

{
−

∫ ξα

1
μ(ξ) [k ( 1 − δ0 − δ1 ξ) ξ]−1 dξ

}

= −l(ξα)μ(ξα) [k ( 1 − δ0 − δ1 ξα) ξα]−1 ,

optimal size at maturity is given by

μ(ξα)

k
= (1 − δ0 − 2 δ1 ξα ) +

( 1 − δ0 − δ1 ξα ) b

μ(ξα) ξα
. (4.36)

This equation is equivalent to (4.31). Using calculus and static op-
timization and applying Bellman’s way of thinking with a hint from
Pontryagin leads to the same result as using dynamic optimization ap-
plying Pontryagin’s Maximum Principle.



4.3 An Optimization Model that Leads to Non-senescence 65

4.3.4 The Simplest Model Leads to Sustenance

In the simplest case of size-independent mortality, i.e. b = 0, an explicit
solution for the optimal size at maturity can be derived:

ξα =
(1 − c

k − δ0 )

2 δ1
. (4.37)

Results for three illustrative parameter combinations are shown in
Fig. 4.2. Equation (4.37) implies
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Fig. 4.2. Size ξ(a) for three selected parameter combinations (Note that ξ∗
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dξα

dc
< 0 ,

dξα

dδ0
< 0 ,

dξα

dδ1
< 0 and

dξα

dk
> 0 . (4.38)

Furthermore, (4.37) and (4.34) imply

dα

dc
< 0 and

dα

dδ1
< 0 . (4.39)

Increasing extrinsic mortality reduces age and size at maturity. Changes
in α with respect to k and δ0 depend on the parameter combination
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Table 4.1. Optimal size ξα and age α at the start of reproduction for size-
dependent mortality (b > 0) according to (4.31)

ξα α ξmax l(α) b c k δ0 δ1

62.26 50.96 100 0.005 0.5 0.001 1 0.9 0.001

53.46 47.34 100 1.1 · 10−9 2 0.001 1 0.9 0.001

60.02 50.02 100 0.00003 1 0.001 1 0.9 0.001

25.68 17.66 100 0.0012 1 0.1 2 0.9 0.001

56.86 24.36 100 0.0045 1 0.01 2 0.9 0.001

64.06 25.87 100 0.0056 1 0.000001 2 0.9 0.001

127.66 29.31 200 0.006 1 0.001 1 0.8 0.001

129.18 14.74 200 0.08 1 0.001 2 0.8 0.001

in a rather complicated way. For very small maximum attainable sizes
and very slow speed of growth, α can increase with increasing k and
decrease with increasing δ0. Usually, however, an increase in k will lead
to a decline in α while an increase in δ0 will lead to a decrease in α.

If b > 0 in (4.10), then mortality declines as size increases. Hence
for positive but small b

ξα |b>0 > ξα |b=0 . (4.40)

If, however, b is large then the increased risk of death may make it
optimal to start reproducing at a smaller size. Some illustrative results
are shown in Table 4.1. If b gets too large then the resulting solutions
are nonviable strategies: the species cannot survive because mortality
is too high. Such nonviable strategies correspond to roots of (4.31) that
are complex or negative.

In sum, the simplest model in which a single state variable deter-
mines the optimal strategy and reproductive effort affects fertility in
a linear way can only lead to sustenance, i.e. a period of development
followed by maintenance. Senescence is impossible and all there is to
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be optimized is the age at maturity. From this age onwards the indi-
vidual maintains its state forever. Complications have to be added to
the simple model to get optimal strategies that are more flexible than
this basic strategy. Note that flat mortality and fertility profiles were
found to be very common in numerical studies by Charlesworth [26].

4.3.5 Introducing Nonlinearity Can Lead to Enhancement

Enhancement2 – a sustenance strategy that includes a period of par-
allel growth and reproduction after the initial period of development
and before the terminal period of maintenance – is precluded by the
linearity in π(a) of Pontryagin’s Hamiltonian. To allow enhancement
a model specification has to be found which results in a Hamiltonian
that is nonlinear in π(a).

To solve such an optimization problem the Bellman principle of dy-
namic programming can be used. Because the size ratchet precludes an
organism from returning to previous states, the optimal trajectory of
the allocation strategy can be found by a backward algorithm starting
at the maximum attainable size at which maintenance is the only pos-
sible strategy. I developed such an algorithm, which produced results
that were consistent with the analytic solution in the case of fertil-
ity being linear in π(a). This algorithm can be readily applied to the
following nonlinear fertility function:

m(a) = ϕ π(a) (1 − π(a)) ξ(a) = ϕ (π(a) − π2(a)) ξ(a) . (4.41)

The second term in the product, π(a), can be interpreted as the ef-
ficiency of converting size ξ(a) into reproduction m(a). As π(a) ap-
proaches zero, i.e. as resources are largely directed to fertility rather
than growth and maintenance, this efficiency declines.

Figure 4.3 shows an illustrative result. For the parameters used in
this model, reproduction starts when the organism grows to about 25%
of its potential maximum size. Then, until maintenance mode is even-
tually reached at age 250, there is an extended period of enhancement.

This still simple model leads to optimal strategies of development
followed by a period of parallel growth and reproduction followed by

2 Maren Rebke and James W. Vaupel suggested this term to describe a period of
life with increasing fertility and declining mortality. This enhancement is due to
some kind of growth, but perhaps in strength or capability and not in size. I also
use it to describe a life history strategy that starts with development, switches to
parallel growth and reproduction and then ends with maintenance.
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Fig. 4.3. Enhancement for model variant (4.41) (Parameter values were k =
0.1, δ0 = 0.5, δ1 = 0.0005, b = 0.1, c = 0.001, ϕ = 0.02. The force of mortality
before age 100 is very high and rapidly falling.)

maintenance. In addition to the age at maturity, the age at maintenance
as well as the path of investment between maturity and maintenance
need to be optimized. However, senescence is still not an option. Any
decline in size (i.e. an increase in mortality) is precluded by the state
ratchet. To arrive ultimately at a framework where senescence is a
possible optimal outcome the basic model has to be complicated even
further.

4.4 An Optimization Model that Leads to Senescence

The state ratchet implies that any single-state life-history model along
the general lines described above will always yield growth, declining
mortality and increasing fertility followed by maintenance mode. Even
if an exogenous event reduces ξ to some lower level ξ−, then the in-
dividual would simply resume growth with the π-strategy previously
followed at ξ−.

In this kind of model, the single variable size ξ determines the capa-
bility of an individual to gather resources, to produce progeny and to
avoid death. This spectrum might be too broad to be captured by size
alone. Size can be measured by weight, length, number of cells, number
of modular units or some similar index. While body size is determined
by the number of cells and may remain constant, the functioning of cells
may decline due to insufficient investment in maintenance because each
cell is subject to continuous wear and tear. Therefore, it seems reason-
able to distinguish between quantity and quality of cells. Functioning
can be captured by a second state variable denoted by the Greek let-
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ter υ, which can take values between one and zero. The “vitality” of
an individual can then be modeled as the product of ξ times υ, size
weighted by functioning. Adding a second state variable to the model
is a way to escape the state ratchet.

The model can be reformulated as follows. Fertility is given by

m(a) = ϕ (π(a) − π2(a)) ξ(a)υ(a) , (4.42)

and mortality is given by

μ(a) =
b

ξ(a)υ(a)
+ c . (4.43)

Note that both fertility and mortality now depend on the product of
size and functioning, ξ(a)υ(a), which captures vitality. The particular
nonlinearity in fertility was retained.

This model can lead to determinate growth. Let a∗ be the age at
which growth is completed. Then dξ/da = 0 for all a > a∗, where
ξ(a∗) = ξ∗ denotes the size attained at the end of the determinate
growth period. For a < a∗, functioning does not change, i.e. υ(a) = 1.
If investment falls below maintenance level, i.e. π(a∗) < δ0 + δ1 ξ(a∗)
at a∗, functioning starts to deteriorate exponentially at the rate ύ =
κ (π(a)− δ0 −δ1 ξ∗) with initial condition υ(a∗) = 1. If π(a∗) is chosen
to equal the deterioration at that age, the individual maintains its cur-
rent functioning: this corresponds to the case of determinate growers
with sufficient repair or replacement of tissues to escape senescence.
The age a∗ is not necessarily identical to age at reproductive matu-
rity α, although for many determinate growers the two approximately
coincide. The parameter combinations I used in the algorithm led to
strategies for which a∗ = α.

Growth in ξ is positive until determinate size is attained and zero
afterwards:

dξ(a)
da

ξ(a)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

k (π(a) − δ0 − δ1 ξ(a)) if π(a) > δ0 + δ1 ξ(a)

0 otherwise,

(4.44)

where ξ(0) = 1. Functioning is constant at one until determinate size
is reached and then declines:
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dυ(a)
da

υ(a)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 if a < a∗

κ (π(a) − δ0 − δ1 ξ∗) if a ≥ a∗

(4.45)

where υ(0) = 1. Note that π(a) − δ0 − δ1 ξ∗ < 1. The parameters k
and κ determine the speed of increase in size and the speed of decline
in functioning, respectively.

Figure 4.4 exemplifies the optimal trajectories of π(a), ξ(a) · υ(a),
μ(a) and m(a) for determinate growth for this model. The results were
obtained numerically. The maximum attainable size is ξ = 25; this size
is almost reached at age of reproductive maturity α.

Fig. 4.4. ξ(a)·υ(a), force of mortality μ and fertility m resulting from optimal
strategy π(a) as a function of age a, for model with parameters k = 3, δ0 = 0.9,
δ1 = 0.004, κ = 0.05, b = 0.05, c = 0.002, ϕ = 0.02

In this model, the state variable that effectively determines the strat-
egy switches from size to functioning at age a∗. Before age a∗ size is the
only effective state variable, since functioning is constant. After age a∗

functioning is the only effective state variable, since size is constant.
Therefore, the state ratchet applies and functioning cannot increase
again once it has fallen below one. The switch between size and func-
tioning is assumed to occur only once. Growth cannot be resumed.

Another possibility for overcoming the state ratchet, but keeping
a model that is essentially based on a single state, is to introduce a
switch variable, which is a binary indicator that determines whether
the organism is in up or down mode. The switch itself does not affect
survival or reproduction. To jump the maintenance barrier, the switch
needs to change from up into down mode. In this case the optimality
of the strategy is not violated, as the smaller state is now associated
with a different value of the switch. Depending on whether the switch is
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triggered once or several times, internally or externally, different state
trajectories can emerge. Any repeated trajectories of increase and de-
crease have to be identical. This line of reasoning will be taken further
in the next chapter.

4.5 Discussion

The first, simplest, model developed above led to sustenance as the only
possible life-history strategy. The function describing reproduction had
to be made nonlinear to get divergence from this prototype life history.
The slightly more complex model led to a variety of possible life-history
strategies between sustenance and enhancement. But senescence could
still never be optimal.

To arrive at senescent strategies the state of the individual had
to become more complicated, now being, effectively, a product of two
variables, size and functioning. The product of size and functioning can
be interpreted as reflecting the vitality of the individual. Vitality and
not size determines mortality and fertility. Consequently it is possible
that individuals might maintain about the same body weight, length
or cell number over an extended period of life but suffer a decline in
vitality due to wear and tear and lack of repair.

Although the eventuality was not considered here, size could in-
crease over an extended period of life with this growth counterbalancing
forces of deterioration and functional decline. In such species the abil-
ity to escape mortality, as captured by ξ times υ, may remain roughly
constant—resulting in non-senescence.

Note the distinction between senescence, on the one hand, and de-
terioration and functional decline, on the other. The term senescence
is used only with regard to entire organisms, not parts of organisms. In
this model deterioration is captured by δ(a) and decline in functioning
by a decrease in υ(a). A tendency for existing body parts to deterio-
rate and to require repair or replacement to maintain functioning may
possibly be a “fundamental, universal, and intrinsic” property of living
organisms [9]; senescence, as defined here, is not.

The theoretical results of this chapter and the empirical evidence
presented in Sect. 3.3.3, suggest the following hypotheses:

• Senescence characterizes individuals in species that attain a size
at reproductive maturity that is close to maximum size. Such
determinate- growth species include mammals, birds, insects and
some other species including the nematode worm C. elegans. The
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main model species studied by gerontologists are mammals (includ-
ing humans, rats and mice), insects (especially Drosophila but also
Medflies and some other insect species), C. elegans, and yeast. All
of these species fall into this determinate- growth category. Many
determinate- growth species also have fixed oocyte stocks or are
otherwise limited with regard to reproductive capacity. Species that
experience declines in fertility with age or that have limited fertility
seem likely to suffer senescence.

• Non-senescence characterizes individuals in species that attain a size
at reproductive maturity that is less than maximum size and that
gain reproductive capacity as they grow. Such species with inde-
terminate growth include most trees, many other perennial plants,
many modular animals such as corals and perhaps sponges, some
kinds of algae, many fish, reptiles and amphibians, and probably
various nonmodular invertebrates such as some mollusks and some
echinoderms.

Species falling into the second category are not typically model or-
ganisms in gerontological research. This might be one reason why the
universality of senescence was accepted as gerontological dogma.

Many biologists would agree that, for many species, stage is what
determines mortality and fertility rather than age. If age itself matters
at all, this line of thinking leads to the conjecture that biological age
may be better captured by the “average age” of an individual — i.e., by
some appropriate measure of the average age of the organs, body parts
or cells of an individual — than by the chronological age of the indi-
vidual. In indeterminate- growth species, continuing increases in size
keep average age below chronological age. Furthermore, organisms that
can repair, replace or rejuvenate body parts may show, over chronolog-
ical time, slow increases or even decreases in average age. For instance,
trees that replace their leaves annually, that develop new roots and new
branches to replace damaged or lost ones, and that continue to grow
may be of an average individual age that remains roughly constant and
may even decline with chronological age. For some species of plants and
animals, there can be a complete turnover of body parts over a time in-
terval: for these species, average individual age can be much lower than
chronological age and can decline over time if the individual grows and
its component parts continue to renew themselves with time.

A remarkable example is Hydra [123]. Most species as small as hy-
dra have a short life expectancy. Hamilton’s reasoning would imply
that hydra should senescence quickly after having lived past its typical
lifespan in the wild. Contrary to this prediction, mortality is constant
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and has been effectively zero for hydras kept in the laboratory of Daniel
Martinez for four years. Because there is rapid turnover of a hydra’s
cells, this example directs attention to considering not only size, i.e.
quantity of cells, but also quality of cells. The first two models devel-
oped in this chapter consider size only, while the third model is a first
attempt to incorporate not only quantity but also quality of cells. The
model I develop in the following chapter accounts for both quantity
and quality of cells.

This chapter has shown that non-senescence is a life-history strat-
egy that is theoretically possible. Senescence can be avoided by “con-
ceivable” organisms, namely by species with size-dependent vital rates.
This finding together with the empirical evidence presented in Sect. 3.3
leads me to the hypothesis that non-senescence may indeed be a life
history followed by some and maybe many plant and animal species. In
the following chapter I develop a more general model to further study
the evolution of senescence vs. non-senescence.

4.6 Next Steps

A critical examination of the model developed above indicates several
directions to explore.

• The nonlinearity in fertility was introduced by means of efficiency of
reproduction. Is there a more elegant way to incorporate efficiency?

• Reproduction and growth relate directly to size. This implicitly as-
sumes that available resources are proportional to size. Is there a
more realistic way to model resources?

• The vitality of an organism was modeled as a product of the two
states size and functioning, in order to develop a model that can
lead to non-senescent as well as senescent life-history strategies. The
resulting model specifications seem rather complicated. Furthermore
this model is not able to capture a simultaneous increase in size
with a decrease in functioning. Size and deterioration were assumed
to remain constant once functioning starts to decline. An idea for
getting around this complication was suggested in Sect. 4.4.

The following chapter will take these points into account.




