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Summary. What does tempo-adjusted period life expectancy measure? Taking a
cohort perspective, I show that under conditions of constant linear mortality shifts
the tempo-adjusted period indicator translates exactly to the cohort born e∗0(t)
years earlier. I discuss the implications of cohort translation for the interpretation
and application of tempo-adjusted period life expectancy.

1 Introduction

Life expectancy at birth is at root a cohort concept. It tells us how long, on
average, the members of a cohort survive. Actual life expectancy can only
be known fully for cohorts born long ago. To summarize recent mortality
conditions and period-to-period variation, the hypothetical concept of period
life expectancy is conventionally used. But even period life expectancy refers
conceptually to a cohort – the hypothetical one that lives according to the
rates observed in a single period.

When mortality conditions are improving, period life expectancy is less
than that of the cohort born in the period. This is because the hypothetical
cohort following the period life table is deprived of future mortality improve-
ment.

I recite this basic property of period life expectancy because the “tempo
adjusted” method of measuring period life expectancy – as developed by Bon-
gaarts & Feeney (2002) – arrives at exactly the opposite conclusion. Accord-
ing to Bongaarts and Feeney, period life expectancy overstates longevity when
mortality conditions are improving. They conclude: “Our main finding is that
the conventional calculation of period life expectancy at birth gives a mislead-
ing indication of how long we live. We are not living as long as we thought we
were.” (p. 25).
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To be fair, Bongaarts and Feeney, except at a few points, are not talk-
ing about cohorts. Instead, they intend e∗0 as a period measure that tries to
improve upon period life expectancy. What such an improved period indica-
tor actually measures is the subject of much debate as is clear from many
of the chapters in this volume. The approach taken here is to recast tempo-
adjustment in cohort terms. Doing this enables us to resolve the counter-
intuitive direction of tempo-adjustment by showing which cohort B&F are
referring to when they say “we.”

The approach is similar to that of Goldstein & Wachter (2004), which
showed – using a different model of temporal mortality change – the corre-
spondence between period life expectancy e0 and the life expectancy of par-
ticular cohort. Here, I look at which cohort has the life expectancy equal to
current tempo-adjusted life expectancy e∗0. I find that under linearly shifting
mortality, defined below, tempo-adjusted life expectancy for year t translates
to the cohort dying in year t: this is the cohort born e∗0 years earlier.2

An additional assumption is needed for this simple cohort translation of e∗0
to hold exactly. B&F’s tempo-adjustment assumes that deaths are postponed
uniformly across all ages, with the size of the shift possibly varying from year
to year. To this I add the assumption that the size of the shift is constant from
year to year, a pattern I call “linear shifts.” As will be seen, the linear shift
pattern is consistent with quite recent mortality trends above age 30 in low
mortality populations. The linear shift assumption is, however, not a general
feature of human populations. Prior to World War II, change was distinctly
non-linear in many countries. It remains to be seen whether the recent linear
shift pattern will continue.

Under the linear shift model, the current tempo-adjusted period life ex-
pectancy has the same value as the life expectancy of a past cohort. This cor-
respondance with cohorts from the past explains why Bongaarts and Feeney’s
measure is less, not more, than current period life expectancy.

Furthermore, under linear shifts, it is possible to obtain directly the life
expectancy of the cohort born in every period, including the current one, a
quantity that is arguably of more interest than e∗0.

Neither B&F’s tempo-adjustment nor the discussion presented here applies
to life expectancy at birth. Instead, both ignore all mortality before about age
30. For notational simplicity, the current discussion follows B&F, using the
shorthand of e0, e∗0, and ec

0 to refer to the period, tempo-adjusted period,
and cohort life expectancies at birth, assuming no mortality below age 30. In
traditional demographic notation, these quantities would be written e30 + 30,
e∗30 + 30, and ec

30 + 30.3

2 This result was suggested in simulation by Bongaarts (2004), who also found that
it held approximately in modern real-world populations.

3 Although we use B&F’s shorthand here, it is worth keeping in mind that although
mortality below age 30 is low in modern industrialized populations, e30 +30 does
not equal e0. In the 2002 Swedish female period life table, ignoring under-30
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2 Proof of exact cohort translation

Let lc(a, t) be the surviving proportion of a cohort born at time t − a and
aged a at time t. For all a ≤ 0, define lc(a, t) = 1 for all t. This formulation
amounts to the same thing as B&F’s requirement of no mortality below age
30.

A proportionally shifting surface lc(a, t) consistent with B&F’s propor-
tionality assumption is obtained by shifting the baseline lc(a, 0) up or down
the age axis by an amount F (t) such that

lc(a, t) = lc(a− F (t), 0), (1)

again letting lc(a, t) = 1 for a−F (t) ≤ 0. The fact that F (t) is not a function
of age is the B&F’s proportionality assumption. The additional assumption
of linearity over time in the shifts can be introduced by letting F (t) = rt.

The cohort born at time τ has life expectancy

ec
0(τ) =

∫ ∞

0

lc(a, τ + a) da.

Following Bongaarts & Feeney (in this volume p. 11), the adjusted period
life expectancy e∗0(t) is equal to

CAL(t) =
∫ ∞

0

lc(a, t) da.

I use the CAL notation to emphasize its correspondence with the “cross sec-
tional average length of life” introduced by Brouard (1986) and developed by
Guillot (2003) .4

I want to show that

ec
0(τ) = CAL(τ + ec

0(τ)). (2)

Showing this demonstrates that the approximation given by Bongaarts (2004),

ec
0(t− e∗0(t)) ≈ e∗0(t), (3)

actually holds exactly.5

This equality is shown as follows by expressing ec
0(τ) and CAL(τ + ec

0(τ))
in terms of CAL(0) =

∫ ∞
0
lc(a, 0) da.

mortality increases life expectancy by 0.6 years, more than a third of the 1.6
years tempo-effect that B&F find for Sweden 1980-1995.

4 The quantity CAL used here differs from that used by Brouard and Guillot in
that it assumes no child or young adult mortality under a given age such as 30.

5 To see the correspondance, substitute t = τ + ec
0(τ) and note that from (2)

ec
0(τ) = CAL(t) = e∗0(t).



250 Joshua R. Goldstein

Linear proportional shifts means that the cohort born at time τ has a
survival curve that resembles the initial profile lc(a, 0), except that each age
“a” is shifted to age a − r(τ + a). In effect, a member of the cohort “feels
younger” than they are by a factor of r(τ + a), where the rτ term accounts
for the improvements up to the date at which the cohort is born, and the
ra term accounts for the additional improvements obtained by the time the
cohort reaches age a. Cohort period life expectancy under linear shifts can be
written in terms of the baseline survival at time 0 as

ec
0(τ) =

∫ ∞

0

lc(a− r(τ + a), 0) da.

To evaluate, substitute u = a(1 − r) − rτ and da = du/(1 − r). This gives

ec
0(τ) =

1
1 − r

∫ ∞

0−rτ

lc(u, 0) du. (4)

Recalling that for u ≤ 0, lc(u) = 1, the integral evaluates to

ec
0(τ) =

CAL(0) + rτ

1 − r
. (5)

We can evaluate CAL(τ +ec
0(τ)) in a similar manner. The linearly shifting

age distribution means that CAL(t) is simply growing linearly with time. For
any t,

CAL(t) =
∫ ∞

0

lc(a, t) da =
∫ ∞

0

lc(a− rt, 0) da.

Substituting u = a− rt and du = da,

CAL(t) =
∫ ∞−rt

0−rt

lc(u) du = CAL(0) + rt. (6)

To prove (2), we are interested in t = τ + ec
0(τ). From (6),

CAL(τ + ec
0(τ)) = CAL(0) + r(τ + ec

0(τ)).

Substituting from (5) for ec
0(τ),

CAL(τ + ec
0(τ)) = CAL(0) + rτ + r

CAL(0) + rτ

1 − r
,

which simplifies to

CAL(τ + ec
0(τ)) =

CAL(0) + rτ

1 − r
. (7)
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The right-hand side of this last expression is identical to the right-hand side
of equation (5) for ec

0(τ), which is what we wanted to show to prove (2).
Note that this change of variable approach is perfectly general for any

survival curve lc(a, 0) and any r �= 1. It does not require Gompertzian survival
or any other particular form of the hazards.

3 Discussion

We have shown that tempo-adjusted period life expectancy e∗0(t) under linear
shifts is equal to the life expectancy of the cohort dying in that year t.

The equality of tempo-adjusted life expectancy with lagged cohort life
expectancy provides us with an alternative way to think about e∗0. Whereas
B&F use e∗0 as a counterfactual estimate of period mortality corrected for
tempo distortion, we have shown here that in the context of steadily shifting
survival curves e∗0 is also a measure of cohort life expectancy.

Both interpretations are interesting and potentially useful. I would argue
that the B&F interpretation is most valuable in conditions of sudden mortality
change, whereas the cohort interpretation is more valuable in conditions of
steady mortality change.

Below I lay out two extreme scenarios that help us to understand the
difference. Bongaarts and Feeney introduced the first in their 2002 paper; the
second is explored by their paper in this volume as well as the chapter by
Rodriguez (in this volume).

3.1 A single magic pill

The story of the “life extension” pill discussed by Bongaarts and Feeney (in
this volume p. 11) illustrates the potential advantages of tempo-adjustment in
the case of a sudden shift in survival. (See Figure 1a.) On January 1, everyone
in a previously stationary population takes a pill postponing their previously
programmed date of death by 3 months. Everyone born afterwards also takes
the pill. The effect of such a pill in the year it is taken is to reduce the number
of deaths by one-fourth, since no one will die in the first 3 months of the year.
In the year the pill is introduced, death rates also fall by about one-fourth,
raising life expectancy dramatically, not by the three months indicated by the
pill but by several years because of the enormous drop in death rates.

In the case of a single such pill, period life expectancy spikes in the year
the pill is taken and then falls thereafter to a constant value equal to the
pre-pill life expectancy plus the extension granted by the pill. This makes
the measurement taken in the year the pill appeared suspect, a candidate for
tempo-adjustment. As panel (a) shows, e0 shows a spike in the year the pill
is introduced, but e∗0 shows no spike, instead attributing the appropriate 3
month increase in life expectancy.
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Source: Panel (a) from B&F (2003) Figure 5, with illustrative ec
0(t) added. Panel (b) calculated

for e0 growing linearly from 65 to 75 at a rate of 0.1 years per year, with

e∗
0(t) = e0(t)[1 − r ∗ H] and ec

0(t) = e∗
0/(1 − r), where r = 0.1 and H = .3.

Fig. 1. Time paths of period and cohort life expectancy and of tempo-adjusted
period life expectancy in (a) single shift scenario and (b) linear shift scenario.
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The figure also shows cohort life expectancy for those born in each year.
From a cohort view, adjusted-life expectancy performs well in the year that the
pill is taken. In that year, unadjusted e0 overestimates the life expectancy of
the cohort being born, but the adjusted period measure e∗0 accurately predicts
cohort life expectancy. In the years following the pill introduction, both e∗0
and e0 are equal to ec

0. In the years before the pill is taken, however, neither
period life expectancy nor adjusted period life expectancy matches cohort life
expectancy because neither period measure can foresee the subsequent sudden
increase in longevity.

The lesson to be drawn from this scenario is that under a sudden mor-
tality shock, akin to the one-time pill6, e∗0 provides a better indication of the
implications of the shock for cohort mortality than does e0.

3.2 A series of magic pills

Now let us consider the case where such pills are given year after year, con-
tinually re-extending life by some constant amount each year. This scenario is
the one investigated mathematically above and is illustrated in Figure 1b. In
this case, we still have e(t) larger than e∗0(t), but rather than this difference
occurring in a single year as in the single-pill example, it persists over time.
Now, the equality of e∗0(t) is not with the cohort born in year t, as in the
single year example, but rather with the cohort born e∗0(t) years earlier that
is dying in year t. This result from the formal analysis is illustrated by the
dotted lines in the figure showing that ec

0(0) = 70 = e∗0(70).
Under linear shifts that result from a series of pills, it would clearly be

wrong to interpret tempo-adjusted life expectancy as an estimate of the cohort
born in year t. The adjustment moves period life expectancy farther from, not
closer to, that of the cohort.

3.3 Which scenario is more realistic?

We can now ask which of these two cases bears more resemblance to observed
patterns of mortality change. Here there is no debate. Bongaarts and Feeney
(2002 and in this volume p. 11) answer this question quite clearly in their em-
pirical analysis of 1980-1995 France, Sweden and the United States (See for
example figure 6 of B&F in this volume p. 11). In every case, the improvement
of mortality by all measures has been steady. There is no historical example
that bears any resemblance to the one-time pill example. Tuljapurkar, Li &
Boe (2000) show, using methods different from the shift model, that since
World War II, steady mortality decline is the rule throughout the industrial-
ized world.
6 See Le Bras (in this volume), who argues that even those one-time shocks that

are observed do not occur in a manner that delay or advance deaths uniformly
by age.
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r = d
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www.mortality.org.

Fig. 2. Observed time paths of mortality change for Swedish females. Panel (a):
Mortality change over all ages as measured by CAL(t) Panel (b): Contour plot of
cohort survival lc(a, t) using isoclines intersecting lc(30), lc(35), . . . , lc(95) in 1950.
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It is useful to look at a longer course of time. Panel (a) shows CAL –
what Bongaarts and Feeney call e∗0 – for Sweden females from 1920 to 1995.
Bongaarts & Feeney (in this volume p. 11) figure 6 shows the last 15 years
of this series. Linearity in CAL implies linear shifts. We see that the near
linearity they find for 1980-1995 is a continuation of the post-World War
II pattern. Before this, however, the pace of improvement was considerably
slower. There is no evidence from looking at CAL of sporadic large mortality
shifts of the kind in the single-pill scenario. Rather, the last half-century has
been consistent with the linear shift scenario.

We can see in detail at how close both the proportionality and linear
shift assumptions hold by looking at the full lc(a, t) surface (Panel (b)). The
contour plot shows the isoclines of lc(x, t) at the levels seen in 1950 for x =
30, 35, . . . 95. For example, the contour labeled “0.048” shows the age at which
lc(90, 1950) is reached over the course of the century, and we can see that by
1995 this level of survival was reached at age 95 rather than 90.

Proportionality can be checked by looking at whether the slopes at dif-
ferent ages change simultaneously. The linearity of the shifts requires further
that the contours be straight lines. The figure shows there were few shifts at
all in the first two decades of the century in Sweden. Starting after World
War I, and the influenza epidemic, survival to younger ages started to shift,
followed by shifts in survival to older ages after World War II. Since about
1950, the contours are nearly linear and nearly parallel, particularly above
age 60, when most deaths are occurring. Overall, neither proportionality or
linearity seems a good description for the whole century. However, the linear
shift model does not seem at odds with recent decades. The only evidence of
mortality change that resembles the single-pill example is perhaps the 1918
influenza epidemic, but even this does not appear across all ages.

3.4 Telling the future

If we expect linear shifts well into the future, then we can go one step further.
We have seen that under linear shifts, e∗0 understates even more dramatically
than period life expectancy the survival of those born in a period. However,
the same derivation we used to show the cohort that has life expectancy e∗0(t)
can also be used to show the life expectancy of the cohort born in year t.
Replacing τ with t and substituting from (6), we find

ec
0(t) = e∗∗0 =

e∗0(t)
1 − r

, (8)

where we use e∗∗0 to denote the rescaled e∗0. Although e∗0(t) is itself a rather
out-of-date measure referring to a cohort born long before t, the simplicity of
the linear shift model allows us to go from e∗0(t) to the cohort born in year t
by rescaling.

These exact relationships for steady mortality change should hold approx-
imately when there are small variations in the pace mortality improvement.
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If there is no temporal autocorrelation, the variations will cancel each other
out. Such random ups and downs seem to encompasses the modern experience
of mortality decline in advanced industrial countries, forming the basis of the
Lee-Carter stochastic forecasting method (Lee and Carter 1992). Systematic
slowdowns or accelerations that last many years can make the relationship
between e∗0 and ec

0 quite different from the results found here. 7

3.5 The order of mortality measures

With an exact expression for cohort life expectancy, we can now provide a full
description of the ordering of different measures of life expectancy and their co-
hort translations under linear shifts. Table 1 shows tempo-adjusted period life
expectancy, unadjusted period life expectancy, and rescaled tempo-adjusted
life expectancy for Sweden using the same data as B&F and the cohort trans-
lation of these quantities. The table reiterates the point we began with that
cohort life expectancy is larger, not smaller, than period life expectancy if we
are considering the cohort born in the period. It shows that e∗0 actually refers
to the cohorts born around 1900-1915, not cohorts born in 1980-1995.

In this example, period life expectancy and tempo-adjusted period life
expectancy are close to each other relative to cohort life expectancy. The
ordering e∗0 < e0 << e∗∗0 applies quite generally in conditions of improving
mortality. Letting H denote Keyfitz’s measure of life table entropy, e∗0 in-
creases the observed mortality rates by a factor of about 1 + r, which reduces
life expectancy by about a factor of 1−Hr (Keyfitz 1985). Life table entropy
is small, on the order of 0.2, and so if r = 0.1, e∗0 ≈ 0.98e0. To see that e∗∗0
is larger than either of these, note that dividing e∗0 by 1 − r gives a quantity
substantially greater than e0.8

7 A more general expression for cohort mortality can be given as follows. Let rt be
the shift in year t and Rt be the cumulative shift

∫ t

0
rtdt. In this case, cohort life

expectancy is given in terms of the baseline survival profile as

ec
0(τ) =

∫ ∞

0

lc(a − Rτ+a, 0) da.

Substituting u = a − F (τ + a) and da = du/[1 − r(τ + a)],

ec
0(τ) =

∫ ∞

−Fτ

lc(u)[1 − rτ+a]−1 du.

This reduces to (4) for when rτ+a is a constant. When rτ+a varies only slightly
and in a manner that is uncorrelated with lc(u), then fluctuations should not
influence ec

0(τ) much, since shifts larger-than-average shifts will be cancelled out
by smaller-than-average shifts.

8 Formally, if entropy is sufficiently large then the inequality need not hold. But high
H implies a high variance of age at death, typically in the form of high mortality
among children, an age-group that is excluded from the Bongaarts-Feeney shift
model.
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Table 1. Ordering and cohort translation of period and tempo-adjusted period
measures under linear shifts.

Period or Estimate for Sweden, Cohort
tempo-adjusted 1980-95 translation
period measure
e∗30 + 30 79.4 ec

0(t− e∗0) ≈ ec
0(1900 − 1915)a

e30 + 30 81.1 ec
0(t− λ) ≈ ec

0(1905 − 1920)b

e∗∗30 + 30 = e∗0+30

(1−r) 94.5 ec
0(t) ≈ ec

0(1980 − 1995)c

a This cohort life table value was reached by the cohort of 1909, according to
www.mortality.org.
b λ < e∗

0 but exact value unknown; 1905-1920 is a rough estimate.
c Assuming continued linear shifts.

Values for e∗
30 + 30 and e30 + 30 from B&F(2004) Table 1. e∗∗

30 + 30 calculated as
e∗
0

(1−r) using

r = 0.16 as estimated by author from www.mortality.org. In “Cohort translation” column ec
0 is

used as shorthand for ec
30 + 30.

Without a crystal ball, we don’t know for sure how long the cohorts born
from 1980 to 1995 will live. But what we do know, assuming continued mortal-
ity decline, is that e∗0 is clearly the worst measure, giving an even lower figure
than the already too low period life expectancy. If we are going to adjust
period life expectancy, we should readjust it again to produce not the cohort
born long ago, but rather our best guess at the cohort born today, e∗∗.9

4 Conclusion

Some critics of Bongaarts and Feeney’s theory of mortality tempo effects ar-
gue that its assumption of uniform postponement of death across all ages is
unrealistic. Others argue that e∗0 is not really a period measure, but rather
depends on the history of the population. In this chapter, my approach has
not been to try to debunk tempo-adjustment but rather to take it even further
by assuming that the Bongaarts and Feeney’s uniform shift repeats itself over
many decades – so long that cohort mortality becomes a simple function of
the baseline mortality schedule and the pace of the shift.

Under these conditions, two results were found. First, e∗0(t) translates to
cohort life expectancy for those born e∗0(t) years earlier, long before the period
under consideration. Second, the cohort life expectancy of those born today,
or in any year t, can be found by a simple inflation of e∗0(t). Viewed this
way, e∗0(t) itself is not a measure of great interest. It does not tell us what is

9 Incidentally, this figure of 94.5 years is not out-of-line with optimistic forecasts.
Oeppen & Vaupel (2002) predict that record period life expectancy will be 95
by 2040, which would apply to cohorts born about 1970 or 1980 (Goldstein and
Wachter 2004).
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happening in year t – this is given by the unadjusted period life table. It does
not tell us the future – this is given by the life table of the new-born cohort.
Rather it tells us about the cohort born in the past that is, on average, dying
in year t.10

If mortality change were to be sudden, and to occur in such a way as to
advance or to postpone deaths uniformly across all ages, tempo-adjustment
could produce measures giving a valuable sense of the implications of the
mortality rates seen during shocks. The difficulty, so far, is that mortality
change has not occurred in this way. Recent history in the industrialized
world has been has been one of steady, not sudden, mortality change. In this
context, the linear shift model provides a framework for understanding what
tempo-adjusted life expectancy is actually measuring and for developing even
more informative indicators.
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