
Human mortality beyond age 110

Jutta Gampe

Max Planck Institute for Demographic Research Konrad-Zuse-Str. 1, 18057
Rostock, Germany. E-Mail: gampe@demogr.mpg.de

Abstract. The International Database of Longevity (IDL) offers detailed in-
formation on thoroughly validated cases of supercentenarians. These data are
used to estimate human mortality after age 110. The procedure properly ac-
counts for the country-specific sampling frames in the IDL. The analysis con-
firms that human mortality after age 110 is flat at a level corresponding to
an annual probability of death of 50%. No sex-specific differences in mortal-
ity could be found, and no time trend in supercentenarian mortality between
earlier and later cohorts could be detected.

1 Introduction

The principal motivation for undertaking the effort of collecting data on
supercentenarians in the International Database of Longevity (IDL; see
Chapter 2 in this volume) is to estimate human mortality at the most
advanced ages, based on information that is age-ascertainment bias-free
and thoroughly validated. The shape of the hazard trajectory at the
most advanced ages is interesting in itself, but it also has important
implications for interpreting the general principles that rule human
mortality.

While the exponential increase in the force of mortality, as described
by the Gompertz distribution, is accepted for mid-adult and early old
ages, there is general agreement that mortality increase slows down
after about age 80 to 85, a phenomenon most likely to be explained
by earlier selection of the frailer individuals in heterogeneous cohorts.
Investigating how this slowing down continues into the highest ages
has, however, so far been limited by the availability of sufficient high-
quality data. The data provided by the contributors to the IDL now
offer the opportunity to make our knowledge more complete.
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Identifying (and subsequently validating) potential supercentenari-
ans is a complex task that differs from country to country due to the
different data sources available. The reports in Part II of this volume
give a detailed account of the difficulties that needed to be resolved in
each country. The sources available for identifying individuals in the
relevant age-group has implications for the sampling frame, that is, for
how individuals were selected for inclusion in the database. These sam-
pling frames have to be taken into account in the estimating procedure
to render valid inference. In particular, the way in which the individuals
were identified implies certain truncation and censoring patterns.

The general patterns and the implications for the estimating pro-
cedure will be discussed in Section 2, followed by a description of the
specific statistical model used. As censoring and truncation are par-
ticular forms of incomplete data, the expectation-maximization (EM)
algorithm (Dempster et al., 1977) is a natural candidate for obtaining
the actual maximum likelihood estimates. Section 3 explains the gen-
eral principle, while the technical details are provided in the appendix
at the end of the chapter. The results for supercentenarian mortality
are reported in Section 4, and a summary of the findings concludes the
chapter.

2 Sampling frames and likelihood

As the IDL involves individual data with ages given up to the day, we
can model on a continuous age-scale. This is conceptually easier and
allows for a leaner notation. We will therefore outline the general steps
of the analysis in continuous time before moving on to a more specific
model in the next section.

We are interested in the random variable X describing the distri-
bution of human life spans after age 110. Its distribution can uniquely
and equivalently be characterized by its density f(x), its survival func-
tion S(x) = P (X > x), or, most prominently in mortality analysis, its
hazard µ(x) = f(x)/S(x). Once an appropriate distributional family is
selected, indexed by an unknown parameter(vector) θ, this parameter
will have to be estimated. Maximizing the likelihood function will be
the method of choice, due to its good statistical properties overall.

Assuming independent individuals, the likelihood function L(θ) is
the product of the individual contributions Li, i = 1, . . . , n, for the n
individuals in the sample,
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L(θ) =
n∏

i=1

Li or on log-scale lnL(θ) =
n∑

=1

lnLi. (1)

The individual terms have to reflect exactly the information an indi-
vidual observation contributes. This includes whether we have exact
information on the age at death xi, or whether the information is cen-
sored because we only know that the individual has survived a certain
age (right-censoring), or has died between two ages (interval-censoring).
The latter typically results if living supercentenarians are listed annu-
ally.

Truncated information has to be incorporated in the same way. An
observation is truncated if the individual was selected into the sample
only because he or she met a certain condition related to the random
variable investigated. In our case, this means that an individual is in-
cluded in the sample only because he or she survived a certain age
(left-truncation), or because he or she died before reaching a particular
age (right-truncation).

Fig. 1. Sampling frames: Right- and left-truncated observations.

There are several different sampling frames represented in the IDL
data, but one of the most common is the identification of supercentena-
rians based on lists of deaths after age 110 that occurred between two
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calendar times t1 and t2. Figure 1 shows individuals in such a sampling
frame in a Lexis diagram.

Individual A, who turned 110 during the observation interval [t1, t2],
is observed only because he or she did not survive the age rA that he or
she would have reached at time t2. This individual is right-truncated
at age rA. Assuming we have an exact age at death xA of individual A,
his or her likelihood contribution would have to be

LA = P (X = xA |X ≤ rA) =
f(xA)

1− S(rA)
. (2)

In the same way, individual B is right-truncated at age rB. However,
additionally, B is in the sample only because he or she survived his or
her entry age lB. If this individual had died before we would not have
seen it in the sample. Thus, individual B is left-truncated at age lB:

LB = P (X = xB |X > lB, X ≤ rB) =
f(xB)

S(lB)− S(rB)
. (3)

In contrast, individual C, who crosses the observation interval but does
not die in the interval [t1, t2], is not seen in the sample.1

If we have age-at-death information only in an age interval, or sur-
vival information only, the respective numerators in (2) and (3) would
have to be replaced accordingly. In general, truncation is concerned
with the selective exposure pattern in the sample, while censoring deals
with imprecise information on the event time. To practically estimate
the parameters of interest, the model distribution, i.e., the specific form
of f(x), S(x), and thereby µ(x), remains to be specified.

3 Statistical model and the EM-algorithm

The ultimate goal is to flexibly estimate mortality after age 110, with-
out imposing a particular shape on the tail behavior of the distribu-
tion. As parametric continuous distributions determine the trajectory
of the hazard in the limit, we have chosen a quasi-continuous approach
(Pagano et al., 1994; Tu et al., 1993). The continuous distribution of X
is approximated by a discrete distribution by clipping the age axis after

1 For sampling frames that follow individuals from when they reach age 110 up
until this so-defined cohort dies out, equation (3) still remains valid. S(l) can
be replaced by 1 (as in equation (2)), and the right-truncation condition can be
pushed to infinity, i.e. S(r =∞) = 0. The denominator in (3) then simply reduces
to 1.
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age x0 = 110 into small intervals of length δ. The discrete probabilities
pj then correspond to

pj = P (x0 + (j − 1) δ < X ≤ x0 + j δ), j = 1, . . . , J.

The number of intervals J results from the requirement that the last
interval covers the highest age at death. The discrete survival function
correspondingly is denoted by Sj =

∑
k≥j pk, which leads to the discrete

hazard µj = pj/Sj . If δ is chosen to be one year, then the µj directly
give age-specific annual probabilities of death. Given that we have age-
at-death information up to the day, we can choose δ much smaller than
one year and thereby obtain a quasi-continuous estimate of µ(x) and
S(x). The unknown parameters θ in this model are the J−1 probabili-
ties pj (the last, pJ , automatically results from

∑
j pj = 1).

If all individuals were fully observed, i.e., no censoring or truncation
were present, then the log-likelihood (1) simply would be of multinomial
form

lnL(θ) =
n∑

i=1

J∑
j=1

Iij ln pj , (4)

where Iij = 1, if individual i dies in interval j, and zero otherwise. The
maximum-likelihood estimates are p̂j =

∑
i Iij/n.

The simplicity of the complete-data likelihood (4) makes an EM -
algorithm an appealing solution. Starting from a current estimate θ̂(m),
the Iij are replaced by the expected numbers E(m)

ij that are to be seen,
but that cannot be observed due to the truncation or censoring present,
as in the case of individual C in Figure 1.2 This is the E-step.

The M -step maximizes this pseudo-complete data likelihood to ob-
tain the next estimate θ̂(m+1). The procedure is continued until con-
vergence. The main step in the EM -algorithm is the calculation of the
expected values E(m)

ij . Details are given in the appendix.

4 Results for supercentenarian mortality

The strategy laid out in the previous section was applied to the data
in the IDL as of October 31, 2008. Only the most reliable data in the
IDL were included, i.e., data from countries with information that was
assessed to be of validation level A (see Chapter 2). The cases included
come from the countries listed in Table 1.

2 Turnbull (1976) pictorially called these ‘ghosts’.
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Table 1. Number of supercentenarian cases included in the analysis.

Country Cases Country Cases
Belgium 5 Nordic Countries 26
England & Wales 66 Quebec 10
France 49 Spain 28
Germany 17 Switzerland 4
Italy 37 USA 341
Japan 54

The truncation and censoring patterns result from the sampling pro-
cedures in each country. Details on how individual cases were identified
can be found in the country reports in Part II of this volume.

The total number of cases included was 637, of which 573 are females
and 64 are males. Table 2 gives the ages at death in completed years.
The birth cohorts of the individuals are listed in Table 3.

Table 2. Ages at death or at right-censoring of supercentenarians included
in the analysis.

110 111 112 113 114 115 117 119 122
Female 295 150 66 33 20 6 1 1 1
Male 29 17 10 4 3 1

Table 3. Year of birth of supercentenarians included in the analysis.

1852–64 1865–69 1870–74 1875–79 1880–84 1885–89 1890–94 1895–99
6 10 47 85 152 248 80 9

As can be seen, about half (50.9%) of all individuals die within
one year after becoming a supercentenarian, and about three-quarters
(77.1%) die within two years after their 110th birthday.

Figure 2, top panel, shows the estimated hazard for an interval-
length δ = 0.25, i.e., a quarter of a year. The results are given on
the hazard scale, that is, the discrete probabilities pj were transformed
assuming a piece-wise constant hazard. The dashed line represents a
hazard level of − ln 0.5 ≈ 0.7, which was obtained by Robine et al.
(2005) based on a much smaller set of supercentenarians. This hazard
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level corresponds to an annual probability of death of 0.5. As can be
seen, the estimated hazard varies around this level, with stark fluctua-
tions occurring after age 114 due to the small number of observations
at these truly advanced ages. For the three most extreme observations,
this model necessarily only gives three isolated spikes in the hazard.
The corresponding log-survivorship curve is given in Figure 2, bottom.
It clearly demonstrates the constant hazard up to about age 114 by its
strikingly linear decline.

Fig. 2. Hazard (top) and log-survivorship (bottom) estimated for n = 637
supercentenarians.
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Death rates at older ages have been declining in recent decades, and
mortality improvement has been shifting into higher and higher ages.
It is therefore natural to wonder whether a time trend in mortality can
be observed in death rates after age 110.

Fig. 3. Hazard (top) and log-survivorship (bottom) estimated separately for
the earlier and the later cohorts in the dataset.

To check for such a time trend, we split the dataset into earlier and
later cohorts. As we can see from Table 3, the number of observations
rises sharply in the decade 1880-1890. To obtain a fairly balanced split,
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the sample was divided into two groups: earlier cohorts, defined as birth
cohorts up to 1884 (300 cases); and all individuals born 1885 or later
(337 cases).

Figure 3 shows the hazard and the log-survivorship curves for early
and late cohorts. No time trend in mortality of supercentenarians is
supported by the result.

The large majority (almost 90%) of supercentenarians are women.
While females enjoy lower mortality than males more or less at all ages,
supercentenarians certainly are a highly selected group of individuals.
Despite the comparatively small number of male cases, we estimated
the hazard for male and female supercentenarians separately. The re-
sults are given in Figure 4, and show no significant sex-specific differ-
ences.

5 Conclusions

In summary, based on our analysis of 637 supecentenarian cases that
were obtained in an age-ascertainment bias-free way, and that were
thoroughly validated, we can state the following results.

• Human mortality after age 110 is flat at a constant level of λ ≈ 0.7.
This implies an annual probability of death of qx = 0.5. This result
confirms the previous analysis by Robine et al. (2005). Correspon-
dingly, life expectancy after age 110 is about 1.4 years. Beyond the
age of 114, data become too sparse to allow us to make reliable
statements.

• No sex-specific differences can be detected. However, we have to be
aware that only a small portion, about 10%, of supercentenarians are
males, making the sample size for comparisons highly unbalanced.

• No differences in levels of mortality could be found between earlier
and later cohorts.
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Fig. 4. Hazard (top) and log-survivorship (bottom) separately for male and
female supercentenarians.
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Appendix

For each individual i we define the censoring set Ai ⊂ {1, . . . , J} and
a truncation set Bi ⊂ {1, . . . , J}. If an exact age at death is ob-
served, then Ai is a single number. If, for example, an individual is
only known to have died between ages corresponding to the intervals
j1 to j2, then Ai = {j1, . . . , j2}. The same procedure is followed for the
truncation sets Bi.

Similar to the Iij in equation (4), we define ξij = 1, if interval
j ∈ Ai and zero otherwise. And ηij = 1 if j ∈ Bi and zero otherwise.
The expected values E(m)

ij that replace the Iij in the likelihood (4) are

the sum of two terms, which we denote by c(m)
ij and d(m)

ij . The c(m)
ij are

c
(m)
ij = ξij

p
(m)
j∑J

k=1 ξijp
(m)
k

.

For exactly observed age l the c(m)
il = 1 and c

(m)
ij = 0 for j 6= l. If the

individual is censored the c(m)
ij give the expected value for interval j.

Similarly, the dij give the expected number of individuals to be seen at
j if not filtered by truncation:

d
(m)
ij =

(1− ηij) p
(m)
j∑J

k=1 ηik p
(m)
k

.

The E(m)
ij to be inserted into (4) are

E
(m)
ij = c

(m)
ij + d

(m)
ij .

Detailed derivations can be found in McLachlan and Krishnan (1997)
or Pagano et al. (1994).
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