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Abstract

We suggest a cure-mixture model to analyze bivariate time-to-event data, as motivated by the

paper of Chatterjee and Shih (2001, Biometrics 57, 779 - 786), but with a simpler estima-

tion procedure and the correlated gamma-frailty model instead of the shared gamma-frailty

model. This approach allows us to deal with left truncated and right censored lifetime data and

accounts for heterogeneity as well as for an insusceptible (cure) fraction in the study popula-

tion. We perform a simulation study to evaluate the properties of the estimates in the proposed

model and apply it to breast cancer incidence data for 5,857 Swedish female monozygotic and

dizygotic twin pairs from the so-called old cohort of the Swedish Twin Registry. This model

is used to estimate the size of the susceptible fraction and the correlation between the frailties

of the twin partners. Possible extensions, advantages and limitations of the proposed method

are discussed.
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1 Introduction

Models for survival analysis typically assume that everybody in the study population is sus-

ceptible to the event under study and will eventually experience this event if the follow-up is

sufficiently long. This is often an unstated assumption of the widely used proportional hazard

models and their extensions - frailty models (for more detailed information about the frailty

concept in the univariate case, see e.g. Vaupel et al. (1979)). However, there are situations

when a fraction of individuals are not expected to experience the event of interest; that is, those

individuals are cured or insusceptible. For example, researchers may be interested in analyzing

the recurrence of a disease. Many individuals may never experience a recurrence; therefore,

a cured fraction of the population exists. Historically, cure models have been utilised to esti-

mate the cured fraction. Cure models are survival models which allow for a cured fraction of

individuals. These models extend the understanding of time-to-event data by allowing for the

formulation of more accurate and informative conclusions. These conclusions are otherwise

unobtainable from an analysis which fails to account for a cured or insusceptible fraction of the

population. If a cured component is not present, the analysis reduces to standard approaches

of survival analysis. Use of cure models has been popular for joint modeling of the overall risk

of a disease and the age-at-onset distribution of the diseased individuals (e.g. Farewell 1977,

1982; Kuk and Chen 1992).

In cure models (we use ’cure fraction’ and ’insusceptible fraction’ as interchangeable notions)

the population is divided into two sub-populations so that an individual either is cured with

probability 1� �, or has a proper survival function S0(t), with probability �. A model for the

distribution of survival times that incorporates a cured fraction is given by

S(t) = (1� �) + �S0(t):

Traditional cure models assume that those individuals experiencing the event of interest are

homogeneous in risk. During the last fifteen years, extensions of cure models were developed

in order to allow for heterogeneity among the fraction under risk by using frailty models where

the frailty distribution is a mixture of a discrete and a continuous part (e.g. Aalen 1988,

1992; Longini and Halloran 1996). The frailty mixture distribution has point mass at zero

with probability 1 � � while heterogeneity among those experiencing the event of interest is
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modeled via a continuous distribution with probability �. In the gamma frailty mixture model

the survival function is given by

S(t) = (1� �) + �(1 + �2H0(t))
�1=�2 :

Here H0 denotes the integrated baseline hazard function related to S0(t). Price and Manatunga

(2001) gave a good introduction into this area and applied leukemia remission data to different

cure, frailty and frailty cure models. They conclude that frailty models are useful in modeling

data with a cured fraction and found that the gamma frailty cure model provides a better fit to

their remission data compared to the standard cure model.

Chatterjee and Shih (2001) considered an extension of such univariate frailty cure models to

a bivariate setting. They used three different copulas in their two-step analysis procedure. We

suggest the use of the copula of the correlated gamma-frailty model (an extension of Clay-

ton’s shared gamma-frailty model) and show by using simulations that all the parameters are

estimable in a one-step ML estimation procedure.

In the next section we describe the proposed model, then provide an application of the model

to breast cancer data from the Swedish Twin Registry in section three. This is followed by a

results section. In section five we perform a simulation study to show the identifiability and

the performance of the proposed method. The paper concludes with a discussion of further

applications, drawbacks and advantages of the model.

2 Statistical Methods

Our approach is motivated by the paper of Chatterjee and Shih (2001). We define an individual

as susceptible if he/she will eventually develop the disease if followed-up for a sufficiently long

time. For a pair of individuals, j = 1; 2, define

Yj =

8
<
:

1 if the j th individual is susceptible

0 otherwise
(1)

and use T �

j for the age of onset for the jth individual when Yj = 1. Furthermore, let �j =

P(Yj = 1) and Sj(t) = P(T �

j > tjYj = 1) describe the marginal distribution of Yj and the
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failure time T �

j for the susceptible individuals, respectively. Because of the symmetry in the

twin data used as an example later on, we assume �1 = �2 and S1(t) = S2(t).

Chatterjee and Shih (2001) used three different copulas - Clayton’s model, Frank’s model and

the positive stable model - to specify the dependency structure between the failure times of

two susceptible individuals. Here we use an extension of Clayton’s model (better known as

the shared gamma-frailty model). Clayton’s model is given by

S(t1; t2) =

8<
:
�
S(t1)

��2 + S(t2)
��2

� 1
�
�

1

�2 if �2 > 0

S(t1)S(t2) if �2 = 0
(2)

where S(t) denotes the marginal univariate survival function, assumed to be equal for both

partners in a twin pair.

Shared frailty explains correlations within clusters (here twin sib-ships). However, it does have

some limitations. First, it forces the unobserved factors to be the same within the cluster, which

is not generally reasonable. For example, sometimes it may be inappropriate to assume that

both twin partners share all their unobserved risk factors. Second, the dependence between

survival times within the cluster is based on marginal distributions of survival times. To see

this, when covariates are present in a proportional hazards model with gamma distributed

frailty, the dependence parameter and the population heterogeneity are confounded (Clayton

and Cuzick, 1985), implying that the joint distribution can be identified from the marginal

distributions (Hougaard, 1986). Elbers and Ridder (1982) show that this problem exists for any

univariate frailty distribution which has a finite mean. Third, in most cases univariate frailty

will only induce positive association within the cluster. However, there are some situations

that the survival times for subjects within the same cluster are negatively associated.

To avoid all these limitations, correlated frailty models (Yashin and Iachine, 1994; 1995;

Yashin et al. 1995; Pickles et al., 1994; Commenges and Jacmin-Gadda, 1997; Petersen,

1998; Wienke et al., 2002) are developed for the analysis of multivariate failure time data,

in which two associated random variables are used to characterise the frailty effect for each

cluster. For example, one random variable is assigned for twin 1 and another for twin 2 so

that they would no longer be constrained to have a common frailty. These two variables are

associated and jointly distributed, therefore, knowing one of them does not necessarily imply

the other.
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In the following we apply the correlated gamma-frailty model including an insusceptible frac-

tion to fit bivariate time-to-event (occurrence of breast cancer) data. The correlated gamma-

frailty model provides a specific parameter for correlation between the two frailties. The in-

teresting point here is that individual frailties in twin pairs could not be observed, but their

correlation could be estimated by application of the correlated gamma-frailty model.

The bivariate survival function is given by

S(t1; t2) =

8<
:

S(t1)
1��S(t2)

1��(S(t1)
��2 + S(t2)

��2
� 1)�

�

�2 if �2; � > 0

S(t1)S(t2) if �2 = 0 or � = 0
(3)

where S(t) denotes the marginal univariate survival function, assumed to be equal for both

partners in a twin pair and 0 � � � 1 holds. Obviously, the shared gamma-frailty model (2) is

a special case of (3) when � = 1 holds.

We use a parametric approach by fitting a Gamma-Gompertz model to the data, e.g.

S(t) =
�
1 + �2�

�
(e�t � 1)

�
�

1

�2 ;

where �; �; �2; � are the parameters to be estimated.

Let (X11; X12); : : : ; (Xn1; Xn2) be independent and identically distributed (i.i.d.) non-negative

two-dimensional random vectors (pairs of lifetimes). The lifetimes (Xi1; Xi2) are assumed to

be independently censored from the right by i.i.d. pairs of non-negative random variables

(C11; C12); : : : ; (Cn1; Cn2). Thus, instead of (Xi1; Xi2) we only observe

(Ti1; Ti2;�i1;�i2) (4)

with Tij = minfXij; Cijg, �ij = 1(Xij � Cij) (i = 1; : : : ; n; j = 1; 2), where 1(�) denotes

the indicator function of the event in the brackets. The likelihood function of the data in (4) is

given by Chatterjee and Shih (2001):

L(t1; t2; �1; �2) = �1�2p11St1t2(t1; t2) + �1(1� �2)
�
p11St1(t1; t2) + p10St1(t1)

�

+ (1� �1)�2

�
p11St2(t1; t2) + p01St2(t2)

�

+ (1� �1)(1� �2)
�
p11S(t1; t2) + p10S(t1) + p01S(t2) + p00

�
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where p11 = P(Y1 = 1; Y2 = 1), p10 = P(Y1 = 1; Y2 = 0), p01 = P(Y1 = 0; Y2 = 1),

p00 = P(Y1 = 0; Y2 = 0) and derivatives Stj (t1; t2) =
@S(t1;t2)

@tj
, St1t2(t1; t2) =

@2S(t1;t2)
@t1@t2

and

Stj (tj) =
dS(tj )

dtj
(j = 1; 2). Here (t1; t2; �1; �2) denotes a realisation of the random vector

(T1; T2;�1;�2).

As mentioned above, the twin pair data set used is not randomly selected from the total twin

population. Since both members of a twin pair had to remain alive in 1958 to be included in

the study population, the survival times are sampled from specific conditional distributions.

If a twin pair was born in year y (where y=1886, ... ,1925), the condition of survival of both

twins until the year 1958 implies that both twins had to survive until 1958-y in order to be

included in the sample. If the survival times are denoted by T1 and T2 with survival function

S(t1; t2), then the conditional survival function for a twin pair born in year y is:

S(t1; t2jT1 > 1958� y; T2 > 1958� y) =
S(t1; t2)

S(1958� y; 1958� y)
:

Consequently, the likelihood function of bivariate left truncated and right censored lifetime

data is given by

L(t1; t2; �1; �2; y) =
�
�1�2p11St1t2(t1; t2) + �1(1� �2)

�
p11St1(t1; t2) + p10St1(t1)

�

+ (1� �1)�2
�
p11St2(t1; t2) + p01St2(t2)

�
+ (1� �1)(1� �2)

�
p11S(t1; t2)

+ p10S(t1) + p01S(t2) + p00
����

p11S(1958� y; 1958� y)

+ p10S(1958� y) + p01S(1958� y) + p00
�
:

For a combined analysis of monozygotic and dizygotic twins we include two correlation co-

efficients, �MZ and �DZ , respectively. These correlations between monozygotic and dizygotic

twins provide information about genetic and environmental influences on frailty within indi-

viduals.

3 Breast cancer data of Swedish twins

Breast cancer incidence data of identical (MZ) and fraternal (DZ) female twins were provided

by the Swedish Twin Registry. This was founded in the years 1959-61 as the world’s largest
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nation-wide twin registry and has been continually developed ever since. This population-

based registry includes all (traced) twins born in Sweden in the period 1886-1990. We restrict

our analysis to the so-called old cohort (born 1886-1925) because of small numbers in the

middle cohort. The old cohort consists of all same-sex twin pairs with both individuals alive

when the registry was established in 1959-61. The data set was created by merging the Swedish

Twin Registry with the Swedish Cancer Registry maintained by the National Board of Health

and Welfare. At the time of record linkage, the Swedish Cancer Registry contained all cases

of cancer that were diagnosed during the period from 1959 through 2000.

The church registers from all parishes of the relevant time period were manually checked to

identify all twin births. In 1959-61 a questionnaire was sent to all twins including a question

about phenotypic similarities to assess the zygosity (Where you as children as alike as two peas

in a pod?). When both partners agreed, they were defined as MZ twins. This zygosity classifi-

cation was compared with laboratory methods. The misclassification rate for this method was

found to be very low (Cederlöf et al., 1961).

The data set provided by the Swedish Twin Registry contains records of 5,857 female twin

pairs with both partners alive in 1959-61. Consequently, lifetimes are bivariate left trun-

cated. Individuals were followed from 1959-61 to October 27, 2000. Altogether, we have

2,003 monozygotic twin pairs and 3,854 dizygotic twin pairs and 715 cases of breast cancer

were identified during the follow-up. More detailed information about the composition of the

Swedish Twin Registry can be found in Lichtenstein et al. (2002). Mortality in the study pop-

ulation was determined by linkage to the Mortality Registry of Statistics, Sweden. Analysis

was made with SPSS and GAUSS.

concordant pairs discordant pairs concordance rate

MZ twins 18 218 0.14

DZ twins 27 407 0.12

Table 1: Probandwise concordances for breast cancer
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4 Results

Applying the correlated frailty model with and without the cure fraction to the breast cancer

data described above yields the results given in Table 2. We consider two different cases of

cure models. In the first case we assume that the susceptible status of the individuals in a twin

pair is independent of each other, e.g. P(Y1 = p1; Y2 = p2) = P(Y1 = p1)P(Y2 = p2) with

p1; p2 2 f0; 1g. In that case the cure fraction is uniquely described by the univariate probability

� = P(Y1 = 1) = P(Y2 = 1), which results in �11 = �2, �10 = �01 = �(1��), �00 = (1��)2.

In the second case, which is an extension of the first one, we relax the above restriction of

independence between the susceptibility status of the two partners in a pair and use the weaker

constraints �10 = �01, �11+�10+�01+�00 = 1. Comparing the likelihood of the two it turns

out that the cure model with the independent susceptible status of the twin partners shows a

significantly better fit than the model without the cure fraction (�2
1 = 4:32; p = 0:04). The

more complicated cure model without the independence assumption between the susceptible

status of the twin partners shows no significant improvement compared with the cure model

assuming independence (�2
1 = 0:23; p = 0:63).

without cure fraction with cure fraction1 with cure fraction2

Parameter estimates (std) estimates (std) estimates (std)

� 1.31�10�5 (1.04�10�5) 7.64�10�5 (4.84�10�5) 1.175�10�5 (1.170�10�5)

� 0.099 (0.016) 0.091 (0.012) 0.086 (0.015)

� 5.736 (0.680) 2.107 (0.406) 1.576 (0.951)

�MZ 0.154 (0.052) 1.000 ( - ) 1.000 ( - )

�DZ 0.125 (0.040) 0.934 (0.361) 0.962 (0.457)

�11 1.000 ( - ) 0.049 ( - ) 0.038 (0.021)

�10 0.000 ( - ) 0.173 ( - ) 0.133 (0.058)

�00 0.000 ( - ) 0.605 ( - ) 0.696 (0.136)

� 1.000 ( - ) 0.222 (0.045) 0.1713 ( - )

likelihood 5122.7020 5120.5408 5120.4237

Table 2: Results of breast cancer data with correlated gamma-frailty model without and with cured

fraction. 1 constrained by �11 = �
2, �10 = �01 = �(1 � �), �00 = (1 � �)2, 2 constrained by

�10 = �01, �11 + �10 + �01 + �00 = 1, 3 calculated by � = �11 + �10
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5 Simulations

All simulations involve generating gamma-distributed frailties, bivariate lifetimes, censoring

and truncation times as well as the inclusion of a cured fraction in the study population. We

will try to mimic the characteristics of the Swedish twin data which we analyzed in the pre-

vious example. A total of 6,500 twin pairs are simulated, a number which is reduced by the

truncation process to a final sample size of around 5,700 twin pairs. Samples are generated as

follows:

� Generate frailty variables using independent gamma-distributed random variables.

� Generate lifetimes given the frailties using S(tjZ) = e
�Z �

�
(e�t�1).

� Define cured individuals by using a random variable.

� The censored (bivariate) lifetimes are generated by using the year 2000 as the end of the

study.

� Birth years are generated by using a uniform distribution on [1886,1925] to mimic the

truncation pattern. The year of truncation is 1958.

The simulated data were generated assuming independence between the susceptibility status

of the partners (second column in Table 2), but in the estimation procedure the more gen-

eral model with a dependent susceptibility status was applied (third column in Table 2). We

simulated 1,000 data sets.

Parameter true value Mean of estimates standard deviation

� 1�10�5 1.16�10�5 6.70�10�6

� 0.120 0.120 0.010

� 2.000 2.016 0.270

� 0.600 0.606 0.132

�11 0.160 0.164 0.027

�10 0.240 0.241 0.014

�00 0.360 0.354 0.046

Table 3: Parameter estimation in the simulation study.
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The mean parameter estimates of the model are shown in Table 3, in comparison with the true

values used for simulation. There appears to be nearly no bias in the parameter estimates, and

the overall performance is quite accurate.

6 Discussion

In this paper we have suggested a cure-mixture model for the modeling of correlations in bi-

variate time-to-event data. This model extends the approach outlined in the paper of Chatterjee

and Shih (2001) in various ways. First, instead of the shared gamma-frailty model we use the

much more flexible correlated gamma-frailty model, which includes the shared gamma-frailty

model as a special case. Second, we propose to use a direct estimation procedure in the para-

metric model instead of the two-step estimation procedure used by Chatterjee and Shih. Third,

we think that our twin data are more appropriate as an illustrative example than the family data

of Chatterjee and Shih (who ignored higher order correlations in their family data) for such

bivariate models. Nevertheless, our estimate of the size of a susceptible fraction (due to breast

cancer) with 0.222 (0.045) is very close to the estimate 0.22 (0.0093) in the parametric model

found by Chatterjee and Shih in a completely different study population. Furthermore, this

finding is in line with the results of Peto and Mack (2002). Fourth, we allow the lifetimes to

be truncated in our model.

Cure models with the right censored observations suffer from an inherent identifiability prob-

lem. For such observations the event under study has not occurred either because the person is

insusceptible, or because the person is susceptible but follow-up was not long enough for the

event to be observed. The identifiability problem increased with increasing censoring, but is

lessened by the parametric modeling of the baseline hazard. The simulation study shows that

the estimation procedure works well under the given truncation and censoring scheme in our

sample data set. Stronger right censoring causes strong identifiability problems. For example,

in an additional simulation study (not shown here) using the same parameters as described

in the simulation section but using the birth years 1926-1958 (which is the situation in the

so-called middle cohort of the Swedish Twin Registry) resulted in a complete breakdown of

the estimation procedure. In cure models with fixed censoring times (caused by the end of the

study) censoring is no longer non-informative even when the censoring times and the survival

times are independent. The proportion of censored observations contains important informa-



12 A. Wienke, P. Lichtenstein, A.I. Yashin

tion about parameters in the model. For example, in the (usually ideal) case of no censoring,

it holds � = 1.

The present paper is restricted to the parametric case, meaning in our case the marginal sur-

vival function is specified parametrically up to a few (one-dimensional) parameters, S(t) =
�
1 + �2 �

�
(e�t � 1)

�
�

1

�2 with Gompertz parameters � and �. From a statistical point of view

such a parametric assumption is unsatisfactory, because it is non-justifiable. Frailty models

of univariate data have been strongly criticised because assumptions have to be made about

both the shape of the underlying mortality trajectory and the distribution of the frailty: differ-

ent pairs of assumptions can result in equally good fits to the data. Without an insusceptible

fraction in the population (� = 1) this problem can be solved by using the non-parametric

correlated gamma-frailty model (Yashin and Iachine, 1995). Applying the (true) parametric

and semi-parametric estimation procedures to the same (simulated) data generated from the

correlated gamma-frailty model, the semi-parametric estimation procedure shows good per-

formance, despite the fact that it does not make use of the additional information about the

parametric structure of the marginal survival functions. The estimates of �2 and � are similar

in both cases (results are not shown here). Nevertheless, using the wrong parametric model

may result in biased parameter estimates.

To what extent this method is applicable in the much more complicated semi-parametric model

with cure fraction is still an open question, one that needs further careful consideration. Deal-

ing with a disease with late age of onset resulting in heavily censored data may lead to prob-

lems in estimating the (infinite dimensional) nuisance parameter - the marginal survival func-

tion - and, consequently, in estimating the parameters of interest, �2 and �.

Our study points to the existence of an important insusceptible fraction. The suggested model

gives a clear illustration of how survival analysis and cure models could be merged for analysis

of time-to-event data of related individuals.
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