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Summary

Frailty models are becoming more and more popular in the area of multivariate survival anal-

ysis. In particular, shared frailty models are often used despite their limitations. To overcome

the disadvantages of shared frailty models numerous correlated frailty models were estab-

lished during the last decade. In the present study we examine correlated frailty models, es-

pecially the behavior of the parameter estimates when using different estimation strategies.

Three different frailty models are considered: the gamma model and two versions of the log-

normal model. The traditional maximum likelihood procedure of parameter estimation in the

gamma case with an explicit available likelihood function is compared with maximum likeli-

hood methods based on numerical integration and a Bayesian approach using MCMC methods

with the help of a comprehensive simulation study. A strong dependence between the two pa-

rameter estimates (variance and correlation of frailties) in the multivariate correlated frailty

model is detected and analyzed in detail.
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1 Introduction

Frailty models have been used frequently for modeling dependence in multivariate time-to-

event data (Clayton, 1978; Oakes, 1982; Yashin et al., 1995; Hougaard, 2000; Wienke et al.,

2002). The dependence usually arises because individuals in the same group (family, litter,

study center) are related to each other or because of multiple recurrence of an event for the

same person. In such cases the traditional proportional hazards model can not be applied. A

possible solution to this problem is the use of conditional proportional hazards given the frailty.

The variability of lifetimes is formulated as arising from two different sources. The first one is

natural variability, which is included in the baseline hazard function, while the second one is

explained by the frailty. Lifetimes are conditionally independent given the frailty (as individual

random effect), and the frailty term represents unobserved covariates. It is assumed that, given

the unobserved frailty, the hazard for each survival time follows a proportional hazards model

with the frailty variable and the covariate effect acting multiplicatively on the baseline hazard.

Consequently, specification of the baseline hazard and distributional assumptions about the

frailty are necessary.

The most common frailty distribution is the gamma distribution. The gamma distribution has

been widely applied as a mixture distribution (for example, Clayton, 1978; Vaupel et al., 1979;

Oakes, 1982; Yashin and Iachine, 1995; Hougaard, 2000; Wienke et al., 2000, 2001). From

a computational and analytical point of view the gamma distribution fits very well to failure

data, because it is easy to derive the closed form expressions of survival, density and the

hazard function. This is due to the simplicity of the Laplace transform, which is the reason

why this distribution has been used in most applications published so far. The simple and

explicit available form of the Laplace transform allows for the use of traditional maximum

likelihood procedures in parameter estimation.

The second frailty model considered in the present paper is the log-normal model. Again the

frailty is acting multiplicatively on the baseline hazard following a log-normal distribution.

Especially in multivariate modeling the log-normal approach is much more flexible than the

gamma model in creating correlated but different frailties as necessary in the correlated frailty

model. Two variants of the log-normal model are analyzed. We assume a normally distributed

random variable W to generate frailty as Z = eW . The two variants of the model are given
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by the restrictions EW = 0 and EZ = 1. Unfortunately, no explicit form of the unconditional

likelihood exists. Consequently, estimation strategies based on numerical integration in the

maximum likelihood approach are required.

Please note that no biological reason exists which would prefer the use of one frailty distribu-

tion over another. All arguments in favor or against a distribution are mathematically based.

Shared frailty models explain correlations within groups (family, litter, or clinic) or for re-

current events from the same individual. However, this approach does have some limitations.

First, it forces the unobserved factors to be the same within the cluster, which is not generally

reasonable. For example, sometimes it may be inappropriate to assume that both partners in

a twin pair share all their unobserved risk factors. Second, the dependence between survival

times within the cluster is based on marginal distributions of survival times. To see this, when

covariates are present in a proportional hazards model with gamma-distributed frailty, the de-

pendence parameter and the population heterogeneity are confounded (Clayton and Cuzick,

1985), implying that the joint distribution can be identified from the marginal distributions

(Hougaard, 1986a). Elbers and Ridder (1982) show that this problem exists for any univariate

frailty distribution with a finite mean. Third, in most cases, shared frailty will only induce

positive association within the group. However, there are some situations in which survival

times for subjects within the same cluster are negatively associated. For example, if animals

live in the same litter with a limited food supply, their growth rates are probably negatively

associated.

To avoid all these limitations, correlated frailty models are developed for the analysis of mul-

tivariate failure time data, in which associated random variables are used to characterize the

frailty effect for each cluster. For example, in twin pairs one random variable is assigned for

twin 1 and one for twin 2 so that they are no longer be constrained to having a common frailty.

These two variables are associated and jointly distributed, therefore, knowing one of them

does not necessarily imply the other. Also, these two variables can certainly be negatively

associated, which would induce negative association between survival times.

Consequently, correlated frailty models provide not only variance parameters of the frailties

as in shared frailty models, they contain additional parameters for modeling the correlation

between frailties in each group.

After working for a long time with correlated frailty models of different types, we recog-

nized a strange linkage between the parameter estimates of the variance and the correlation of
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the frailties. To check whether this dependence is related to the estimation strategy or to the

choice of the frailty distribution we use the above mentioned models and three different esti-

mation strategies. First, we perform a traditional maximum likelihood estimation procedure

(only possible in the gamma model), second we use a maximum likelihood approach based on

numerical integration and finally we utilize MCMC methods from a Bayesian approach.

The paper is organized as follows. In section 2 we introduce the correlated frailty models

considered. In section 3 we describe the different estimation strategies. Section 4 deals with

the simulation studies and their results. Finally, the paper ends with a discussion of our findings

in section 5.

2 Statistical Models

2.1 General bivariate frailty model

Consider some bivariate observations, e.g., the life spans of twins, or age at onset of a disease

in spouses, etc. We are assuming that the frailties are acting multiplicatively on the baseline

hazard function and that the observations in a pair are conditionally independent given the

frailties. Hence, the hazard of individual j (j = 1; 2) in pair i (i = 1; : : : ; n) has the form

�(t; Zij; Xij) = Zij�0(t)e
�Xij ; (1)

where t denotes age, Xij a vector of observable covariates, � is a vector of unknown regression

coefficients describing the effect of the covariates Xij, �0(t) is some baseline hazard function

and Zij are unobserved (random) effects or frailties. Bivariate frailty models are characterized

by the joint distribution of a two-dimensional vector of frailties (Z i1; Zi2). The form of the

baseline hazard is important because all methods described below are parametrical. In princi-

ple, any parametric formula for a hazard rate is possible (e.g., Gompertz, Gompertz-Makeham,

Weibull, exponential, piecewise constant, etc.). The methods reviewed in the following were

developed mainly for some specific baseline hazard rate, e.g., exponential or piecewise con-

stant. However, these methods are general and can be modified in order to incorporate any

baseline hazard. A vast literature on human mortality suggests using the Gompertz hazard

rate to describe the mortality. Correlated frailty models with the Gompertz baseline hazard

have been used quite frequently (Yashin et al., 1995; Iachine et al., 1998; Wienke et al., 2001;
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among others). For that reason and to save space we investigate only bivariate frailty models

with the Gompertz baseline hazard rate:

�0(t) = aebt: (2)

Any method in this context is based on likelihood functions. In order to derive a marginal

likelihood function, the facilitating assumption of conditional independence of life spans given

frailty is always used. Denote by � the vector of all parameters of the model. Let �ij be a

censoring indicator for an individual j (j = 1; 2) in pair i (i = 1; : : : ; n). Indicator �ij is 1

if the individual has experienced the event of interest and 0 otherwise. According to (1), the

conditional survival function of the j-th individual in the i-th pair is

S(tjZij; Xij) = eZijH0(t)e
�Xij

; (3)

where H0(t) is the cumulative baseline hazard function. Here and in the following S is used

as a generic symbol for a survival function. Given (2),

H0(t) =
a

b
(ebt � 1): (4)

The contribution of the j-th individual in the i-th pair of the conditional likelihood is given by

L(tij; �ijjZij; Xij) =

�
Zij�0(tij)e

�Xij

��ij
eZijH0(tij)e

�Xij

; (5)

where tij stands for age at death or the censoring time of the individual. Then, assuming the

conditional independence of life spans given frailty and integrating out the random effects, we

obtain the marginal likelihood function:

L(t; �jX) =

nY
i=1

ZZ

R2

�
zi1�0(ti1)e

�Xi1

��i1
ezi1H0(ti1)e

�Xi1 (6)

�
�
zi2�0(ti2)e

�Xi2

��i2
ezi2H0(ti2)e

�Xi2
fZ(zi1; zi2; �) dzi1 dzi2;

where t = (t1; : : : ; tn), ti = (ti1; ti2), � = (�1; : : : ; �n), �i = (�i1; �i2), X = (X1; : : : ; Xn),

Xi = (Xi1; Xi2) and fZ(�; �j�) is the p.d.f. of the corresponding frailty distribution.

2.2 Gamma model

The gamma distribution (we use notation �(k; �) for the two parameter distribution with shape

parameter k and scale parameter �) is one of the most popular frailty distributions. Frailty can-

not be negative. The gamma distribution is, along with the log-normal distribution, one of the
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most commonly used distributions to model variables that are necessarily positive. Further-

more, it turns out that the assumption that frailty at birth is gamma-distributed yields some

useful mathematical results, including

� Frailty among the survivors at any time t is gamma-distributed with the same value of the

shape parameter k as at birth. The value of the second parameter, however, is now given

by �(t) = �+H0(t), where H0(t) denotes the cumulative baseline hazard function.

� Frailty among those who die at any age t is also gamma-distributed, with the same

parameter �(t) as among those surviving to age t but with shape parameter k + 1.

� The Laplace transform of a gamma-distributed random variable Z � �(k; �) is of a very

simple form: LZ(s) = Ee�Zs = (1 +
s

�
)
�k.

To make sure that the model is identifiable, it makes sense to use the parameter restriction

EZ = 1, which results in k = � for the gamma distribution. Denoting the variance of the

frailty variable by �2 := 1
�

, the univariate survival function is represented by

S(t) = L(H0(t)) = (1 + �2H0(t))
�

1

�2 ;

where H0(t) denotes the cumulative baseline hazard function. For more detailed information

regarding the univariate gamma-frailty model see Vaupel et al. (1979).

The correlated gamma-frailty model (Yashin and Iachine, 1994; Pickles et al., 1994; Petersen

1998) is developed for the analysis of multivariate failure time data, in which two associated

random variables are used to characterize the frailty effect for each cluster. For example,

one random variable is assigned for twin 1 and another for twin 2 so that they are no longer

constrained to having a common frailty as in the shared frailty model. To be more specific, let

k0; k1 be some real positive variables. Set � = k0+k1 an let Y0; Y1; Y2 be independent gamma-

distributed random variables with Y0 � �(k0; �), Y1 � �(k1; �), Y2 � �(k1; �). Consequently,

Z1 = Y0 + Y1 � �(k0 + k1; �) � �(�; �) (7)

Z2 = Y0 + Y2 � �(k0 + k1; �) � �(�; �)

are the frailties of individual 1 and 2 in a pair. The bivariate survival function of this model is

given by

S(t1; t2) =

8<
:

S(t1)
1��S(t2)

1��
(S(t1)

��2
+ S(t2)

��2 � 1)
�

�

�2 if �2; � > 0

S(t1)S(t2) if �2 = 0 or � = 0

(8)
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where S(t) denotes the marginal univariate survival function, assumed to be equal for both

partners in a twin pair and 0 � � � 1 holds. For simplicity, we drop the dependence of the

survival functions from observed covariates. Obviously, the shared gamma-frailty model by

Clayton (1978) is a special case of (8) when � = 1. We will refer to model (8) as Model 1.

2.3 Log-normal model

The log-normal model is much more flexible than the gamma model, because it is not based on

the additive composition of the two frailties as used in (7). On the other hand, the log-normal

distribution does not allow an explicit representation of the likelihood function, which requires

more sophisticated estimation strategies. We assume that the two frailties of individuals in a

pair are given by

0
@ Z1

Z2

1
A � LogN

0
@
0
@ m

m

1
A ;

0
@ s2 rs2

rs2 s2

1
A
1
A ; (9)

where LogN denotes the (bivariate) log-normal distribution. Here m; s2 and r denote the mean,

variance and correlation of the respective normal distribution. Mean, variance and correlation

of the frailties are related to these parameters as follows:

� = EZij = em+ s2

2 (10)

�2 = V(Zij) = e2m+s2
(es

2

� 1) (11)

� = corr(Zi1; Zi2) =
ers

2

� 1

es
2 � 1

: (12)

Two different types of log-normal frailty models arise from two restrictions on the parameters

of frailty distribution. First, one can use the restriction m = 0. This means that the logarithm

of frailty has a mean of zero. In this case a ”standard” individual has the logarithm of hazard

rate which is equal to log�0(t). Any individual in a population has the logarithm of hazard

rate distorted by some random variables Wij = logZij. This value is added to the ”true”

logarithm of hazard rate log�0(t) to provide the logarithm of hazard rate of the individual.

In this interpretation it is natural to assume that the distortions W ij have a normal distribution

with mean of zero. Such a model will be called Model 2 throughout the text. Second, following

the usual definition of frailty used in demography (Vaupel et al., 1979; Clayton, 1978) one can
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use � = 1. It follows from (10)-(12) that in this case

m = E logZij = �
1

2
s2 (13)

s2 = V(logZij) = ln(1 + �2) : (14)

In this model a ”standard” individual has the hazard rate �0(t). Individual j in the i-th pair has

the hazard rate of a ”standard” individual multiplied by the frailty Zij. The above restriction

on � means that the average frailty in a population equals 1 (at the beginning of the follow-up).

We shall refer to this model as Model 3.

The shared log-normal model was applied in the papers by, for example, McGilchrist and

Aisbett (1991) and McGilchrist (1993), while bivariate log-normal models were analyzed by

Ripatti and Palmgren (2000, 2002).

3 Estimation strategies

Parameter estimation in the gamma model is straightforward. The frailty term can be integrated

out and an explicit representation of the unconditional bivariate survival function exists (8),

which can be used to derive the likelihood function.

Unfortunately, in the log-normal model the integrals in (6) have no explicit solution. Con-

sequently, several estimation methods for bivariate log-normal frailty models have been sug-

gested within a non-Bayesian framework. Various modifications of the maximum likelihood

procedure are applicable to the bivariate frailty models. Ripatti and Palmgren (2000) derived

an estimating algorithm based on the penalized partial likelihood (PPL). Xue and Brookmeyer

(1996) suggested a modified EM algorithm for the bivariate log-normal frailty models. Sastry

(1997) developed the modified EM algorithm for the multiplicative two-level gamma frailty

model. The same method can be applied to the bivariate log-normal frailty models (see Ar-

beev and Yashin, 2003). Ripatti et al. (2002) present one more method to deal with EM-like

algorithms in a bivariate log-normal frailty model.

In the present paper we use numerical integration procedures. Integrals over the univariate and

multivariate normal distributions can be approximated in different ways. One possibility is to

use Gauss-Hermite quadratures (Naylor and Smith, 1982; Smith et al., 1987). Similar ideas are

used in various applications of random effect models in event history analysis (Lillard, 1993;

Lillard at al., 1995; Panis and Lillard, 1995; among others). The methods are implemented in
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the aML software package (aML version 1, see Lillard and Panis, 2000). Both methods were

used to estimate parameters of the bivariate log-normal frailty models for both simulated and

real data.

Several papers on the application of Bayesian methods to multivariate frailty models exist.

The application of a Bayesian approach to the gamma frailty model can be found in Bolstad

and Manda (2001). Gibbs’ sampling scheme for the bivariate log-normal frailty model with an

exponential baseline hazard is given in Xue and Ding (1999). Korsgaard et al. (1998) present

Bayesian inference in the log-normal frailty model with semi-parametric hazard.

To apply MCMC methods, we assume that, conditional on explanatory variables and on the

entire set of parameters, observations are independent and prior distributions for all parameters

are mutually independent. The conditional probability of data given the parameters is

L(t; �; Zj�) =
nY
i=1

�
Zi1�0(ti1)e

�Xi1

��i1
eZi1H0(ti1)e

�Xi1 (15)

�
�
Zi2�0(ti2)e

�Xi2

��i2
eZi2H0(ti2)e

�Xi2
fZ(Zi1; Zi2j�);

with t = (t1; : : : ; tn), ti = (ti1; ti2), � = (�1; : : : ; �n), �i = (�i1; �i2), X = (X1; : : : ; Xn),

Xi = (Xi1; Xi2), Z = (Z1; : : : ; Zn), Zi = (Zi1; Zi2) and fZ(�; �j�) is the p.d.f. of the corre-

sponding frailty distribution.

In the Bayesian framework, the parameters as well as frailties are viewed as random variables

with some prior distributions. By definition of the model, the prior distribution of frailty is the

bivariate log-normal distribution. We assume the following priors for the parameters: uniform

priors over the intervals [1e-7, 0.005], [0.05, 0.15] and [-1, 1] for the Gompertz parameters a, b

and the correlation � , correspondingly; log-normal priors with mean 0.5 and variance 0.25 for

the variance �2; multivariate normal priors for �. These prior distributions cover the reasonable

interval of the parameter values. Given the distribution (15) and the priors, all full conditional

distributions of the parameters can be calculated. These full conditional distributions are used

in a Gibbs sampling procedure. We perform the Gibbs sampling in WinBUGS software (see

Gilks et al., 1994; Spiegelhalter et al., 2000). The results are presented in the next section.
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4 Simulations

We estimated Model 1 using a maximization procedure in a Gauss program, Model 2 in aML

software and also in Matlab using a numerical integration procedure (Gauss-Hermite quadra-

ture) from a self-written program. We generated data sets with different frailty distributions.

First, we used �2 = 1 and � = 0:7. Second, we used �2 = 0:3 and � = 0:5. In both cases

a = 0:003, b = 0:07, � = (�1; �2), �1 = 0:1 and �2 = 0:2. The observed covariates were

generated as

Xij1 =

8<
:

1 if i � n
2

0 if i > n
2

(16)

and Xij2 � N(0; 1). We used sample sizes of 500 and 5,000 pairs. We simulated 500 data sets

in each case. In Model 2, the same data sets were estimated in aML and Matlab. As aML does

not allow estimating such an analysis, for Model 3 only the Matlab program was applied. The

results are shown in Tables 1 - 3.

Method Sample size a b �
2

� �1 �2

true values 3.00e-3 0.070 0.300 0.500 0.100 -0.200

Gauss 500 3.02e-3 0.070 0.292 0.528 0.100 -0.199

(3.89e-4) (0.005) (0.085) (0.221) (0.080) (0.043)

Gauss 5000 3.00e-3 0.070 0.300 0.498 0.100 -0.200

(1.23e-4) (0.001) (0.026) (0.065) (0.026) (0.013)

true values 3.00e-3 0.070 1.000 0.700 0.100 -0.200

Gauss 500 2.99e-3 0.070 1.001 0.699 0.107 -0.202

(4.03e-4) (0.005) (0.141) (0.080) (0.105) (0.054)

Gauss 5000 3.01e-3 0.070 1.000 0.700 0.098 -0.199

(1.34e-4) (0.002) (0.044) (0.023) (0.034) (0.017)

Table 1: Bivariate gamma frailty model with Gompertz baseline hazard and two covariates (Model 1):

parameters estimated by authors’ program in Gauss, simulated data, 500 data sets (means of estimates,

sample standard deviations are in parentheses)

All three models show the same pattern of estimations. As expected, the estimations for the

larger sample size are far more accurate. The more striking effect is that the same strong

correlation exists between estimates of � and �2, independently of the model and the estimation

procedure.
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Method Sample size a b �
2

� �1 �2

true values 3.00e-3 0.070 0.300 0.500 0.100 -0.200

aML 500 3.02e-3 0.070 0.328 0.547 0.097 -0.206

(6.59e-4) (0.008) (0.247) (0.299) (0.088) (0.045)

Matlab 500 2.97e-3 0.071 0.339 0.522 0.097 -0.207

(6.07e-4) (0.007) (0.243) (0.264) (0.088) (0.044)

aML 5000 2.98e-3 0.070 0.307 0.502 0.102 -0.200

(2.01e-4) (0.002) (0.058) (0.100) (0.026) (0.013)

Matlab 5000 2.98e-3 0.070 0.308 0.503 0.102 -0.200

(2.00e-4) (0.002) (0.058) (0.099) (0.026) (0.013)

true values 3.00e-3 0.070 1.000 0.700 0.100 -0.200

aML 500 2.81e-3 0.075 1.283 0.689 0.113 -0.211

(1.06e-3) 0.075 (0.731) 0.689 0.113 (0.059)

Matlab 500 2.65e-3 0.078 1.551 0.667 0.120 -0.221

(1.09e-3) (0.020) (1.348) (0.172) (0.127) (0.072)

aML 5000 3.07e-3 0.069 0.977 0.720 0.098 -0.199

(3.44e-4) (0.004) (0.173) (0.072) (0.034) (0.017)

Matlab 5000 2.98e-3 0.071 1.028 0.703 0.099 -0.201

(3.56e-4) (0.004) (0.192) (0.071) (0.034) (0.017)

MCMC 5000 3.12e-3 0.069 0.981 0.726 0.091 -0.198

(3.93e-4) (0.004) (0.193) (0.074) (0.031) (0.015)

Table 2: Bivariate log-normal frailty model (Model 2): parameters estimated by aML and authors’

program in Matlab, simulated data, 500 data sets (MCMC 50 data sets)

Method Sample size a b �
2

� �1 �2

true values 3.00e-3 0.070 0.300 0.500 0.100 -0.200

Matlab 500 2.95e-3 0.072 0.350 0.508 0.010 -0.204

(4.16e-4) (0.007) (0.209) (0.263) (0.088) (0.042)

Matlab 5000 3.00e-3 0.070 0.302 0.504 0.099 -0.200

(1.30e-4) (0.002) (0.056) (0.098) (0.026) (0.013)

true values 3.00e-3 0.070 1.000 0.700 0.100 -0.200

Matlab 500 3.00e-3 0.075 1.323 0.683 0.107 -0.212

(4.35e-4) (0.015) (0.998) (0.160) (0.117) (0.064)

Matlab 5000 3.00e-3 0.070 1.022 0.701 0.099 -0.201

(1.46e-4) (0.004) (0.179) (0.067) (0.034) (0.018)

MCMC 5000 3.02e-3 0.070 1.000 0.713 0.102 -0.199

(1.30e-4) (0.003) (0.134) (0.058) (0.034) (0.015)

Table 3: Bivariate log-normal frailty model (Model 3): parameters estimated by authors’ program in

Matlab, simulated data, 500 data sets (MCMC 50 data sets)
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Model Method Sample size corr(�; �2) Parameter

1 Gauss 500 -0.412�� �
2
= 0:3, � = 0:5

1 Gauss 5000 -0.405��

1 Gauss 500 -0.431�� �
2
= 1, � = 0:7

1 Gauss 5000 -0.396��

2 aMl 500 -0.516�� �
2
= 0:3, � = 0:5

2 Matlab 500 -0.453��

2 aMl 5000 -0.662��

2 Matlab 5000 -0.659��

2 aMl 500 -0.789�� �
2
= 1, � = 0:7

2 Matlab 500 -0.740��

2 aMl 5000 -0.875��

2 Matlab 5000 -0.886��

2 MCMC 5000 -0.921��

3 Matlab 500 -0.507�� �
2
= 0:3, � = 0:5

3 Matlab 5000 -0.682��

3 Matlab 500 -0.717�� �
2
= 1, � = 0:7

3 Matlab 5000 -0.862��

3 MCMC 5000 -0.854��

Table 4: Bivariate frailty models (Models 1-3): correlation between parameters estimated by authors’

program in Matlab and aMl, simulated data, 500 data sets (MCMC 50 data sets). �� indicates signifi-

cance at the p=0.01 level.

As Bayesian methods proved to be very time-consuming, we generated only 50 data sets with

5,000 pairs each. We run two parallel chains from different starting points and considered the

first 4,000 iterations for each chain as a ”burn-in” interval. The quality of convergence was

checked by Gelman-Rubin statistics (see Brooks and Gelman, 1998). The simulated values

of parameters of random effects have auto-correlation close to unity. In this case convergence

is very slow. Altogether 10,000-60,000 iterations per chain were generated after a ”burn-in”

interval for each data set. The values of the Gelman-Rubin statistics in this case are quite close

to one.
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5 Discussion

Because of their simplicity, multivariate frailty models have become very popular over the last

decade. A wide range of papers have been published, dealing with the following: different

structures of multivariate models (shared vs. correlated frailty models), different distributions

of frailty (gamma, log-normal, stable etc.), different assumptions about the parametric struc-

ture (parametric vs. semi-parametric models) and different estimation strategies (traditional

maximum likelihood procedures, maximum likelihood procedures based on numerical inte-

gration, EM algorithm, MCMC methods). After dealing with correlated frailty models for a

long time, we recognized a strange correlation between the estimates of variance and the cor-

relation of the frailties. The present study is the first one to analyze this kind of correlation.

Thus, the aim of this paper has been to draw attention to this problem, to elaborate possible

reasons for this effect and to present (very preliminary) suggestions on how to overcome this

problem.

The first main idea was to test whether the correlation of the estimates is dependent of the dis-

tribution of the frailty. We used three very popular frailty distributions to answer this question:

the gamma distribution and two log-normal distributions (Models 1 - 3).

The second main idea was to test whether the observed effect was caused by the estimation

strategy. That is why we used four different estimation strategies: traditional maximum like-

lihood estimation (using a self-written Gauss code), maximum likelihood estimation based on

numerical integration (using routines in aML and a self-written code in Matlab) and MCMC

methods in WinBugs.

The results of the simulations are very clear. The observed effect is stable over different frailty

distributions and different estimation strategies. Moreover, different choices of parameters and

sample sizes did not change the correlation.

High correlation of parameter estimates could be a sign of identifiability problems in the

model. Correlated frailty models were investigated in order to overcome the problems of

the shared frailty models, which provide only one parameter to model variance and correla-

tion. One idea was to include observed covariates into the models to improve identifiability

characteristics. That is why all models were run with and without observed covariates. The

results in both cases are very similar, consequently, we dropped the results for models without

observed covariates. We decided to use two covariates in our model, a dichotomous one and a
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continuous one. No effect of the observed covariates could be detected.

The present study focuses on parametric models, which implies parametric specification of the

baseline hazard and the distribution of the frailty. In a separate simulation of the correlated

gamma-frailty model (without observed covariates) with an unspecified baseline hazard (semi-

parametric model) we found a similar correlation between the estimates as in the parametric

models (results are not shown).

Regarding identifiability aspects there is one fact that should be kept in mind. Heterogene-

ity (measured by variance of frailty) and correlation between frailties (implying correlations

between lifetimes) are not completely independent in a frailty model based on conditional in-

dependence. To see this, assume that the variance of the frailty tends to zero. This implies zero

correlation. This conditional independence assumption could be the reason for the correlation

linking the estimates of variance (heterogeneity) and correlation between frailties. This would

explain why the observed effect is stable over different models and estimation procedures.

The conclusion to draw is that researchers should be very careful and aware of the presented

problem in applying correlated frailty models. On the other hand, this study shows that the

models perform well and that there is nearly no bias in the parameter estimates. We did not find

any correlation between the estimates of the regression coefficients �1 and �2. This supports

the use of correlated frailty models for obtaining accurate estimates of covariate effects.

More detailed analyses of the properties of correlated frailty models are needed. Starting

from the hypothesis that the problems are caused by a conditional independence assumption, it

would be extremely useful to extend correlated frailty models to allow for dependence between

lifetimes independent of the frailty.
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