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Abstract

Negative senescence is characterized by a decline in mortality with age after re-
productive maturity, generally accompanied by an increase in fecundity. Hamilton
(1966) ruled out negative senescence: we adumbrate the deficiencies of his model. We
review empirical studies of various plants and some kinds of animals that may experi-
ence negative senescence and conclude that negative senescence may be widespread,
especially in indeterminate-growth species for which size and fertility increase with
age. We develop optimization models of life-history strategies that demonstrate that
negative senescence is theoretically possible. More generally, our models contribute
to understanding of the evolutionary and demographic forces that mold the age-
trajectories of mortality, fertility and growth.
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1 Growing Younger

How long do individuals in different species live? How fecund are they? How big
do they grow? Such questions about the age-trajectories of mortality, fertility
and growth are of fundamental interest to biodemographers, life-history bio-
logists and evolutionary theorists. There is a vast empirical literature about
these age-trajectories and a large body of theoretical work. An important
topic, however, has been neglected: negative senescence.

The now familiar concept of negative numbers horrified our ancestors. Simi-
larly, the notion of negative senescence was received with howls of derision
when one of us (Vaupel) uttered the phrase in 2002 at a research workshop
on the biology of aging. “Hamilton (1966) proved senescence is universal!”
Hamilton, however, proved no such thing. It is high time to explicitly confront
and judiciously consider the possibility of negative senescence.
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Three well-known gerontologists (Comfort, 1956; Strehler, 1977; Finch, 1990)
emphasized that “certain animals and plants do not manifest increases of
mortality rate or other signs of senescence” (Finch, 1990, p. 221). In particular,
Finch (1990, 1998), Finch and Austad (2001) and Ottinger, Ricklefs and Finch
(2003) have prepared the way for studies of negative senescence by focusing
research on species with “negligible senescence”, i.e., species for which death
rates rise very slowly, if at all, with age.

Here we build on Finch’s insightful contributions to make a theoretical and
empirical case that some and perhaps many species show negative senescence,
with death rates falling with age for an extended period following the start
of reproduction. Following Finch (1990, p. 5), we define senescence as “age-
related changes in an organism that adversely affect its vitality and functions,
but most important increase the mortality rate ...”. Hence, senescence is char-
acterized by death rates that increase with age and negative senescence is
characterized by death rates that decline with age. It may also typically be
the case that fertility and functioning decline as mortality increases (in the
case of senescence) and that fertility and functioning increase as mortality
declines (in the case of negative senescence).

2 Hamilton’s Narrow Road

W.D. Hamilton’s influential article on “The Moulding of Senescence by Na-
tural Selection” (Hamilton, 1966; see also Hamilton, 1996) combines insights
about the evolution of senescence (Medawar, 1952; Williams, 1957) with con-
cepts and models of population dynamics (Lotka, 1924). Hamilton asserts that
senescence “cannot be avoided by any conceivable organism” and that “senes-
cence is an inevitable outcome of evolution”. His argument is not based on
the optimization of fitness in a life-history model. Instead he focuses on deri-
ving a general measure of the force of natural selection to oppose age-specific
deleterious mutations. These mutations are not adaptive: they either reduce
fertility or increase mortality. He purports to show that the force of selection
against such mutations declines with age after reproductive maturity. He con-
cludes that deleterious mutations will accumulate at older ages. His argument,
however, has several major deficiencies.

Hamilton proposes two indicators of the force of selection: dr/d ln pa and
dr/dma, where r is Lotka’s intrinsic rate of population growth, pa is the proba-
bility of surviving from exact age a to a + 1 and ma is fertility between a and
a + 1. He proves that these two indicators decline with age. Other indicators
are also reasonable, including dr/dpa, dr/d ln ma, dr/dqa and dr/d ln qa(where
qa is the probability of death between ages a and a + 1). Each of these four
indicators can decrease, remain level, or increase with age depending on the
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shapes of the age-trajectories of mortality and fertility (Baudisch, 2004a).

The build-up of deleterious mutations that act at some specific age depends
not only on the rate at which such mutations are eliminated by selection but
also on the rate at which the mutations occur. Hamilton implicitly assumes
that deleterious age-specific mutations are not rare and that the rate at which
they occur does not vary by age. Furthermore, he assumes that such mutations
affect either fertility or mortality but not both and that the effect occurs only
at or after some specific age. These assumptions may not be valid.

Hamilton postulates that mortality can either be constant over age or rise with
age, i.e., that only positive or negligible senescence are possible. He ignores
species for which mortality falls with size and hence perhaps with age. His
model is inconsistent with observations that mortality falls from conception
to age at first reproduction for almost all species.

Hamilton’s model is inappropriate for the span of life after the end of repro-
duction. There is, in his model, no force of selection against mutations that
are only expressed at such older ages. Hence, these mutations should keep
on accumulating over successive generations until mortality has been driven
to extremely high levels, precluding any postreproductive survival. A “brick
wall” of mortality should block additional longevity (Charlesworth and Par-
tridge, 1997; Partridge, 1997; Tuljapurkar, 1997). This is not the case, except
for semelparous species in which individuals die after their first (and only) re-
production. For all species for which large cohorts have been followed — most
notably, humans, Medflies, Drosophila, and the nematode worm C. elegans
(Vaupel et al., 1998) — death rates level off and sometimes decline at ages
when reproduction is negligible.

Hamilton’s model ignores parental care, a deficiency that he recognized. A
pathbreaking recent article by Lee (2003) demonstrates that intergenerational
transfers can crucially affect the evolution of age-trajectories of mortality.

3 Youth Comes with Age

In all species, mature individuals either produce offspring that are smaller than
themselves or divide to produce two smaller successors. As the progeny grow,
their mortality typically falls—and their ability to reproduce develops. For hu-
mans, for instance, the chance of death declines dramatically from conception
to puberty. This process might be called negative senescence, but the word
development is not only traditional but seems more appropriate. In any case,
if youth is defined as a period of low mortality around the start of the period
of reproduction, then youth is something that comes with age. The question
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naturally arises—why should mortality begin to increase when reproduction
starts? Why is it that the process of development cannot continue, in some
form, with mortality continuing to decline and reproductive capacity continu-
ing to increase? There does not seem to be any logical reason that evolution
might not, under some circumstances, favor such negative senescence.

That leads to a definition of negative senescence as an extended period of
life, following the start of reproduction, during which mortality continues to
decline. Depending on the species, an extended period of life might be defined
in various ways. It could, e.g., be a period during which size doubles or more,
a period comparable to or longer than the period from conception to repro-
ductive maturity, or a period during which most of the individuals who enter
the period die before the end of the period. It might also be the case that
fertility rises during this period and that morbidity declines.

At the outer reaches of a species’ lifespan, when only a fraction of adults are
still alive, some increase in mortality might be observed. Perhaps Hamilton’s
arguments about mutation accumulation hold at advanced ages, or perhaps
optimization of life–history characteristics results, under some circumstances,
in a rise in mortality very late in life. There then could be a period of senescence
following the extended period of negative senescence. This does not make the
period of negative senescence uninteresting.
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Fig. 1. Different mortality trajectories after onset of reproduction.

Figure 1 summarizes the various possibilities. During the first phase of life,
development, mortality declines. During the second phase, mortality may in-
crease (senescence), mortality may remain roughly constant (negligible sene-
scence), or mortality may decline (negative senescence). Then late in life mor-
tality may increase, level off or decline. As noted earlier, a levelling off or
decline in mortality has been observed for several species (including humans,
various insects and nematode worms) at advanced ages. This fact has not
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been used to cast doubt on the fact that these species show senescence over
most of their adult lives. Gerontologists typically assume that death rates
start rising when reproductive maturity is attained and there is considerable
evidence for this for many mammals and birds (Finch et al., 1990). That is,
gerontologists do not confine senescence to advanced old age. Hence, if it turns
out that mortality increases late in life for some species whose adult lives are
characterized by declining mortality, this fact should not be used to depre-
cate negative senescence. Special explanations may be required to understand
rising or falling mortality at the outer end of life.

4 Size-Dependent Mortality

As Caswell argues, for many organisms “the age of an individual tells little
or nothing about its demographic properties” (Caswell, 2001, p. 39). This
statement will not surprise ecologists, but it may astound some gerontologists
and demographers. Understanding of aging could be advanced by comparing
species for which age is critical with species for which age is unimportant or
only indirectly important.

Often what is important is size or stage of development. If mortality falls as
size increases and if size increases with age, then mortality will fall with age.
This appears to be the case for the plant Plantago lanceolata after seasonal
effects are removed (Roach and Gampe, 2003). This tantalizing but tentative
finding motivated us to take negative senescence seriously. Furthermore, it
suggested to us that increases in size with age, in species for which size is
strongly associated with continued survival, might be the most likely origin of
negative senescence. Hence, we will emphasize size in this article. There may,
however, be other factors contributing to negative senescence, as we discuss
in the final section.

Caswell (2001, p. 39) concludes that “[s]ize-dependent demography is probably
the rule rather than the exception and is especially pronounced in species with
a large range of adult body size as a result of indeterminate adult growth.” He
discusses increases in fertility as well as decreases in mortality with size and
provides numerous examples and references. Finch (1990), Finch and Austad
(2001), and Ottinger, Ricklefs and Finch (2003) also provide much useful in-
formation. Finch and his colleagues focus on species for which there is evidence
that death rates increase very slowly if at all with age. Many of the species
they review, however, are candidates for negative senescence.

The strongest evidence for negative senescence in animal species comes from
studies of corals. Babcook (1991) shows in three coral species (Goniastrea as-
pera, G. favulus, and Platygyra sinensis) that mortality is inversely related
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to colony size and age. Furthermore, the total fecundity of the three species
increases steeply with size and age, “due to a combination of increased polyp
fecundity and increased surface area”(Babcook, 1991). Grigg (1977) presents
comparable results for two other corals, Muricea californica and Muricea fru-
ticosa. Like the massive reef-building corals, some plants develop into large
clonal clusters (Finch, 1990, Table 4.2, p. 229). The quaking aspen (Populus
tremuloides) grove studied by Kemperman and Barnes (1976) covered 81,000
square meters and was estimated to be at least 10,000 years old. It seems likely
that the bigger such a clonal cluster is, the lower is its chance of death.

Other candidates for species with negative senescence include the wild leek
Allium tricocum (Nault and Gagnon, 1993), brown algae Ascophyllum no-
dosum (Aberg, 1992), the forest tree Garcinia lucida (Guedje et al., 2003), the
neotropical tree Cecropia obtusifolia (Alvarez-Buylla and Martinez-Ramos,
1992) and the cushion plant Limonium delicatulum (Hegazy, 1992).

The strongest evidence for negative senescence in non-modular animals can be
found for some species of molluscs. Fertility often increases by ten-fold or so
as individuals grow following sexual maturity and mortality decreases sharply
(e.g., for the marine gastropods Umbonium costatum (Noda, 1991; Noda et al.,
1995) and Littorina rudis (Hughes and Roberts, 1981) and the bivalve Yoldia
notabilis (Nakaoka, 1994, 1996)). There is also evidence of negative senescence
for sea urchins (Ebert and Southon, 2003). Hydra (Martinez, 1998) may enjoy
negative senescence at younger ages followed by negligible senescence at older
age.

Some vertebrates may possibly enjoy negative senescence. Finch (1990) sum-
marizes suggestive data on rockfish, hagfish and various other species. Al-
though reliable mortality statistics are rare, many studies –reviewed by Finch
(1990) and Caswell (2001) – demonstrate that fertility often increases with
size (and hence age). For some reptiles death rates decline somewhat after
age of reproductive maturity is reached, e.g., for Sceloporus graciosus (Tinkle
et al., 1993), some populations of Sceloporus undulatus (Tinkle and Ballinger,
1972) and some populations of Lacerta vivipara (Heulin et al., 1997).

5 Models Pertinent to the Evolution of Senescence

Evolutionary models of life-history characteristics fall into two types (Par-
tridge and Barton, 1996). The usual kind of model is an optimization model.
The forces of evolution are assumed to yield the best-possible design of a
species’ life history, the design that maximizes fitness. Hamilton’s model of
senescence provides an example of the second class of models, models in which
evolutionary forces act in a non-adaptive way. Charlesworth (1994) provides
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further discussion of mutation-selection balance, i.e., of models of the opposing
forces of (deleterious) mutation and subsequent Darwinian selection. Although
we plan to develop models that include both optimization and deleterious mu-
tations, the remainder of this article focuses on simple optimization models of
senescence.

Williams (1957) proposed an optimization model of senescence, the so-called
antagonistic-pleiotropy model. The basic idea is that some genes have a fa-
vorable or unfavorable effect on fertility or survival at younger ages but the
opposite effect on mortality at older ages. A small positive (or negative) ef-
fect at younger ages may be more important than a large opposite effect at
older ages if few individuals survive to these ages and if their reproduction
is low. Williams’ model is often formulated in terms of mutations that have
a positive effect at some particular age (or age range) and a negative effect
at some other particular age (Charlesworth, 1994). This formulation creates
parallels with Hamilton’s model. Williams’ idea, however, is more general. It
is simply an example of the kind of thinking about trade-offs that underlies
all optimization modeling. Williams clearly thought that his model implied
senescence and he did not consider the logical possibility in such an optimiza-
tion model of negative senescence. The “disposable soma” model (Kirkwood,
1987; Kirkwood and Holliday, 1986; Kirkwood and Rose, 1991) is a related
example of this kind of thinking applied to senescence.

Optimization models of senescence can also be formulated in terms of spe-
cific parameters that affect the age-trajectories of fertility and mortality. This
is the usual strategy in life-history analysis (Roff, 2002; Stearns, 1992). It
has been applied to senescence by various researchers, including Gadgil and
Bossert (1970), Charlesworth and Leon (1976) and Cichon and Kozlowski
(2000). These researchers assume, as Cichon and Kozlowski (2000) put it,
that “aging is a general feature of higher organisms.” They constrain their
models such that the models imply senescence.

R.A. Fisher (1930) pioneered research on allocation over the life cycle. He
focused on remaining age-specific reproductive value. This value is a natural
measure of the potential of an organism to produce further offspring (Partridge
and Barton, 1996) and it can be a useful quantity in backward optimization
algorithms. As Hamilton (1966) correctly argued, however, it is an inappropri-
ate measure of the force of selection against age-specific mutations. In many
life-history optimization models, the optimal age-trajectories of fertility and
mortality are the trajectories that maximize Lotka’s intrinsic rate, r, of popu-
lation growth. In other models, the population is assumed to be in optimal
equilibrium, with no population growth or decline. In such a stationary popu-
lation, optimal trajectories can be found by maximizing the net reproduction
rate at age zero, R, which gives the expected number of offspring per indi-
vidual and which can be calculated as the integral over the life course of the
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survival function, l(a), and the fertility (or maternity) function, m(a):

R =
∫ ∞

0
l(a)m(a) da . (1)

Taylor et al. (1974) showed that maximizing reproductive value at age zero,
for any arbitrary value of r, in particular r = 0, leads to an optimal life history.
If r = 0, then reproductive value is given by R. We optimize R rather than r
in this article.

In developing our models, we learned much from models of growth and mor-
tality developed by Mangel, particularly Mangel and Abrahams (2001) and
Mangel and Stamps (2001). The tradeoff we consider between reproduction
and senescence is reminiscent of research on the evolution of iteroparity versus
semelparity (e.g., Cole, 1954 and Schaffer, 1974).

6 A Simple Optimization Model on the Frontier

Our purpose in this article is to make a persuasive case that negative senes-
cence is theoretically possible and may be widespread among many plant
species and some animal species. The literature suggests to us that negative
senescence may be particularly common among species for which mortality
depends on size. More specifically, we hypothesize that negative senescence
may be frequent among such species when growth is indeterminate and when
some adults reach sizes that are much larger than size at reproductive matu-
rity. Hence, we have developed a simple model that highlights the role of size.
The model is illustrative and is intended to help make the case that negative
senescence is theoretically possible.

We consider a species in optimal equilibrium. That is, the species has perfected
its age-trajectories of fertility, mortality, and growth to maximize fitness. All
individuals in the species follow identical trajectories. The environment is
unchanging. The population size is constant. Such a steady-state best-possible
world is, of course, highly unrealistic, but the drastic simplification permits
insight. Focusing on the optimal equilibrium has proven to be a useful strategy
in life–history analysis, as exemplified by Lee (2003). We plunge in medias
res and consider the species in the middle of an individual’s life at some
specific age after reproduction has started. We assume that the reproductive
capacity of an individual at this age as well as the individual’s ability to
gather resources and to avoid death can all be captured by some measure
that we denote by ξ. We refer to ξ as “size”, but please bear in mind that
ξ is a complicated measure that is associated not only with physical size but
also with strength and vitality. We assume that the resources available to the
individual depend on the individual’s ξ. Some fraction, π, of these resources are
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devoted to growth and maintenance; the remaining (1−π) of the resources are
devoted to reproduction. The reproductive output (e.g., number of progeny)
of the individual is given by (1− π) ξ. Hence, in this simple and quite general
model, ξ provides a direct measure of reproductive capacity.

We assume that the individual’s ξ can be maintained if but only if π is equal to
δ. If π is greater than δ, then ξ increases. If π is less than δ, then ξ decreases.
Hence, δ is the parameter that determines the proportion of resources that
have to be devoted to maintenance to assure steady-state ξ. Like ξ and other
variables in this model, δ can be a function of age and size. We simply focus
on the situation at a particular age and size.

If an individual is of size ξ, then the individual suffers a hazard of death
µ. We assume that µ decreases as ξ increases, so ξ is a pleiotropic variable.
The bigger ξ is, the more resources the individual garners each time period,
the greater is its reproductive capacity, and the lower is its mortality. The
formula for reproductive capacity is very simple: ξ is measured in such a way
that it equals reproductive capacity. The formulas for resource acquisition and
mortality can be complicated. Furthermore ξ can be an intricate function of
ordinary measures of size, such as weight, length, number of cells, or number
of modular units.

In “maintenance mode”, with π = δ, ξ stays the same and µ therefore also
remains constant. Hence, the remaining reproduction of the individual, i.e.,
the expected number of progeny the individual will produce over the rest of
its life, is given by

Ro =
∫ ∞

0
(1− δ) ξ e−µa da =

(1− δ) ξ

µ
= (1 − δ) ξ eo , (2)

where eo = 1/µ denotes life expectancy. Note that the starting point 0 in the
integral denotes the individual’s current age.

Suppose the individual invests a small fraction γ more than π in growth and
maintenance for a short period of time ε and then goes into maintenance
mode. The individual’s remaining reproduction will be given by

R∗ =
∫ ε

0
( 1 − δ − γ ) ξ e−µ a da + e−µε

∫ ∞

ε
( 1 − δ ) ξ∗ e−µ∗ ( a− ε ) da =

=
( 1 − δ − γ ) ξ

µ

[
1 − e−µε

]
+ e−µε ( 1 − δ ) ξ∗

µ∗
. (3)

This formula can be understood as follows. If the individual invests γ extra in
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growth, then the individual will grow a little. Its future reproductive capacity
will increase a bit to ξ∗ . Because survival is assumed to rise with size, its
mortality will be somewhat reduced to µ∗. However, its reproductive output
over the period from now to ε will be slightly lower. Note that we assume
that during the growth interval of length ε, size is constant at the level ξ and
jumps to its new value ξ∗ only at the end of the interval.

Let σ denote the proportion of reproduction Ro that is sacrificed during this
interval. Note that, by approximating 1− e−µ ε ≈ µ ε for small ε,

σ =
γ ξ ε

Ro
=

γ ε

(1− δ) eo
. (4)

If R∗ > Ro, then the individual will experience negative senescence, over
the period from now to ε. On the other hand, if R∗ < Ro then it would
be optimal for the individual to invest a bit less in maintenance, leading to
positive senescence from now to ε. When R∗ = Ro, the individual is on the
frontier between negative and positive senescence. The time to ε is very short,
but if negative or positive senescence is optimal for this period, a similar
strategy might be optimal for some period longer than ε. Hence, the frontier
where R∗ = Ro is of considerable interest.

This frontier can be described in two ways. Equating (2) and (3) and rear-
ranging terms leads to

ξ∗

ξ

µ

µ∗
= 1 +

γ

1 − δ
[ eµε − 1 ]

or, again by using eµ ε ≈ 1 + µ ε and substituting life expectancies for 1/µ
and 1/µ∗, respectively,

ξ∗e∗ − ξ eo

ξ eo
=

γ ε

(1 − δ) eo
= σ . (5)

Dividing by σ leads to
ξ∗e∗− ξ eo

ξ eo

σ
= 1. (5a)

Equation (5) simply states that if the relative gain in remaining reproduction
after ε balances the fraction of sacrificed reproduction during the growth in-
terval, then the individual is on the frontier between negative and positive
senescence. If the relative gain in remaining reproductive value is larger than
the loss σ, then negative senescence is favored.

If dξ = ξ∗− ξ and de0 = e∗− e0, then (5a), dropping the very small dξ · de0

term, leads to
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dξ
ξ

σ
+

deo

eo

σ
= 1 (6)

which —by extracting a common factor— can also be written as

dξ
ξ

σ
·

1 +

deo

eo

dξ
ξ


 = 1 . (6a)

Let èξ denote the elasticity of eo with respect to ξ, that is:

èξ =
deo

eo

dξ
ξ

.

This elasticity quantifies the percentage increase in eo given a one percent
increase in size, and thus denotes the responsiveness of life expectancy to
changes in size. The leading factor in (6a), dξ/ξ / σ , similarly is a “quasi-
elasticity” in that it relates the relative change in ξ to another relative change,
namely the change in the reproductive output over the small interval from 0
to ε relative to the total reproductive output Ro. If we use the same notation
for this quasi-elasticity with respect to σ we can describe the maintenance
frontier in (6) as

ξ̀σ + èσ = 1

or from equation (6a) as
ξ̀σ · (1 + èξ) = 1. (7)

Negative senescence prevails if the product exceeds one. This implies that
negative senescence will tend to be favored if a small sacrifice of reproduction
leads to a large increase in size. This effect will be reinforced to the extent that
an increase in size leads to an increase in remaining life expectancy. Figure 2
shows this relationship.

Elasticity of life expectancy with respect to size
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Fig. 2. Frontier between negative senescence and senescence as given in equation (7).
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7 An Optimization Model that Leads to Negligible or Negative
Senescence

7.1 When Senescence Is Impossible

The frontier model discussed above pertains to some unspecified age a. Con-
sider now a more general life-course model. There is a single state, ξ(a), which
describes the size and vitality of an individual at age a. At each age, some pro-
portion π(a) of the individual’s available resources is invested in growth and
maintenance. Remaining resources are invested in fertility. Growth occurs if
but only if π(a) exceeds some index of deterioration δ(a). If π(a) > δ(a), then
ξ increases. If π(a) = δ(a), then ξ remains unchanged. And if π(a) < δ(a),
then ξ decreases. An individual starts life by growing as rapidly as possible,
so π(0) = 1. The optimal strategy of allocations π(a) over the life-course is
the strategy that maximizes lifetime reproduction as given by equation (1).
By using the following theorem (Baudisch, 2004b), it is possible to determine
the general nature of the optimal strategy.

The Size Ratchet: Consider an optimization problem that is solely determined
by a single state that changes continuously over age (or time or some other
monotonically and continuously changing variable). If an optimal solution ex-
ists and each state is associated with exactly one optimal strategy, then the
state trajectory must be a monotonic function over age. Once the organism
chooses to maintain a state for any finite interval, it will maintain this state
forever.

Proof: Let π∗(a) denote the optimal strategy at age a associated with state
ξ(a). Assume this strategy implies an increase in ξ(a) to ξ(a+) = ξ(a) + ε,
ε > 0. If at the higher age a+ the optimal strategy π∗(a+) would lead to a
decrease in ξ, then ξ would shrink continuously. Clearly when it reaches its
former state ξ(a++) = ξ(a) at some higher age a++, π∗(a++) is known to be
such that ξ increases again since π is solely determined by state and not age.
But the continuity in state is even stronger. To reach the higher state ξ(a) + ε
it must have been optimal to grow at all intermediate states between ξ(a) and
ξ(a) + ε so shrinkage would violate the optimal strategy at ξ(a) + ε − ι for
any 0 < ι < ε and ι → 0 and for any ε > 0 and ε → 0. Consequently, if the
optimal strategy at starting age zero implies that dξ(a)/da > 0 at a = 0, then
dξ(a)/da ≥ 0 for any a > 0. Similarly, if the optimal strategy at starting age
zero implies that dξ(a)/da < 0 at a = 0, then dξ(a)/da ≤ 0 for any a > 0.
Finally, if the optimal strategy at starting age zero implies that dξ(a)/da = 0
at a = 0, then dξ(a)/da = 0 for any a > 0. More generally, if dξ(a)/da = 0,
at any age â then dξ(a)/da = 0 for all a > â. Q.E.D.
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The size ratchet is a very general result that may, perhaps, have already been
published in some other context. When it is applied to the life-course model
described above, it implies that an organism that starts life by growing must
grow monotonically all its life. That is, π(a) must be greater or equal to δ(a)
at all ages. Furthermore, if π(a) = δ(a) at some age, then this equality must
be maintained at all subsequent ages: size remains constant. Suppose that
dm(a)/dξ(a) > 0 and dµ(a)/dξ(a) ≤ 0, so that senescence at some age occurs
if and only if ξ(a) declines at this age. Then the size ratchet implies that
senescence is impossible.

7.2 A More Specific Model

To illustrate our finding that senescence is impossible in a single-state model,
we develop in the following paragraphs a more specific model. Age-specific
size, which stands for the general notion of strength and vitality, is denoted
by ξ(a) and size at age zero is set equal to one. The pace of growth of an
organism is determined by the level of deterioration it is subject to and by
the effort it spends on maintenance and growth. At any age a this effort
is defined as the fraction, π(a), 0 ≤ π(a) ≤ 1, of available resources the
organism devotes to growth and maintenance, whereas the remaining fraction
(1 − π(a)) is invested in reproduction. All individuals start off with a period
of development during which all available resources are invested in growth,
i.e. π(a) = 1 for all a ∈ [0, α) where α is the age of first reproduction. Age α
marks the point at which the investment strategy π(a) falls below 1 for the
first time.

We assume that the level of deterioration δ(a) at age a depends on current
size because larger size implies higher complexity, which is more costly to
maintain. To indicate that δ depends on age only indirectly via ξ(a) we write
δ(ξ) unless we want to stress the age–trajectory of δ explicitly. One simple
case is to assume that the level of deterioration depends linearly on size,

δ(ξ) = δ0 + δ1 ξ(a), (8)

where δ0 > 0 and δ1 > 0. If the maintenance effort π(a) exceeds the current
deterioration δ(ξ), size will increase.

For π(a) > δ(ξ) we assume that

dξ(a)

da
= k ( π(a) − δ(ξ) ) ξ(a), (9)

where k > 0 is a factor of proportionality. Substituting (8) into (9) for any
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Fig. 3. Size ξ(a) as a function of age a according to equation (10).

constant π yields the following logistic differential equation

dξ(a)

da
= k ( π − δ0 ) ξ(a) − k δ1 ξ(a)2, (10)

which has the solution

ξ(a) =

(
δ1

π − δ0

+

(
1

ξ(0)
− δ1

π − δ0

)
e−k ( π− δ0 ) a

)−1

.

Inserting the initial condition ξ(0) = 1 and taking into account that until
maturity investment π(a) = 1, the growth curve for 0 ≤ a ≤ α is

ξ(a) =

(
δ1

1 − δ0

+

(
1 − δ1

1 − δ0

)
e−k (1− δ0 ) a

)−1

. (11)

Figure 3 depicts this growth curve, which is a logistic function with upper
limit (1 − δ0)/δ1. This value reflects the size an organism would eventually
approach if it continues to spend all available resources on maintenance and
growth. The constant k determines the speed of growth.

To ensure that the initial investment of π0 = 1 actually leads to growth an
additional restriction on the parameters in (8) is necessary. From (10) we get

dξ(a)

da

∣∣∣∣∣
a=0

= k ( 1− δ0 − δ1) > 0

and hence

δ0 + δ1 < 1. (12)

This inequality concurrently guarantees that δ(ξ) < 1.

We assume that fertility and mortality depend on age only indirectly via the
age-specific vitality function ξ(a). Fecundity m(a) is assumed to be directly
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proportional to ξ and to the reproductive effort (1− π(a)):

m(a) = ϕ (1− π(a)) ξ(a).

Because

R =
∫ ∞

0
l(a) m(a) da = ϕ

∫ ∞

0
l(a) (1− π(a)) ξ(a) da, (13)

the constant, positive parameter ϕ can be chosen to ensure that the optimal
strategy yields R = 1.

Let the age-specific force of mortality be given by

µ(a) =
b

ξ(a)
+ c, (14)

where b ≥ 0 and c > 0. Note that c is the constant size-independent compo-
nent of external mortality. The mortality function determines the probability
of survival to age a, given by the survival function

l(a) = e−
∫ a

0
µ(t) dt. (15)

7.3 Results

The size ratchet implies that if there is a single state variable then the optimal
investment strategy of an organism has to be growth, possibly followed by
maintenance, i.e. the feasible set of π(a) is

π(a) ∈ [ δ(a), 1 ]. (16)

The size-trajectory ξ(a) is the result of the optimal investment strategy π(a)
over age that maximizes lifetime reproduction R defined in (1) subject to the
logistic growth equation (9). This maximization problem can be tackled by
optimal control theory using Pontryagin’s Maximum Principle (Léonard and
van Long, 1992; Pontryagin, 1962). The part of the associated Hamiltonian
that contains the control variable π(a) is

λ0 · l(a) m(a) + λ1(a) · dξ/da = (17)

= λ0 · { l(a) ϕ [ 1− π(a) ] ξ(a) } + λ1(a) · { k [ π(a)− δ0 − δ1 ξ(a) ] ξ(a) } .

Note that (17) is linear in π(a). The optimal investment π(a) has to maximize
the Hamiltonian. For linear functions this is only possible at the boundaries
of the feasible set (16), leading to a so called bang-bang solution. The upper
limit π(a) = 1 is associated with full growth and no reproduction. The lower
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limit π(a) = δ(a) switches the organism to maintenance mode with constant,
nonzero fertility and mortality.

In this bang-bang case the integral in (1) can be solved explicitly. The switch-
ing age, when π(a) drops to δ(a), is the age, α, of onset of reproduction. It
follows from (13) that

R = l(α)m(α)
∫ ∞

α
exp

{
−

∫ a

α
µ(t) dt

}
da = l(α)

m(α)

µ(α)
, (18)

where m(α) and µ(α) are the constant levels of fertility and mortality in
maintenance mode after α.

The age α at which reproduction starts is determined by the value ξα that
maximizes R in (18). Using the fact that from age zero to α there is a one-to-
one correspondence between age a and size ξ, we can express (18) as a function
of ξα. Inverting the logistic growth function ξ = L(a) given in (11) leads to

a = L
−1(ξ) =

1

k ( 1 − δ0)
ln


 1 − δ1

1− δ0
1
ξ
− δ1

1− δ0


 . (19)

Thus, by substituting α = L
−1(ξα) in (18) we can express R = R(ξα) as a

function of size at reproductive maturity ξα. The optimization problem now
can be solved by setting the first derivative of R(ξα) with respect to ξα equal
to zero, i.e.,

lξα

m

µ
+ mξα

l

µ
− µξα

l m

µ2
= 0 . (20)

Because

lξα =
d

dξα

l(ξα) =
d

dξα

exp

{
−

∫ ξα

1
µ(ξ) [k ( 1 − δ0 − δ1 ξ) ξ]−1 dξ

}
=

= −l(ξα) µ(ξα) [k ( 1 − δ0 − δ1 ξα) ξα]−1 ,

optimal size at maturity is given by

µ(ξα)

k
= ( 1 − δ0 − 2 δ1 ξα ) +

( 1 − δ0 − δ1 ξα ) b

µ(ξα) ξα

. (21)

Substituting µ(ξ) = b / ξ + c, yields a cubic polynomial with three roots, one
of which is real and the other two complex. For viable strategies, however,
the imaginary parts vanish. They can be determined numerically; we used
MathematicaTM to calculate the solution.

In the simplest case of size-independent mortality, i.e. b = 0, an explicit
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solution for the optimal size at maturity can be derived:

ξα =
( 1 − c

k
− δ0 )

2 δ1

. (22)

Results for three illustrative parameter combinations are shown in Figure 4.
Equation (22) implies
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Fig. 4. Size ξ(a) for three selected parameter combinations showing negligible sene-
scence. Note that ξ∗ denotes maximum size.

dξα

dc
< 0 ,

dξα

dδ0

< 0 ,
dξα

dδ1

< 0 and
dξα

dk
> 0. (23)

Furthermore, (22) and (19) imply

dα

dc
< 0 and

dα

dδ1

< 0 . (24)

Changes in α with respect to k and δ0 depend on the parameter combination
in a rather complicated way. For very small maximum attainable sizes and
very slow speed of growth, α can increase with increasing k and decrease with
increasing δ0. Usually, however, an increase in k will lead to a decline in α
while an increase in δ0 will lead to a decrease in α.

If b > 0 in (14) then mortality declines as size increases. Hence for positive
but small b

ξα |b>0 > ξα |b=0 . (25)

If, however, b is large then the increased risk of death may make it optimal
to start reproducing at a smaller size. Some illustrative results are shown in
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Table 1
Optimal size ξα and age α at start of reproduction for size-dependent mortality
(b > 0) according to equation (21).

ξα α ξmax l(α) b c k δ0 δ1

62.26 50.96 100 0.005 0.5 0.001 1 0.9 0.001

53.46 47.34 100 1.1 · 10−9 2 0.001 1 0.9 0.001

60.02 50.02 100 0.00003 1 0.001 1 0.9 0.001

25.68 17.66 100 0.0012 1 0.1 2 0.9 0.001

56.86 24.36 100 0.0045 1 0.01 2 0.9 0.001

64.06 25.87 100 0.0056 1 0.000001 2 0.9 0.001

127.66 29.31 200 0.006 1 0.001 1 0.8 0.001

129.18 14.74 200 0.08 1 0.001 2 0.8 0.001

Table 1. If b gets too large then the resulting solutions are nonviable strate-
gies: The species cannot survive because mortality is too high. Such nonviable
strategies correspond to roots of equation (21) that are complex or negative.

7.4 An Optimization Model that Leads to Negative Senescence

The model described above implies a strategy of development followed by neg-
ligible senescence. Negative senescence is precluded by the linearity in π(a) of
Pontryagin’s Hamiltonian. To allow negative senescence a model specification
has to be chosen which results in a Hamiltonian that is nonlinear in π(a).

To solve the resulting optimization problem the Bellman principle of dynamic
programming can be used. Because the size ratchet precludes an organism from
returning to previous states, the optimal trajectory of the allocation strategy
can be found by a backward algorithm. We developed such an algorithm that
was consistent with the analytic solution in the case of fertility being linear in
π(a). This algorithm can be readily applied to the following nonlinear fertility
function:

m(a) = ϕ π(a) (1 − π(a)) ξ(a) = ϕ (π(a) − π2(a)) ξ(a). (26)

The first term, π(a), in the product can be interpreted as the efficiency of con-

18



verting ξ(a) into m(a). As π(a) approaches zero, i.e. as resources are largely
directed to fertility rather than growth and maintenance, this efficiency de-
clines.

Figure 5 shows an illustrative result. For the parameters used in this model,
reproduction starts when the organism grows to about 25% of its potential
maximum size. Then, until maintenance mode is eventually reached at age
250, there is an extended period of negative senescence.
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Fig. 5. Negative senescence for model variant (26). Parameters values were
k = 0.1, δ0 = 0.5, δ1 = 0.0005, b = 0.1, c = 0.001, ϕ = 0.02. The force of mortality
before age 125 is very high and rapidly falling.

8 An Optimization Model that Leads to Positive Senescence

Although Hamilton (1996, p. 90) asserted that (positive) senescence is in-
evitable even “in the farthest reaches of almost any bizarre universe”, it is
negative or negligible senescence that is natural in the simple, general models
we have considered so far. Furthermore, if an exogenous event reduces ξ of an
individual to some lower level ξ−, then the individual would simply resume
growth with the π-strategy previously followed at ξ−. The size ratchet im-
plies that in single-state models organisms are forced to continue growing or
maintain current size. Thus any model along the general lines described in the
previous section will always yield growth, declining mortality and increasing
fertility followed by maintenance mode. To escape from this ratchet, a second
state has to be added to the model.

Let ψ(a) denote the required second state variable. Suppose ψ(a) captures
the functioning of an individual. Functioning may decline due to insufficient
investment in maintenance. Our basic idea now is to model species with de-
terminate growth. Let a∗ be the age at which growth is completed. Then
dξ/da = 0 for all a > a∗, where ξ(a∗) = ξ∗ denotes the size attained at

19



the end of the determinate growth period. For a < a∗, functioning does not
change, i.e. ψ(a) = 1. If π(a∗) < δ0 + δ1 ξ(a∗) at a∗, functioning starts to
deteriorate exponentially at the rate ψ́ = κ (π(a) − δ0 − δ1 ξ∗) with initial
condition ψ(a∗) = 1. If π(a∗) is chosen to equal the deterioration at that age,
the individual maintains its current functioning: this corresponds to the case
of determinate growers with sufficient repair or replacement of tissues to es-
cape senescence. The age a∗ is not necessarily identical to age at reproductive
maturity α, although for many determinate growers the two coincide.

Our model can then be reformulated as follows. Fertility is given by

m(a) = ϕ (π(a) − π2(a)) ξ(a) ψ(a), (27)

and mortality is given by

µ(a) =
b

ξ(a) ψ(a)
+ c. (28)

Note that both now depend on the product of size and functioning, ξ(a) ψ(a).
We call this product “vitality”. Growth in ξ is positive until determinate size
is attained and zero afterwards:

dξ(a)
da

ξ(a)
=





k (π(a) − δ0 − δ1 ξ(a)) if π(a) > δ0 + δ1 ξ(a)

0 otherwise,

(29)

where ξ(0) = 1. Functioning is constant at one until determinate size is
reached and then declines:

dψ(a)
da

ψ(a)
=





0 if a < a∗

κ (π(a) − δ0 − δ1 ξ(a)) if a ≥ a∗

(30)

where ψ(0) = 1. The parameters k and κ determine the speed of increase in
size and the speed of decline in vitality respectively.

Figure 6 shows the optimal trajectories of π(a), ξ(a) ·ψ(a), µ(a) and m(a) for
this model. The results were obtained numerically. Maximum attainable size
is ξ = 25; this size is almost reached at age of maturity α.
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9 Discussion

Based on the theoretical and empirical evidence presented above, we hypothe-
size:

• Senescence characterizes individuals in species that attain a size at repro-
ductive maturity that is close to maximum size. Such determinate-growth
species include mammals, birds, insects and some other species including
yeast and the nematode worm C. elegans. The main model species studied
by gerontologists are mammals (including humans, rats and mice), insects
(especially Drosophila but also Medflies and some other insect species),
C. elegans, and yeast. All of these species fall into this determinate-growth
category. Many determinate-growth species also have fixed oocyte stocks
or are otherwise limited with regard to reproductive capacity. Species that
experience declines in fertility with age or that have limited fertility seem
likely to suffer senescence.

• Negligible senescence characterizes individuals in species that attain a size
at reproductive maturity that is somewhat less–but not greatly less–than
maximum size and that have undiminished reproductive capacity. Species
with modestly-indeterminate growth and continuing oogenesis include many
fish, reptiles and amphibians.

• Negative senescence characterizes individuals in species that attain a size at
reproductive maturity that is much less than maximum size and that gain
reproductive capacity as they grow. Such species, we conjecture, include
most trees, many other perennial plants, some kinds of algae, many modular
animals such as corals and perhaps sponges, some fish, possibly some reptiles
and amphibians, and probably various nonmodular invertebrates such as
some mollusks and some echinoderms.
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We hypothesize that indeterminate growth may be the underlying cause of
negative and negligible senescence. In our model of indeterminate growth, the
state variable ξ plays a central role. We emphasize that size, as measured
by weight, length, number of cells, number of modular units or some similar
index, is only roughly related to ξ , which captures strength and vitality as
well as size and which determines the capability of an individual to gather
resources, to produce progeny and to avoid death.

To model the life-course of species with determinate growth, we had to in-
troduce a second state variable, ψ. This variable can capture a decline in
functioning of an individual whose size remains constant. We modelled the
vitality of an individual as the product of ξ times ψ. Because of wear and tear
and failure of repair, individuals may maintain about the same body weight,
length or cell number over an extended period of life but suffer a decline in
vitality. Furthermore, individuals in some species may grow in terms of or-
dinary measures of size, with this growth sufficiently counterbalancing forces
of deterioration and functional decline. In such species the ability to escape
mortality, as captured by ξ times ψ, may remain roughly constant—resulting
in negligible senescence. We did not develop this kind of model, but it is not
difficult to do so.

Note the distinction between senescence, on the one hand, and deterioration
and functional decline, on the other. We use senescence only with regard to
entire organisms, not parts of organisms, and we stipulate that senescence is
characterized by an increase in age-specific death rates. In our model we cap-
ture deterioration by δ(a) and decline in functioning by a decrease in ψ(a).
A tendency for existing body parts to deteriorate and to require repair or re-
placement to maintain functioning may possibly be a “fundamental, universal,
and intrinsic” property of living organisms (Arking et al., 1991); senescence,
as we define it, is not.

In any case, this general (and speculative) line of thinking leads us to con-
jecture that biological age may be better captured by the “average age” of
an individual—i.e., by some appropriate measure of the average age of the or-
gans, body parts or cells of an individual—than by the chronological age of the
individual. In indeterminate-growth species, continuing increases in size keep
average age well below chronological age. Furthermore, organisms that can re-
pair, replace or rejuvenate body parts may show, over chronological time, slow
increases or even decreases in average age. For instance, trees that replace their
leaves annually, that develop new roots and new branches to replace damaged
or lost ones, and that continue to grow may be of an average individual age
that remains roughly constant and may even decline with chronological age.
For some species of plants and animals, there can be a complete turnover of
body parts over a time interval: for these species, average individual age can be
much lower than chronological age and can decline over time if the individual
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grows and its component parts continue to turnover with time.

Negative senescence may thus be especially characteristic of species for which
(1) the average age of an individual is steady or decreasing, (2) mortality
declines with increasing size, and (3) fertility increases with increasing size.
Negative senescence may be favored in species with strong repair or rejuve-
native capabilities as exemplified by the following kind of traits: continuing
oogenesis, an abundance of stem cells, no distinction between germ and soma
cells, the ability to reproduce clonally from a severed part or from a root or off-
shoot. This last ability is common among plants and is often termed vegetative
reproduction, but it is also found among animals, including platyhelminthes
and annelida (Finch, 1990, Table 4.3, p. 231).

Finch (1990, pp. 206-247) discusses these and other relevant factors in a
thoughtful review of species that may experience negligible senescence. He
does not explicitly consider negative senescence but much of his review is per-
tinent to declining mortality with age and many of his candidate species for
negligible senescence may enjoy negative senescence.

Among many other topics, Finch considers modularity in multicellular or-
ganisms. He argues that “it is useful to distinguish between organisms that
possess internal repeated structure, which can continuously regenerate them-
selves internally as well as vegetatively by fragmentation (call these modular),
and organisms that have a nonrepeating internal structure, which typically
do not reproduce vegetatively but which also typically show senescence (call
these unitary).” He notes that “older modules may degenerate” but that “such
degeneration should not be considered an organismic senescence”. This is in
keeping with his (and our) definition of senescence. To the extent that the or-
ganisms with a larger number of modules face a lower chance of death and to
the extent that surviving modules, at any chronological age of the organism,
are relatively young, then such species may be prime candidates for exhibiting
negative senescence.

This article has made a case for negative senescence by presenting evidence
that negative senescence is theoretically possible and may be widespread
among plants and some kinds of animals. We hope we have made a good
enough case to stimulate thinking and to justify further theoretical and em-
pirical research on positive vs. negative senescence. Understanding why death
rates increase with age for some species but may decrease with age for other
species could lead to deeper comprehension of the evolutionary and demo-
graphic forces that mold the age-trajectory of mortality and the age-trajectories
of fertility and growth as well.
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