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Summary. An impact of environment on mortality, similar to survival analysis, is
often modelled by the proportional hazards model, which assumes the corresponding
comparison with a baseline environment. This model describes the memory-less
property, when the mortality rate at a given instant of time depends only on the
environment at this instant of time and does not depend on the history. In the
presence of degradation the assumption of this kind is usually unrealistic and history-
dependent models should be considered. The simplest stochastic degradation model
is the accelerated life model. We discuss these models for the cohort setting and
apply the developed approach to the period setting for the case when environment
(stress) is modelled by the functions with switching points (jumps in the level of the
stress).

1 Introdiction

The process of human aging is a process of accumulation of damage of some
kind (e.g., accumulation of deleterious mutations). It is natural to model it
via some stochastic process. Death of an organism uniquely defines the cor-
responding lifetime random variable in a cohort setting. We are interested in
an impact of varying environment on the mortality rate, which is defined for
a cohort via the lifetime distribution function in a standard way. There are
two major possibilities. The first one is plasticity: a memory-less property,
which says that mortality rate does not depend on the past trajectory of an
environment and depends only on its current value. This is the unique prop-
erty in some sense and a widely used proportional hazards (PH) model is a
conventional tool for modelling plasticity. On the other hand, dependence on
history is more natural for the hazard (mortality) rate of degrading objects,
as it seems reasonable that the chance to fail in some small interval of time
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is higher for objects with higher level of accumulated degradation. There are
various ways of modelling this dependence. The simplest one is via the ac-
celerated life model (ALM), which performs the scale transformation in the
lifetime distribution function. The ALM can be equivalently defined via the
mortality rates as well (see Section 1).

These two models and their generalizations were thoroughly investigated
in reliability and survival analysis studies (Bogdanovicius and Nikulin, 2002),
where the cohort setting is a natural one for defining the corresponding lifetime
random variables. In Section 2 we discuss some traditional and new results for
a cohort setting. In demography, however, period mortality rates play a crucial
role, whereas defining ‘proper’ lifetime random variables is not straightforward
and needs additional assumptions on a population structure. We mostly focus
on the case when environment has switching points: jumps in severity from one
level to another but the situation without switching points is also discussed.
Generalization of the PH model to the period case is quite natural, whereas the
corresponding generalization of the ALM needs careful reasoning. In Section 3
we perform this operation explicitly for the case of the linear ALM and discuss
the idea how it can be generalized to the time-dependent scale transformation.

2 Damage accumulation and plasticity. Cohort setting

2.1 Proportional hazards

Denote by X a cohort lifetime random variable (age at death) and by µ(x)
and l(x) the corresponding mortality rate and the survival probability, respec-
tively. Then:

F̄ (x) ≡ l(x) = exp{−
∫ x

0

µ(u)du}, (1)

where F (x) is the cumulative lifetime distribution function (Cdf) and F̄ (x) =
1− F (x).

Let z(x), x ≥ 0 be an explanatory variable, which for simplicity is assumed
to be a scalar one. The function z(x) describes environment or stress. We
want to model an impact of a stress (environment) on X. Consider two stress
functions: z0(x) and z(x) - the baseline and the current, respectively. The
stress z0(x) is an arbitrary function from the family of all admissible stresses
A. The stress z0(x) ∈ A is usually a fixed function. Denote the mortality rate
and the Cdf under the baseline stress by µ0(x) and F0(x), respectively, and
under the current stress, as in equation (1), by µ(x) and F (x), respectively.

The most popular way to model a stress impact is via the PH model:

µ(x) = wP (z(x))µ0(x) (2)

where wP (z(x)) is a positive, strictly monotone, function (usually unknown),
the sub-script ”P” stands for ”proportional” and wP (z0(x)) ≡ 1.
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Consider now a step stress with switching from the baseline to the current
stress at some xs > 0. Several switching points can be considered similarly.
This step stress models the abrupt change in environment (e.g., the develop-
ment of a new critical for the healthcare drug, or the dramatic change in the
lifestyle):

zs(x) =

{
z0(x), 0 ≤ x < xs

z(x), xs ≤ x < ∞ (3)

In accordance with definition (2), the mortality rate µs(t) for the stress zs(x)
is:

µs(x) =

{
µ0(x), 0 ≤ x < xs

µ(x), xs ≤ x < ∞ (4)

Therefore, the change point in a stress results in the corresponding change
point in µs(t) : instantaneous jump to the level µ(x).

Definition (2) and properties (3)-(4) show that a plastic, memory-less re-
action of the mortality rate on the changes in the stress function takes place.
Denote by Fs(x) the Cdf, which corresponds to the mortality rate µs(t). The
remaining lifetime also does not depend on the mortality rate history in [0, xs),
as clearly follows from the equation for the remaining lifetime Cdf Frs(x|xs):

F̄rs(x|xs) ≡ F̄s(x + xs)
F̄s(xs)

= exp
{
−

∫ x+xs

xs

µ(u)du

}
. (5)

The PH model is usually not suitable for modelling an impact of stress
on degrading (aging) objects, as it means that the stress in [0, x) does not
influence the degradation process in (x,∞). This assumption usually does not
hold as the past changes in stress affect the history of the degradation process,
changing its current value. These considerations, of course, are valid for any
memory-less model (see the next section).

Mortality rates of humans are increasing in age x (for adults) as the con-
sequence of biological degradation processes. However, there is at least one
but a very important for the topic of our paper case which shows that the PH
model can be used for the human cohort mortality rate modelling as well. In
this case the notion of stress has a more general meaning.

Example 1. Lifesaving. Describe the mortality environment for a pop-
ulation via the quality of a healthcare. Let µ0(x), as previously, denote the
mortality rate for some baseline, standard level of healthcare. Suppose that
the better level of health care had been achieved, which usually results in
lifesaving (Vaupel and Yashin, 1987)): each life, characterized by the initial
mortality rate µ0(x) is saved (cured) at each event of death with probabil-
ity 1 − θ(x), 0 < θ(x) ≤ 1 (or, equivalently, this proportion of individuals
who would have died are now resuscitated and given another chance). Those
who are saved, experience the minimal repair. The minimal repair is defined
(Finkelstein, 2000), as the repair that brings an object back to the state it
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had just prior to the failure (death). It is clear that the new healthcare en-
vironment defined in such a way does not change the process of individual
aging. If θ(x) = 0, the lifetime is infinite and virtual deaths’ form a memory-
less nonhomogenous Poisson process. It can be proved (Vaupel and Yashin,
1987; Finkelstein, 1999) that under given assumptions the new mortality rate
is given by:

µ(x) = θ(x)µ0(x), (6)

which is the specific form of the PH model (2). The case, when there is no
cure (θ(x) = 1), corresponds to the baseline mortality rate µ0(x) and switching
from the ”stress” θ(x) = 1 to the stress 0 < θ(x) < 1 at age xs results in the
plasticity property given by equation (4).

Note, that the baseline mortality rate µ0(x) can also model a possibility
of lifesaving. In this case µ(x) defines the larger probability of lifesaving.
Formally, the hypothetical mortality rate without lifesaving µh(x) should be
then defined:

µ0(x) = θh(x)µh(x), 1− θh(x) < 1− θ(x), x > 0.

The switching point in lifesaving, in fact, means that at a certain age xs

a switch from one probability of lifesaving to another is performed.

2.2 Accelerated life model

Another popular model describing an impact of a stress on X is the accelerated
life model (ALM) (Cox and Oakes, 1984; Finkelstein, 1999). It performs the
stress-dependent scale transformation of the baseline Cdf

F0(x) = 1− exp
{
−

∫ x

0

µ0(u)du

}

in the following way:

F (x) = F0

(∫ x

0

wA(z(u))du

)
≡ F0(WA(x)), (7)

where the subscript ”A” stands for ”accelerated”, and notation
∫ x

0

wA(z(u))du = WA(x)

is used for convenience. As previously, we assume that wA(z0(x)) ≡ 1. Note
that wA(z(x)) is unknown but can be estimated from the data.

This model is usually more appropriate for modelling additive degradation
(accumulation of damage), as the effect of higher stress with w(z(x)) > 1, for
instance, results in facilitation of degradation processes. The function w(z(x))
can be interpreted as a rate of degradation, whereas WA(x) is the accumulated
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damage in this case. We shall also assume in this model that mortality rates
are increasing, as monotone degradation usually can be described by IFR
(increasing failure rate) lifetime distributions. The mortality rate is obtained
from equation (7) as (compare with equation (2)):

µ(x) = wA(z(x))µ0(WA(x)). (8)

Similar to equation (5) the survival function for the remaining lifetime is:

F̄r(x|a) ≡ F̄ (x + a)
F̄ (a)

=
F̄0(WA(x + a))

F̄0(WA(a))

=
F̄0

(
WA(a) +

∫ x

0
wA(z(u + a))du

)

F̄0(WA(a))
, a > 0, (9)

where an important for the model additivity property is used:
∫ x+a

0

wA(z(u)du = WA(a) +
∫ x+a

a

wA(z(u))du

Unlike equation (5)), the remaining lifetime already depends on the mortal-
ity rate history in [0, a), but this dependence is only on the simple aggregated
history characteristic WA(x).

Let the true’ biological age x be defined for the baseline stress z0(x), then
the virtual age in the baseline environment of an organism that had survived
time x under the current stress z(x) , in accordance with ALM, is defined as
(Finkelstein, 1992, Kijima, 1988):

xV = WA(x), (10)

and the corresponding difference between these two ages is:

4V ≡ xV − x.

Therefore, the ALM gives a simple and effective way for age correspondence
under different stresses. If an organism had survived time x under the baseline
stress, his virtual age under the current stress is W−1

A (x). Note that for the
PH model the virtual age is equal to the calendar one.

If wA(z(x)) > x, ∀x > 0, then WA(x) > x and the stress z(x) is more
severe than the baseline one, which in accordance with equation (10) means
that xV > x. Additionally, the corresponding mortality rates are ordered in
this case as:

µ0(x) < µ(x), ∀x > 0, (11)

which for increasing µ0(x) immediately follows from equation (8).
Definition (7) reads:

exp
{
−

∫ x

0

µ(u)du

}
= exp

{
−

∫ WA(x)

0

µ0(u)du

}
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and ∫ x

0

µ(u)du =
∫ WA(x)

0

µ0(u)du. (12)

Therefore, given the mortality rates under two stresses in [0,∞), the function
WA(x) can be obtained.

Similar to the previous subsection, consider now the stress zs(x) defined
by equation (3) and assume for the definiteness that z(x) is more severe than
z0(x). The corresponding Cdf Fs(x) for this stress is:

Fs(x) =

{
F0(x), 0 ≤ x < xs

F0

(
xs +

∫ x

xs
wA(z(u))du

)
, xs ≤ x < ∞.

(13)

Transforming the second row in equation (13):

F0

(
xs +

∫ x

xs

wA(z(u))du

)
= F0

(∫ x

xs−τ

wA(z(u))du

)

= F0(WA(xs)−WA(xs − τ)), (14)

where τ is uniquely defined from the equation:

xs =
∫ xs

xs−τ

wA(z(u))du. (15)

Thus, the virtual age under the stress z(x) (in other words, the re-calculated
for the more severe stress the baseline age’ xs) just after the switching is
xs−τ . Equation (15) defines an interval [xs−τ, xs) in which the accumulated
degradation under the stress z(x) is equal to the accumulated degradation xs

under the stress z0(x) in the interval [0, xs).
A jump in the stress at xs leads to a jump in mortality rate, which can be

clearly seen by comparing equation (8) with

µs(x) =

{
µ0(x), 0 ≤ x < xs

wA(z(x))µ0

(
xs +

∫ x

xs
wA(z(u))du

)
, xs ≤ x < ∞

as for increasing µ0(x) and for wA(z(x)) > 1, x ∈ [xs,∞):

µ0(x) < wA(z(x))µ0

(
xs +

∫ x

xs

wA(z(u))du

)

< wA(z(x))µ0

(∫ x

0

wA(z(u))du

)

= wA(z(x))µ0(WA(x)) = µ(x). (16)

Inequality (16) is a special case of inequality (11), obtained for a more
severe stress zs(x).
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It is important to note that, as follows from relations (7) and (14), for the
general case F0

(
xs +

∫ x

xs
wA(z(u))du

)
is not a segment of F (x) for x ≥ xs

(and the corresponding mortality rate is not a segment of µ(x)), but for the
specific linear case WA(x) = wAt it can be transformed to a segment:

F0(wA · (x− xs + τ)) = F (x− xs + τ),

where τ is obtained from a simplified equation:

xs =
∫ xs

xs−τ

wAdu =
∫ τ

0

wAdu ⇒ τ =
xs

wA
, wA > 1 (17)

and, finally, only for this specific linear case the Cdf (13) can be defined in
the way usually referred to in the literature (Nelson, 1993):

Fs(x) =

{
F0(x), 0 ≤ x < xs

F (x− xs + τ), xs ≤ x < ∞

Sometimes this equation written in terms of mortality rates:

µs(x) =

{
µ0(x), 0 ≤ x < xs

µ(x− xs + τ), xs ≤ x < ∞ (18)

is called the ‘Sedjakin principle’, although Sedjakin (1966) defined it in a more
general way as the dependence on history only via the accumulated mortality
rate. As wA = const, µ(x) is also an increasing function. Taking into account
that τ < xs:

µs(x) = µ(x− xs + τ) < µ(x), xs ≤ x < ∞, (19)

which is a specific case of inequality (16).

2.3 Other models

There are not so many other candidates for memory-less models, the additive
hazard (AH) model being probably the only one, which is widely used in
applied statistical analysis:

µ(x) = µ0(x) + wAD(z(x)), (20)

where wAD(x) is a positive function (wAD(z0(x)) ≡ 1) and the subscript ”AD”
stands for ”additive”. It is clear that the plasticity property (4), defined for
the stress given by equation (3), holds also for this case. Similar to the PH
model the stress in [0, x) does not influence the degradation process in (x,∞),
but, probably, the AH model is more suitable when, for instance, the baseline
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µ0(x) describes some ‘inherent’ degradation process which is not influenced
by the environment.

The memory-less property is a rather unique feature, whereas the depen-
dence on a history can be modelled in numerous ways. Most of these gener-
alizations are based on different extensions of the ALM or of the PH model
(Bogdanovicius and Nikulin, 2002). For instance, equation (8) can be gener-
alized to:

µ8x) = G (z(x), wA(z(x),WA(x)))

where G(·) is a positive function. The advanced statistical methods of ana-
lyzing the data via the chosen model also can be found in (Bogdanovicius
and Nikulin, 2002). Our goal in this paper is, however, to discuss plasticity
versus accumulated damage modelling for mortality rates in the cohort and
period settings. The ALM is just a tractable example, which can be used for
degradation modelling.

Let, as previously, µ0(x) and µ(x) be two mortality rates for populations
at baseline and current stresses, respectively. Assume that the rates are given
or observed and this is the only information at hand. It is clear that without
additional information on the degradation process or on the possible memory-
lees property the ‘proper’ model for the stress influence is non-identifiable,
as different models can result in the same. Indeed, by letting wP (z(x)) =
µ(x)/µ0(x) we arrive at the PH model (2), and by obtaining WA(x) from
equation (12), which is always possible, results in the ALM (7). The following
simple illustrative example will be also helpful for the reasoning of the next
section.

Example 2. The Gompertz curve
Let

µ0(x) = a exp{bx}, a, b > 0 (21)
µ(x) = wP µ0(x), wP > 0 (22)

Therefore, equations (21) and (22) formally describe the PH model with a
constant in age factor wP . On the other hand, assuming the ALM defined by
equation (7), the function WA(x) can be obtained from equation (12):

∫ x

0

µ(u)du =
∫ WA(x)

0

µ0(x)du ⇒ wP (exp{bx} − 1) = exp{bWA(x)} − 1.

In accordance with the contemporary mortality data for the developed
countries (Boongaarts and Feeney, 2002) parameter b is approximately es-
timated as 0.1. Equation (22) can be simply approximately solved with a
sufficient accuracy for x > 30 (when aging starts and the Gompertz curve is
suitable for modelling):

WA(x) ≈ ln wP

b
+ x. (23)
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If wP < 1, a condition: x > 30 in combination with real values of parame-
ters guarantees that WA(x) > 0. Therefore, the ALM defined by relation (23)
can formally explain equations (21) and (22), although it is not clear how to
explain that the difference between the virtual and baseline ages 4V , defined
by equation (11), is approximately constant for this model. An explanation
via the PH model seems much more natural.

If there is no sufficient information on the ‘physical’ processes of degrada-
tion in our objects, the simplest way to distinguish between the memory-less
and accumulation of degradation models is to conduct an experiment and to
apply the stress zs(x), defined by equation (3), to our cohort. If the resulting
mortality rate µs(x) is obtained in the form, defined by equation (4), then we
arrive at a memory-less property, which means that our object is ‘degradation
free’. The other option is that there is no dependence on the history of this
degradation like in the lifesaving model or the degradation described by the
baseline µ0(x) does not depend on the environment. The latter possibility was
already mentioned while discussing the AH model. On the other hand, if there
is a dependence on the degradation history, then the resulting mortality rate
should be

µs(x) =

{
µ0(xs), 0 ≤ x < xs

µ̃(xs), xs ≤ x < ∞ (24)

where the mortality rate µ̃(x), e.g., for the ALM, as follows from inequality
(16), is contained between baseline and ‘current’ mortality rates:

µ0(x) < µ̃(x) < µ(x), xs ≤ x < ∞. (25)

For a general case, if accumulated degradation in [0, xs) under the stress z0(x)
is smaller than under the stress z(x), inequality (25) should be considered as
a reasonable assumption.

Inequality (16) defines a jump in mortality rate, which corresponds to a
jump in the stress. For a general case the reaction in mortality rate should
not be necessarily in the form of the jump: it can be some smooth function,
showing some ‘inertia’ in the degradation process.

In simple electronic devices without degradation the failure rate pattern
usually follows the stress pattern. In the lifesaving PH model, however, it is
not often the case, as environmental changes are usually rather smooth which
results in the smooth change in the probability of lifesaving. An important
feature is that after some delay the mortality rate µs(x), x > xs reaches the
level of µ(x). (Alternatively this delay can be modelled in the degradation
framework with a short-term memory of the history of the degradation pro-
cess).

The relevant example is the convergence of mortality rates of ‘old cohorts’
after unification of east and West Germany at xs = 1990. ((Vaupel et al,
2003). This, of course is the consequence of a direct (better healthcare) and of
an indirect (better environment eliminates some causes of death) lifesaving.
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Another memory-less example, which is more likely to be modelled by the
AH model, is the dietary restriction in Drosophila (Mair et al). The results
of this paper show practically absolute plasticity: the age-specific mortality of
the flies with dietary restriction depends only on their age and their current
nutritional status, with past nutrition having no detectable effect.

2.4 Damage accumulation and plasticity. Period Setting

The detailed modelling of the previous section is essential for considering the
PH model and the ALM for the period setting. As far as we know, this topic
was not considered in the literature. Denote by N(x, t) a population density
(age-specific population size) at time t - a number of persons of age x. See
Keding (1990) and Arthur and Vaupel (1984) for discussion of this quantity.
We shall call N(x, t), x ≥ 0 a population age structure at time t. Let µ(x, t)
denote the mortality rate as a function of age x and time t for a population
with the age structure N(x, t), x ≥ 0:

µ(x, t) = lim
δ→0

(N(x + δ, t + δ)−N(x, t)) /dδ

N(x, t)
(26)

On the other hand, it is clear that, as µ(x, t)dδ is a local risk of death, it, in
fact, does not depend on N(x, t), x ≥ 0. This means that for defining the PH
model we do not need to define the corresponding lifetime variable. The stress
now is a function of time: z(t), and the cohort PH model (2) is generalized to:

µ(x, t) = qP (z(t), x)µ0(x, t). (27)

If the stress (environment) is constant, the mortality rate does not depend
on time and the population is stationary with additional assumptions that it
is closed to migration and experience a constant birth rate. Consider now a
step function in time t, which is a special case of the stress (3):

z̃(t) =

{
z0, 0 ≤ t < ts

z, ts ≤ t < ∞ .

Assuming the constant in age x PH model, the mortality rate for this
stress is given by (compare with equations (2), (3) and (4)):

µs(x, t) =

{
µ0(x), 0 ≤ t < ts; x ≥ 0
wP (z)µ0(x), ts ≤ t < ∞; x ≥ 0

. (28)

Therefore, the baseline mortality rate after the change point is multiplied by
wP (z) for all ages and not for the interval of ages as in equation (4). This is
an important distinction from the step stress modelling in the cohort setting.
The other important ‘negative’ feature of the period setting is that now the
experiment with a step stress without analyzing concrete cohorts (see later)
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cannot indicate the memory-less property (if any) in a way it did for the
purely cohort setting. (Note, that similar to (28), the AH model results for
t ≥ ts in the mortality rate µ0(x) + wAD(z)).

The period ALM at time t should be applied to each cohort with varying
age x (0 ≤ x < ∞) at time t, and we must assume, as previously, that our
population is closed to migration and experience a constant birth rate. In this
case the corresponding lifetime random variable for each cohort is properly
defined and the population is stationary before the change point and after it
as well. We shall illustrate the construction of the period ALM for the step
stress (3), where, as previously, the stress z is a more severe than the stress
z0. The opposite ordering of stresses is considered in the same way. Due to
piecewise constant stress, the linear ALM with a constant rate wA can be
used and the mortality rate is defined via equation similar to equation (18)
but with the age and time-dependent shift τ(x, t):

µs(x, t) =

{
µ0(x), 0 ≤ t < ts; x ≥ 0
µ(x + τ(x, t)), ts ≤ t < ∞; x ≥ 0

, (29)

where τ(x, t) is obtained from equation similar to equation (17):

x− I(t− ts) =
∫ x

x−τ(x,t)

wAdu, wA > 1, (30)

where I(t− ts) is an indicator:

I(t− ts) =

{
0, 0 ≤ t < ts

1, ts ≤ t < ∞ .

Equation (30) has the following solution:

τ(x, t) =

{
x−(t−ts)+(t−ts)wA

wA
, x > (t− ts)

0, x ≤ (t− ts).
(31)

Specifically, when t = tS similar to equation (17): τ(x, ts) = s/wA, but now
this solution is valid for all ages x. Therefore, for each t > ts the recalculation
of initial age τ(x, ts) is performed for each cohort. Specifically, if the age of the
cohort is less thant − tS and therefore this cohort was born after the change
point tS and ‘does not re-member’ the previous stress z0. All possibilities are
incorporated by equation (29). An importance of the switching strategy is
again in the fact that, if we look at concrete cohorts in the period framework,
we are still able to detect the memory-less property or the absence of it.

A cumbersome generalization of this approach to the general time-depen-
dent stress can be also performed using the similar considerations: at each
time t the initial age τ(x, t) is obtained using the following expression for the
age structure of a closed to migration population:
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N(x, t) = B(t− x) exp
{
−

∫ x

0

µ(u, t− x + u)du

}
. (32)

where B(t− x) is the birth rate at time (t− x).
Considering the time-dependent stress for the PH model, however, is much

simpler. For the case with a switching point equations (27) and (28) is gener-
alized to:

µs(x, t) =

{
µ0(x, t), 0 ≤ t < ts; x ≥ 0
wP (z(t), x)µ0(x, t), ts ≤ t < ∞; x ≥ 0

, (33)

where the multiplier already depends on the stress at time t and on the age
x.

Different environments can be defined not necessarily by the switching
point or by considering changing in time stresses. Let the stress z0(t0) be a
baseline stress at a baseline (fixed) time instant t0. Denote the corresponding
mortality rate, as previously, by µ0(x, t0). Then the stress z0(t0) and the
mortality rate µ(x, t) characterize the current instant of time t. Note that
in this approach populations can be different and t − t0 can be reasonably
large (e.g., 10 or 20 years). The PH model for this case is naturally defined as
(compare with (27)):

µ(x, t) = wP (z(t), x)µ=(x, t0), x ≥ 0, t > t0, (34)

where µ0(x, t0) plays the role of a baseline mortality rate. The analogue of the
ALM, however, is not straightforward, as there should be a pair wise compar-
ison between the corresponding cohorts of the same age x, using expression
(32) for both instants of time. This topic needs further study.

Example 3. Gompertz shift model As stated in Bongaarts and Feeney
(2002), the mortality rate in contemporary populations with high level of life
expectancy tends to improve over time by a similar factor at all adult ages
which results in our notation in the following Gompertz shift model (similar
to equations (21) and (22)):

µ0(x, t0) = a exp{bx}, a, b > 0, (35)
µ(x, t) = wP (z(t))µ0(x, t0), wP > 0, (36)

This model was verified using contemporary data for different developed coun-
tries. Equations (35) and (36) define formally the age independent PH model.
We do not have a switching in stress here which could help in verifying plas-
ticity.

Most researchers agree that the process of human aging is the process of
accumulation of damage of some kind (e.g., accumulation of deleterious mu-
tations). Given the reasoning of the previous sections it means that the PH
model (35), (36) is not suitable for this case unless it describes the lifesaving
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model. On the other hand, as it was stated in Example 2, it is really unnatu-
ral trying to explain (35)-(36) via some degradation model. Therefore, if the
linear trend takes place (or, equivalently, the logarithms of mortality rates
at different time instants are practically parallel), this can be explained by
lifesaving in a general sense and not by slowing down the degradation pro-
cesses, for instance. In other words: lifesaving is likely to be the main source
of lifespan extension at present time (according to the data: at least, since the
second half of the previous century). Of course, it is not a strict statement,
but just a reasoning that seems to be true.

3 Concluding remarks

The most popular models that account for an impact of environment on a
lifetime are the PH model and the ALM. The first one is the simplest way to
describe the memory-less property, whereas the second describes the simplest
dependence on a history in a form of accumulated damage. Various general-
izations of these models are considered in Bogdanovicius and Nikulin (2002).
In survival analysis these models were traditionally defined for the cohort
setting.

The conventional demographic definition of the observed in a period (from
t to t + 4t) age-specific and time(26). The generalization of the cohort PH
model to this case is given by equations (27), (28) and (29). The corresponding
generalization of the ALM is explicitly performed for a specific case of the step
stress z̃s. Therefore, the cohort ALM is applied to each cohort with varying
age x (0 ≤ x < ∞) at time t, which results in equations (29)-(31) defining the
age specific mortality rate.

Although human aging is definitely a process of damage accumulation, the
contemporary demographic data supports the Gompertz shift model (35)-(36),
which is, at least formally, the PH model. In line with our reasoning of the
previous section this means that lifesaving (versus the decrease in the rate of
degradation) can explain the decrease in mortality rates with time.
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