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ABSTRACT. Mixtures of increasing failure rate distributions (IFR) can decrease at least 

in some intervals of time. Usually this property can be observed asymptotically as 

∞→t . This is due to the fact that the mixture failure rate is ‘bent down’ compared with 

the corresponding unconditional expectation of the baseline failure rate, which was 

proved previously for some specific cases. We generalize this result and discuss the 

“weakest populations are dying first” property, which leads to the change in the failure 

rate shape. We also consider the problem of mixture failure rate ordering for the ordered 

mixing distributions. Two types of stochastic ordering are analyzed: ordering in the like-

lihood ratio sense and ordering in variances when the means are equal. 

 

Keywords: mixture of distributions, decreasing failure rate, increasing failure rate, sto-

chastic ordering, ordering in the likelihood ratio sense. 
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1. INTRODUCTION 

 

It is well known that mixtures of decreasing failure rate (DFR) distributions are always 

DFR. On the contrary, mixtures of increasing failure rate distributions (IFR) can decrease 

at least in some intervals of time (Block et al, 2003). As IFR distributions usually model 

lifetimes governed by aging processes, it means that the operation of mixing can change 

the pattern of aging, e.g., from positive aging (IFR) to the negative aging (DFR). It can 

also slow down the observed via the failure rate process of aging. These facts should be 

taken into account in applications. It is also clear that those are statistical artifacts and the 

individual aging is not affected by the operation of mixing. 

     One can hardly find homogeneous populations in real life and mixtures of distribu-

tions usually present an effective tool for modeling heterogeneity. A natural approach for 

this modeling exploits a notion of a random unobserved parameter (frailty) Z  introduced 

by Vaupel et al (1979) in the demographic context. This, in fact, leads to considering a 

random failure rate ),( Ztλ . As the failure rate is a conditional characteristic, the ‘ordi-

nary’ expectation )],([ ZtE λ  with respect to Z  does not define a mixture failure rate 

)(tmλ  and the proper conditioning should be performed.  

     A perfect experiment, showing the deceleration in the observed failure rate is per-

formed by nature. It is well-known that the mortality rate of humans obey the Gompertz 

lifetime distribution (Gompetz, 1825) with exponentially increasing failure rate (mortality 

rate). Assuming the proportional gamma-frailty model, which describes the heterogeneity 

of human population: 

}exp{),( tZZt βαλ = ,                                                    (1) 

where α  and β  are positive constants, it can be shown that the mixture failure rate 

)(tmλ  is increasing in ),0[ ∞  and asymptotically tends to a constant as ∞→t . This fact 

explains recently observed deceleration of human mortality for oldest old (human mortal-

ity plateau, as in Thatcher (1999). 

     In Sections 2 and 3 some supplementary results are stated. In Section 4 we prove the 

bending down property (Finkelstein, 2005). The steps of this proof are essential for the 

rest of the paper. While considering heterogeneous populations in different environments 
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the problem of ordering mixture failure rates for stochastically ordered mixing random 

variables arises. In section 5 we show that the natural type of ordering for mixing models 

under consideration is ordering in a sense of likelihood ratio (Ross, 1996; Shaked and 

Shanthikumar, 1993). Specifically, when two frailties are ordered in this way, the corre-

sponding mixture failure rates are naturally ordered as functions of time in ),0[ ∞ . Some 

specific results for the case of frailties with equal means and different variances are also 

obtained.  

     As usually, by terms “increasing” or “decreasing” we mean “non-decreasing” and  

“non-increasing, respectively. 

 

2.  SOME DEFINITIONS 

 

Let  0≥T  be a lifetime random variable with the Cdf )(tF  ( )(1)( tFtF −≡ ). Assume 

that )(tF  is indexed by a random variable Z in the following sense:  

),()|()|( ztFztTPzZtTP =≤≡=≤  

 and that the pdf ),( ztf  exists. Then the corresponding failure rate ),( ztλ  is 

),(),( ztFztf . Let Z  be interpreted as a non-negative random variable with support in 

∞≤≥ baba ,0],,[  and the pdf )(zπ . Thus, a mixture Cdf is defined by  

∫=
b

a

m dzzztFtF )(),()( π . 

As the failure rate is a conditional characteristic, the mixture failure rate )(tmλ  should be 

defined in the following way (see, e.g., Finkelstein and Esaulova, 2001):  

∫

∫
=

b

a

b

a
m

dzzztF

dzzztf

t

)(),(

)(),(

)(

π

π
λ ∫=

b

a

dztzzt )|(),( πλ ,                                    (2) 

where the conditional pdf (on condition that tT > ) is: 

∫
=>≡

b

a

dzzztF

ztF
ztTztz

)(),(

),(
)()|()|(

π
πππ                                   (3) 
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Therefore, this pdf defines a conditional random variable tZ | , ZZ ≡0|  with the same 

support. On the other hand, consider the following unconditional characteristic 

∫=
b

a

P dzzztt )(),()( πλλ ,                                                  (4) 

which, in fact, defines an expected value (as a function of t ) for a specific stochastic 

process ),( Ztλ . It follows from definition (2) that )0()0( Pm λλ = . The function )(tPλ  is 

a supplementary one, but as a trend function of a stochastic process, it captures the 

monotonicity pattern of the family ),( ztλ . Therefore, )(tPλ  under certain conditions has 

a similar to individual ),( ztλ  shape: if, e.g., ],[),,( bazzt ∈λ  is increasing in t , then 

)(tPλ  is increasing as well.  On the contrary, )(tmλ  can have a different pattern: it can 

ultimately decrease, for instance, or preserve the increasing in t  property. However, it 

will be proved in Section 4, that  

0),()( >< ttt Pm λλ                                                   (5) 

and under an additional assumptions, that   

0,))()(( ≥↑− ttt mP λλ .                                               (6) 

 

Definition 1 (Finkelstein, 2005). Relation (5) defines the weak bending down property 

for the mixture failure rate, whereas relation (6)  is the definition  of  the strong bending 

down property.  

 

Sometimes the following property can be also of interest 

0,
)(

)(
≥↑ t

t

t

m

P

λ
λ

.                                                         (7) 

In this paper we shall mostly focus on (5) and (6). 

 

3.  MULTIPLICATIVE MODEL 

 

Consider the following specific multiplicative model  

)(),( tzzt λλ = ,                                                     (8) 



 5

where, )(tλ  is a baseline failure rate. This setting defines the widely used in applications 

frailty (multiplicative) model.  Equation (1), e.g., is a specific case of this model. Apply-

ing relation (2) gives: 

]|[)()|(),()( tZEtdtzztt

b

a

m λθπλλ == ∫ .                               (9) 

A conditional expectation ]|[ tZE ( ][]0|[ ZEZE ≡ ) plays a crucial role in defining the 

shape of the mixture failure rate )(tmλ  in this model. The following result was proved in 

Finkelstein and Esaulova (2001): 

,0)|()(]|[ <−=′ tZVarttZEt λ  

which means that the conditional expectation of Z  is a decreasing function of ),0[ ∞∈t . 

On the other hand,  (4) turns to 

]0|[)()(),()( ZEtdzzztt

b

a

P λπλλ == ∫ .                                     (10) 

Therefore 

0])|[]0|[)(()()( >−=− tZEZEttt mP λλλ                                 (11) 

and relation (5) holds, whereas under the additional sufficient condition that )(tλ  is in-

creasing, the bending down property in a strong sense (6) takes place. The function 

]|[

]0|[

)(

)(

tZE

ZE

t

t

m

P =
λ
λ

 

is also increasing and therefore relation (7) holds without additional assumptions.  

 

4. COMPARISON WITH  )(tPλ  

 

Theorem 1.  Let the failure rate ),( ztλ  in the mixing model  (2) be differentiable with 

respect to both arguments and be ordered as 

0],,[,,),,(),( 212121 ≥∈∀<< tbazzzzztzt λλ .                        (12) 

Assume that conditional and unconditional expectations in relations (2) and (4), respec-

tively, exist and  finite for ),0[ ∞∈∀t . Then: 

a) The mixture failure rate )(tmλ  bends down with time at least in a weak sense. 
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b) If additionally, 
z

zt

∂
∂ ),(λ

 is increasing in t , then )(tmλ  bends down with time in a 

strong sense. 

 

Proof. It is clear that ordering (12) is equivalent to the condition that ),( ztλ  is increasing 

in z  for each 0≥t . In accordance with equations (2) and (4) and integrating by parts 

(Finkelstein, 2004): 

∫ −≡∆
b

a

dztzzztt )]|()()[,()( ππλλ  

= dztzzzttzzzt

b

a

z

b

a )]|()([),(|)]|()()[,( Π−Π′−Π−Π ∫λλ  

= 0,0)]|()([),( >>Π−Π′−∫ tdztzzzt

b

a

zλ ,                           (13)                

where  

)|()|();()( tTzZPtzzZPz >≤=Π≤=Π  

 

and the term b

atzzzt |)]|()()[,( Π−Πλ   vanishes for ∞=b  as well. Inequality (13) and, 

therefore, the first part of the theorem follows from: 0),( >′ ztzλ  and the following 

inequality:  

),(,0,0)|()( bazttzz ∈>∀<Π−Π .                                         (14) 

Inequality (14) can be interpreted as: “the weakest populations are dying out first”. 

This interpretation is widely used in specific cases, especially in the demographic litera-

ture (e.g., Vaupel, 2003).  For obtaining (14), it is sufficient to prove that  

∫

∫
=Π

b

a

z

a

duuutF

duuutF

tz

)(),(

)(),(

)|(

π

π
 

is increasing in t , which will be also used for proving part b).  

It is easy to see that 0)|( >Π′ tzt , if  



 7

∫

∫ ′

z

a

z

a

t

duuutF

duuutF

)(),(

)(),(

π

π
 > 

∫

∫ ′

b

a

b

a

t

duuutF

duuutF

)(),(

)(),(

π

π
                             (15) 

As ),(),(),( ztFztztFt λ−=′ , it is sufficient to show that 

∫

∫
≡

z

a

z

a

duuutF

duuutFut

ztB

)(),(

)(),(),(

),(

π

πλ
 

is increasing in z . Inequality 0),( >′ ztBz  is equivalent to the following one: 

∫ ∫>
z

a

z

duuutFutduuutFzt
0

)(),(),()(),(),( πλπλ , 

which is true, as ),( ztλ  is increasing in z .  

      Thus, due to additional assumption in b), the integrand in the end part of (13) is in-

creasing and therefore )(tλ∆  as well, which immediately leads to the strong bending 

down property (6). ♦ 

     

Remark 1. Additional assumption b) means for the specific multiplicative model (8) that 

the baseline )(tλ  is an increasing function.  

 

     We will show now that a natural ordering for our mixing model is the likelihood ratio 

one. A somewhat similar reasoning can be found in Block et al (1993) and Shaked and 

Spizzichino (2001)). Let 1Z  and 2Z  be continuous nonnegative random variables with 

the same support and densities )(1 zπ  and )(2 zπ , respectively. Recall (Ross, 1996; 

Shaked and Shanthikumar, 1993)  that 2Z  is smaller than 1Z   in the sense of likelihood 

ratio: 

21 ZZ LR≥ ,                                                       (16) 

if )(/)( 12 zz ππ  is a decreasing function.  
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Definition 2. Let ),0[),( ∞∈ttZ  be a family of random variables indexed by parameter t  

(time) with probability density functions ),( tzp . We say that )(tZ  is decreasing in t  in 

the sense of the likelihood ratio, if 

),(

),(
),,(

1

2
21

tzp

tzp
ttzL =  

is decreasing in z  for all 12 tt > . 

 

The following simple result states that our family of conditional mixing random variables 

],0[,| ∞∈ttZ  is decreasing in this sense: 

 

Theorem 2. Let the family of failure rates ),( ztλ  in the mixing model  (2) be ordered as 

in relation (12). 

Then the family of random variables tTZtZ >≡ ||  is decreasing in ),0[ ∞∈t  in the 

sense of the likelihood ratio. 

 

Proof. In accordance with definition (3): 

==
)|(

)|(
),,(

1

2
21

tz

tz
ttzL

π
π

∫

∫
b

a

b

a

dzzztFztF

dzzztFztF

)(),(),(

)(),(),(

21

12

π

π
.                    (17) 

Therefore, monotonicity in z of ),,( 21 ttzL  is defined by  












−= ∫

2

1

),(exp
),(

),(

1

2

t

t

duzu
ztF

ztF
λ , 

which, due to ordering (12), is decreasing in z  for all 12 tt > . 

 

5. DIFFERENT MIXING DISTRIBUTIONS  

 

5.1. Likelihood ordering of mixing distributions 
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For the mixing model (2)-(3) consider two different mixing random variables 1Z  and 2Z  

with probability density functions )(1 zπ , )(2 zπ  and cumulative distribution functions 

)(),( 21 zz ΠΠ , respectively. Assuming some type of stochastic ordering for 1Z  and 2Z , 

we intend to arrive at a simple ordering of the corresponding mixture failure rates. It can 

be seen using simple examples that the ‘usual’ stochastic ordering (stochastic dominance) 

is too weak for this purpose. It was shown in the previous section that the likelihood ratio 

ordering is a natural one for the family of random variables tZ |  in our mixing model. 

Therefore, it seems reasonable to order 1Z  and 2Z  in this sense too.  

 

Lemma. Let 

∫
=

b

a

dzzzg

zzg
z

)()(

)()(
)(

1

1
2

π

π
π  ,                                                  (18) 

where )(zg  is a decreasing function. 

Then 1Z  is stochastically larger than 2Z : 

21 ZZ st≥      ]),[),()(( 21 bazzz ∈Π≤Π                             (19) 

 

Proof.  

∫∫

∫

∫

∫

+

==Π
b

z

z

a

z

a

b

a

z

a

duuugduuug

duuug

duuug

duuug

z

)()()()(

)()(

)()(

)()(

)(

11

1

1

1

2

ππ

π

π

π
 

∫
∫∫

∫
Π=≥

+

=
z

a

z

a

z

a

z

a zduu

duubzgduuzag

duuzag

)()(

)(),(*)(),(*

)(),(*

11

11

1

π
ππ

π
,           (20) 

where ),(* zag  and  ),(* bzg  are the mean values of the function )(zg  in the 

corresponding integrals. As this function decreases: ),(*),(* zagbzg ≤ . 
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Remark 2.  Equation (18) for decreasing )(zg  means that 21 ZZ LR≥ , and it is well 

known (see, e.g., Ross, 1996) that the likelihood ratio ordering implies the corresponding 

stochastic ordering. But we need the foregoing reasoning for deriving the following re-

sult: 

 

Theorem 3. Let relation (18), where )(zg  is a decreasing function hold, which means 

that 1Z  is larger than 2Z  in the sense of the likelihood ratio ordering.  

Assume that ordering (12) holds. 

Then for ),0[ ∞∈∀t : 

)(

)(),(

)(),(

)(),(

)(),(

)( 2

2

2

1

1

1 t

dzzztF

dzzztf

dzzztF

dzzztf

t mb

a

b

a

b

a

b

a

m λ
π

π

π

π
λ ≡≥≡

∫

∫

∫

∫
                          (21) 

 

Proof. Inequality (21) means that the mixture failure rate, which is obtained for the sto-

chastically larger (in the likelihood ratio ordering sense) mixing distribution, is larger for 

),0[ ∞∈∀t  that the one obtained for the stochastically smaller mixing distribution.  

We shall prove, firstly, that  

)|(

)(),(

)(),(

)(),(

)(),(

)|( 2

2

2

1

1

1 tz

duuutF

duuutF

duuutF

duuutF

tz
b

a

z

a

b

a

z

a Π≡≤=Π

∫

∫

∫

∫

π

π

π

π
.                  (22) 

Indeed: 

∫
∫

∫
∫

∫

∫
=

b

a

b

a

z

a

b

a

b

a

z

a

du

duuug

uug
utF

du

duuug

uug
utF

duuutF

duuutF

)()(

)()(
),(

)()(

)()(
),(

)(),(

)(),(

1

1

1

1

2

2

π

π

π

π

π

π
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∫

∫

∫

∫
≥=

b

a

Z

a

b

a

Z

a

duuutF

duuutF

duuutFug

duuutFug

)(),(

)(),(

)(),()(

)(),()(

1

1

1

1

π

π

π

π
, 

where the last inequality follows using exactly the same argument, as in inequality (20) 

of the Lemma. Similar to (13) and taking into account relation (22): 

∫ −=−
b

a

mm dztztzzttt )]|()|()[,()()( 2121 ππλλλ  

= dztztzzttztzzt

b

a

z

b

a )]|()|([),(|)]|()|()[,( 2121 Π−Π′−Π−Π ∫λλ  

= ,0,0)]|()|([),( 21 >≥Π−Π′−∫ tdztztzzt

b

a

zλ                     (23) 

where, similar to the proof of Theorem 1, the limit  

0|)]|()|()[,(lim 21 =Π−Π∞→
b

ab tztzztλ . 

was taken into account ♦ 

 

    A starting point of Theorem 3 was equation (18) with a crucial assumption of a de-

creasing function )(zg . It should be noted, however, that this assumption can be rather 

formally justified directly by considering the difference )()()( 21 ttt mm λλλ −=∆  and using 

definitions (2)-(3). The corresponding numerator (the denominator is positive) is trans-

formed into a double integral:  

 

∫ ∫∫ ∫ −
b

a

b

a

b

a

b

a

dzzztFdzzztFztdzzztFdzzztFzt )(),()(),(),()(),()(),(),( 1221 ππλππλ        (24) 

dudssustsuutstFutF

b

a

b

a

)]()(),()()(),()[,(),( 2121 ππλππλ −= ∫ ∫  

dudsutstusstutsustFutF

b

su
a

b

a

))],(),()(()()),(),()(()()[,(),( 2121 λλππλλππ −+−= ∫ ∫
>
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dudsussustutstFutF

b

su
a

b

a

∫ ∫
>

−−= ))()()()())(,(),()(,(),( 2121 ππππλλ . 

 

Therefore, the final double integral is positive, if ordering (12) holds and )(/)( 12 zz ππ  is 

decreasing. 

 

5.2.  Ordering variances of mixing distributions 

 

Let )(1 zΠ  and )(2 zΠ  be two mixing distributions with equal means. It follows from 

equation (9) that for the multiplicative model, which will be considered in this section: 

)0()0( 21 mm λλ = . Intuitive considerations and reasoning based on the principle: “the 

weakest populations are dying out first” suggest that unlike (21), the mixture failure rates 

will be ordered as )()( 21 tt mm λλ <  for all 0>t  if, e.g., variance of 1Z  is larger than vari-

ance of 2Z . We will show that this is true for a specific case and that for a general 

multiplicative model the ordering holds only for sufficiently small time t . Therefore, a 

stronger condition on ordering ‘variabilities’ of 1Z  and 2Z  should be formulated. 

     For a meaningful specific example, consider the frailty model (8), where Z  has a 

gamma distribution: 

.0,0};exp{
)(

)( 1 >>−
Γ

= − βαβ
α
β

π α
α

zzz  

Substituting this density into relation (2): 

,

)()}(exp{

)()}(exp{)(

)(

0

0

∫

∫
∞

∞

Λ−

Λ−

=

dzztz

dzzztzt

tm

π

πλ
λ  

where ∫=Λ
t

duut
0

)()( λ  is a cumulative baseline failure rate. Computation of integrals re-

sults in: 

)(

)(
)(

t

t
tm Λ+
=
β
αλ

λ                                                           (25) 
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Equations (25) can be written now  in terms of ][ZE  and )(ZVar : 

)()(][

][
)()(

2

tZVarZE

ZE
ttm Λ+

= λλ ,                                               (26) 

which for the specific case 1][ =ZE  gives the widely used in demography result of Vau-

pel et al (1979):  

)()(1

)(
)(

tZVar

t
tm Λ+
=

λ
λ . 

      Using equation (26), we can compare mixture failure rates of two populations with 

different 1Z  an 2Z  on condition that ][][ 12 ZEZE = : 

)()()()( 2121 ttZVarZVar mm λλ ≤⇒≥ .                                 (27) 

     Intuitively it can be expected that this result could be valid for arbitrary mixing distri-

butions in the multiplicative model. However, the mixture failure rate dynamics can be 

much more complicated even for this specific case and this topic needs further attention 

in the future research. A somewhat similar situation was observed in Finkelstein and 

Esaulova  (2001): although the conditional variance )|( tZVar  was decreasing in t  for 

the multiplicative gamma-frailty model, a counter example was constructed for the case 

of the uniform mixing distribution in ].1,0[  

    The following theorem shows that ordering of variances is a sufficient and necessary 

condition for ordering of mixture failure rates, but only for the initial time interval. 

 

Theorem 4.  Let 1Z  and 2Z  ( ][][ 12 ZEZE = ) be two mixing distributions in the 

multiplicative model (8)- (9). 

Then ordering of variances 

)()( 21 ZVarZVar >                                                    (28) 

 is a sufficient and necessary condition for ordering of mixture failure rates in the neig-

hborhood of 0=t : 

),,0();()( 21 ελλ ∈< ttt mm                                            (29) 

where 0>ε  is sufficiently small. 

 

Proof. Sufficient condition: 
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From results of  Section 3: 

)|[]|[)(()()()( 2121 tZEtZEtttt mm −=−=∆ λλλλ ,                     (30) 

 0,2,1,0)|()(]|[ ≥=<−=′ titZVarttZE iit λ ,                        (31) 

where  

)()|(],[]0|[ iiii ZVartZVarZEZE ≡≡ .                              (32) 

As the means of mixing variables are equal, relation (30) for 0=t  reads: 0)0( =∆λ  and 

therefore the time interval in (29) is opened. Thus, if ordering (28) holds, ordering (29) 

follows immediately after considering the derivative of 

]|[

]|[

)(

)(

2

1

2

1

tZE

tZE

t

t

m

m =
λ
λ

 

at 0=t  and taking into account relations (31) and notation (32). 

 

Necessary condition: 

Similar to (24), the numerator of the difference )(tλ∆  is  

∫ ∫ −+Λ−
b

a

b

a

dudssususutt )()())}]()(([exp{)( 21 ππλ , 

where, as previously, ∫=Λ
t

duut
0

)()( λ . After changing variables to 

2/)(,2/)( suysux −=+= ,  the double integral is transformed to the iterated integral 

and denoted by )(tG : 

∫ ∫
−

−+Λ−≡
b

a

x

x

dydxyxyxyxttG )()(})(2exp{))( 21 ππ .                        (33) 

Denote the internal integral in (33) by )(xg . Then: 

∫ Λ−=
b

a

dxxgxttG )(}])(2[exp{)( . 

On the other hand, coming back to initial variables of integration and taking into account 

that 0)0( =Λ : 

∫ ∫ ∫ −==
b

a

b

a

b

a

dudssusudxxgG )()()()()0( 21 ππ  
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∫ ∫ =−=−=
b

a

b

a

ZEZEduuuduuu 0][][)()( 2121 ππ . 

Assume, firstly, that 0)0( ≠λ . As 0)0( =G , the function ))(tG  is negative in the 

neighborhood of 0 , if 0)0 <′G :  

∫ Λ−−=′
b

a

dxxxgxtttG )(}])(2[exp{)(2)( λ , 

0)(0)0( >⇒<′ ∫
b

a

dxxxgG . 

If ),0(,0)( ελ ∈<∆ tt  (condition (29), then ),0(,0)( ε∈< ttG , and taking into account 

that 

dudssssu
su

dxxxg

b

a

b

a

b

a

)()()(
2

)( 21 ππ−
+

= ∫ ∫∫  

))()((
2

1
)()()(

2

1
2121

22 ZVarZVardudssusu

b

a

b

a

−=−= ∫ ∫ ππ , 

we arrive at ordering (28).  

     Similar considerations are valid for 0)0( =λ . The function ))(tG  is negative in this 

case in the neighborhood of 0 , if 0)0 <′′G .  As 

∫′−=′′
b

a

dxxxgG )()0(2)0( λ  

and 0)0( >′λ  (as 0,0)( >> ttλ  and 0)0( =λ ), the foregoing reasoning which was used 

for the case 0)0( ≠λ , also takes place.♦ 

 

A trivial but important consequence of this theorem is: 

 

Corollary. Let mixtures failure rate ordering (29) hold for ),0( ∞∈t . Then inequality  

(28) holds. 

 

Remark 3. It follows from Theorem 4, that ordering of variances of mixing distributions 

is a too weak condition for obtaining ordering of mixture failure rates for all 0>t . As it 
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was mentioned, an effect of ‘variability’ of a mixing distribution on the shape of the mix-

ture failure rate can be quite complex. We have explored several possibilities of stronger 

assumptions and came to the conjecture (to be proved yet) for the case of an infinite sup-

port ( ∞== ba ,0 ) that the following sufficient condition (along with ordering (12) and 

condition b) of Theorem 1 and ][][ 12 ZEZE = ) will result in ordering (29) for all 0>t : 

 

Let mixing distributions )(1 zΠ  and )(2 xΠ  have only one crossing point 

c : czzz <Π≥Π ),()( 21  and czzz ≥Π≤Π ),()( 21 . 

 

It can be shown that this condition implies the convex order: 21 ZZ cx≥  (Kaas et al,1994), 

which ‘gives more variability’ to 1Z  than to 2Z .  

     It follows from equations similar to (23) that: 

0),()(0)]|()|([ 2112

0

≥≤⇒≥Π−Π∫
∞

tttdztztz mm λλ . 

The left hand side of this relation can be hopefully proved using the one-crossing prop-

erty of mixing distributions. 

 

6. CONCLUDING REMARKS 

 

The mixture failure rate is bent down due to “the weakest populations are dying out first” 

effect, mathematically described in Section 4. This should be taken into account when 

analyzing the failure data for heterogeneous populations.  

     A family of conditional mixing random variables )|( tZ  is decreasing in ),0[ ∞∈t  in 

the sense of the likelihood ratio. This is a natural ordering for mixing random variables in 

the problem under consideration. Therefore, when different mixing random variables are 

ordered in the sense of the likelihood ratio, the mixture failure rates are ordered accord-

ingly. 

     Mixing distributions with equal expectations and different variances can lead to the 

corresponding ordering for mixture failure rates in ),[ ∞t  in some specific cases. For the 

general mixing distribution in the multiplicative model, however, this ordering is guaran-
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teed only for sufficiently small t . On the other hand, the convex order (in fact, a stronger 

condition) in mixing distributions can still hopefully result in the desired ordering in mix-

ture failure rates, and this is our conjecture.   
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