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Optimal semelparity

James W. Vaupel, Jessica Metcalf, Trifon I. Missov

Abstract

Semelparous organisms have a simple life-cycle characterized by immediate

death after reproduction. We introduce a new analytical framework for

semelparous life histories based on separating their reproductive and non-

reproductive period. Under this assumption we prove that the optimal size

at reproduction does not depend on the optimal size of the seeds produced.
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Introduction, Assumptions and Notation

The life cycle of semelparous species can be viewed as a two-phase process,

driven at each step by different mechanisms. Stage 1 is a non-reproductive

period, in which a certain part of the offspring survives to maturity. Stage 2,

on the other hand, represents the adult phase, in which individuals maximize

their net reproductive rate, comparing at each instant the benefits of delaying

reproduction further with the risk of death associated with this delay. We

will assume size 1 is the milestone between the two phases. Without loss of

generality, we can further assume that size 1 corresponds to (adult) age 0.

Indeed, if we are interested in the optimal timing of reproduction, then we

do not take into account Stage 1, i.e. we do not need to know how long it

took the organism to reach size 1. All the assumptions above imply that we

treat mortality in Stage 1 as independent of mortality in Stage 2.

In our model for semelparous species we will designate by a the age of

the organism, age 0 being the age when size 1 is reached. We will denote by

ξ(a), m(a), and µ(a) the organism’s size, its reproduction capacity, and the

force of mortality, respectively, at age a. By assumption, we have ξ(0) = 1.

Let us further denote the age at which reproduction actually takes place by

α. The number of offspring produced will be designated by n(α, ι), where
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we assume each offspring has one and the same size ι. Note that 0 < ι < 1.

Finally, we will assume that the probability of surviving to size 1 for each

organism born with size ι is p(ι), 0 ≤ p(ι) < 1.

In this paper we would like to address three questions regarding semel-

parous organisms. First of all, what is the optimal age at reproduction and

what is the organism’s size it corresponds to? Secondly, what is the optimal

number of descendants and what is their optimal size? The most important

question we would like to address is whether the optimal size of an organism

at reproduction ξ̂0 affects the optimal size of its offspring ι̂1 and under what

conditions?

ι0 ξ0

parent

ι1 ξ1

offspring
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Stage Growth Mortality Reproduction

Stage 1 Yes (from ι to 1) Yes No

Stage 2 Yes (from 1 onwards) Yes Yes

Table 1: Life-Cycle Phases for Semelparous Species

Model for Stage 2

Stage 2 is the ”stage” at which the trade-off between growth and repro-

duction, controlled by the risk of dying, takes place. It is instrumental for

understanding the optimal life-cycle strategies of semelparous species and,

therefore, deserves special attention.

The trade-off between offspring size and offspring number has long been

the focus of interest by evolutionary biologists. The model we would like

to propose adds an explicit demographic framework to formulations first

introduced in Smith and Fretwell (1974), but remains simpler than Geritz

et al. (1999) where larger offspring have both higher survival and higher

competitive ability.

Stage 2, which starts once seed size no longer affects the risk of dying, is

a stage of adult growth, during which reproduction is possible. We allow α

to denote age in the second stage, so that α = 0 is the start of stage 2 and

4



end of stage 1. Let ι denote seed size. Let p(ι) be the probability that a seed

germinates and grows until initial size no longer influences mortality, i.e. to

α = 0 and size taken as ξ = 1. Generally p(ι) increases with seed size ι. Let

reproductive output i.e., number of seeds produced, be denoted by n(α, ι)

which is an increasing function of plant size (and age), and a decreasing

function of seed size. The net reproductive rate is then

R = p(ι) l(α) n(α, ι). (1)

If the population is in equilibrium, maximizing r is generally equiva-

lent to maximizing R (Taylor et al., 1974). Further, Mylius and Diekmann

(1995) showed that maximizing R provides the evolutionary stable strategy if

population regulation operates on offspring establishment. Such density de-

pendence characterizes many semelparous species (Metcalf et al., 2003). The

optimal life history is therefore defined by the derivative or relative deriva-

tive of R being equal to zero. Hence, the optimal age at reproduction can be

specified by

dR
dα

R
= 0 = ńα(α̂, ι) − µ(α̂) (2)

where ńα(α, ι) = (dn(α, ι)/dα) / n(α, ι) defines the rate of change in the

number of offspring produced at age α. Equation (2) implies ńα(α̂, ι) = µ(α̂),

which is similar to the result obtained in (17). Note that optimal time at
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reproduction depends only on α in stage 2 and does not depend on time

taken by a seed to grow to ξ = 1 (Kiflawi, 2006). The optimal offspring size

is specified by

dR
dι

R
= 0 = ńι(α, ι̂) + ṕ(ι̂) (3)

where ṕ(ι) = (dp(ι)/dι) / p(ι) and ńι(α, ι) = (dn(α, ι)/dι) / n(α, ι). This

implies ṕ(ι̂) = −ńι(α, ι̂). At equilibrium, optimal offspring size is the size

at which the benefits accrued through investing less in each offspring and

thereby producing more offspring are offset by the risk of mortality for an

offspring of that size (Fig. 3).

Specific functional forms can be used to deepen understanding. The num-

ber of seeds n of size ι produced at age α can be determined by

n(α, ι) = φξη(α)
(
1− ιβ

)
, β > 1 (4)

where β is an elasticity parameter that captures economies of scale in pro-

ducing more offspring. The probability of reaching size ξ = 1 can be specified

by a concave function

p(ι) =

(
ι− ι0
1− ι0

)γ

, 0 < γ < 1, (5)

where ι0 is the minimal possible seed size and γ accounts for the speed of

reaching reference size ξ = 1. As a result, the optimal offspring size ι̂ will be
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the solution of (3) i.e.

βι̂β−1

1− ι̂β
=

γ

ι̂− ι0
(6)

The latter implies that the optimal seed size ι̂ does not depend on the optimal

plant size at reproduction ξ̂.

This result holds in general if the number of seeds of size ι produced at

age α has the following functional form

n(α, ι) = C F (ι)G(α), C ≡ const (7)

That is, n(α, ι) is a product of two functions depending separately on seed

size ι and age at reproduction α. In this case

ńι = F́ι (8)

does not depend on ξ̂ and neither does ṕ(ι). As a result, (8) is a necessary

condition for the independence of the parent’s optimal size at reproduction

from the optimal seed size of its offspring.

Optimal age and size at reproduction

Evolutionary biologists have taken advantage of the simplicity of the semel-

parous life history. For example, demographic models have been developed
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to explore how stochasticity affects reproductive delays (Tuljapurkar, 1990),

how variation in growth shapes plasticity in timing of reproduction (Burd

et al., 2006), and how the evolution of reproductive delays interacts with

pre-reproductive delays such as seed-banks (Rees et al., 2006). However, to

date, no single analytical framework providing dynamic insights into optimal

life-histories of semelparous species has been developed. There is a need for

such theory to separate the effects of complexities such as changing preda-

tion regimes and resource limitation (Abrams and Rowe, 1996) and stochastic

environments (Tuljapurkar, 1990) from patterns driven by the general princi-

ples underlying demographic trajectories. Here we fill this gap by providing

an analytical framework that unifies treatment of the two main axes of life-

history variation in such species: the optimal timing of reproduction and the

optimal offspring size. We will concentrate on the simplest case of constant

environments.

If reproduction occurs only at age α and if the chance l(α) of surviving to

α is constant over time and across environments, then the net reproduction

rate R for such semelparous species can be expressed as

R = erα = l(α) m(α), (9)

where r is the rate of population growth, and m(α) measures reproduction
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at age α; m(a) at any age a other than α is zero. This implies that

e−rα l(α) m(α) = 1 (10)

(Roff, 2002, p189), an expression that resembles the more complicated Lotka

equation,
∫ ∞

0

e−ra l(a) m(a) da = 1. (11)

Proof that r represents the growth rate in the Lotka equation is not straight-

forward and depends on the assumption of stable populations (Arthur and

Vaupel, 1984), but (10) for semelparous species is true by definition. The

simplicity of (10) facilitates analytical insights into optimal age at reproduc-

tion and optimal offspring size.

Solving (10) for r yields

r =
ln [l(α) m(α)]

α
(12)

(Roff, 2002, p189). The value of α that maximizes r is the optimal age at

reproduction, α̂. It satisfies the condition

dr

dα

∣∣∣∣
α=α̂

= 0, (13)

Inserting the expression for r from (12) into (13), solving for α the equation

for the derivative, and rearranging terms yields the requirement that the
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optimal age at reproduction, denoted by α̂, must satisfy:

ḿ(α̂) − µ(α̂) =
ln [l(α̂) m(α̂)]

α̂
, (14)

where ḿ(α) = [dm(α) / dα] /m(α) and µ(α) = [−dl(α) / dα] / l(α). Note

that ḿ(α) is the relative rate of improvement in reproductive capacity at age

α, and µ(α) is the hazard of death (force of mortality) at age α. Substituting

(12) into (14) shows that

ḿ(α̂) − µ(α̂) = r(α̂). (15)

Fig. 1 illustrates how (15) determines the optimal age at reproduction α̂.

In equilibrium, r = 0 and the optimal age at reproduction is defined by

a balance between the rate of growth in reproductive capacity and the force

of mortality,

ḿ(α̂) = µ(α̂). (16)

From (16), reproduction should be delayed as long as the reproductive bene-

fits of further growth outweigh the risk of mortality occasioned by delaying.

The optimal age at reproduction is the age at which the benefits of further

growth are exactly offset by the risk of dying.
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The optimal size at reproduction is ξ̂ = ξ(α̂) is the size of the semelparous

organism at the optimal age at reproduction. As a result, this optimal size

can be determined by

ḿξ(ξ̂)
dξ̂

da
= µ(ξ̂), (17)

which results directly from (16) by viewing it as a necessary condition for the

optimal size rather than the optimal age. That is, at the optimal size, the

increase in reproduction with an increase in size multiplied by the change in

size in an additional unit of time (or age) must be counterbalanced by the

risk of death during that unit of time.

If environmental conditions worsen such that the rate of growth in repro-

ductive capacity at all ages decreases, when population equilibrium is reached

the new optimal α̂1 is younger than α̂ (Fig. 2). If mortality increases, the

optimal age is also younger, α̂2. If both occur simultaneously, the optimal

age is even younger α̂3.

The optimal age at reproduction will shift when population growth rates

or growing condition change. If the effects of neutral genetic drift, varying

environments, or feedback loops through density dependence are negligible,

we can predict changes in genotype prevalence associated with our optimality
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condition (16). If either population growth (Fig. 1) or environmental dete-

rioration (Fig. 2) are maintained over several generations, genotypes in the

population that reproduce younger will spread. If the deterioration occurs

within a generation, and individuals can detect environmental cues indicat-

ing population growth (Fig. 1) or increased mortality or decreased rate of

growth in reproductive capacity (Fig. 2), selection will favor individuals that

can plastically alter α towards younger ages. The model species Arabidopsis

thaliana is known to show plasticity in flowering time and is a good candidate

for testing this prediction. Both within species and cross-species comparisons

will shed further light on these patterns; e.g. semelparous plant species with

slower rates of growth in size have been shown to flower at smaller sizes

(Metcalf et al., 2006), an expected outcome from Fig. 2 if mortality patterns

are similar.

Both (15) and (17) are true by definition, whatever functional forms are

used for m(α) and l(α). Specific functional forms can be used to make more

specific predictions. Mortality can be a declining function of size in many

species and is known to be so in semelparous plants (Metcalf et al., 2003).
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An appropriate model could therefore be

µ(a) =
b

ξ(a)
+ c, (18)

where b and c are constants, and ξ(a) denotes size at age a. The parameter

b captures the causes of death that decline with size, b = 0 captures no size

dependence, and c captures ubiquitous causes of death that are independent

of size. Reproductive output is generally an increasing function of size and

can be modelled as

m(a) = φξ(a)η, (19)

where φ is a scaling parameter and η determines whether there are economies

(η > 1) or dis-economies (η < 1) of scale in transforming size into reproduc-

tive output. Growth can be described using

dξ

da
= kξ0.75 − κξ, (20)

where the parameter k captures how the growth rate increases with size, and

κ modulates the increase so that eventually size reaches an asymptote. For

illustration, we use the exponent 0.75, following predictions from the fractal

model of scaling (West et al., 2001). However, using a different exponent

would not alter the main conclusions of the article. This equation provides a
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fairly general description of asymptotic growth. If size at age 0 is 1, we have

ξ(a) =

(
k

κ
−

(
k

κ
− 1

)
e
−κ
4

a

)4

, (21)

where the asymptotic size is defined by ( k
κ
)4. Fig. 1 and Fig. 2 were graphed

using these functional forms.

Effect of Model Parameters on Optimal Age

at Reproduction

The optimal age of reproduction varies with respect to five of the six model

parameters: b and c, determining general and size-dependent levels of mortal-

ity, k and κ, accounting for the speed and asymptotic form of plant growth,

as well as fertility’s scaling parameter η. Moreover, the substitution of (18),

(19), and (20) in (17) results in an expression for the optimal ξ̂ that is ex-

plicitly independent of the scaling parameter φ.

η

ξ

(
kξ0.75 − κξ

)
=

b

ξ
+ c , (22)

which reduces to

(ηκ + c)ξ − ηkξ0.75 + b = 0 (23)
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The latter is a quartic equation for ξ0.25 and its analytic solution is given by

Ferrari’s formula. Denoting

A =
ηk

ηκ + c
B =

b

ηκ + c
C =

3

√
1

16
A2B +

√
1

256
A4B2 − 1

27
B3 ,

we can express the positive root of the quartic equation (22) as it follows

ξ = −A

4
+

1

2

√
A2

4
+ 2C +

2B

3C
+

1

2

√√√√7A2

4
+ 2C +

2B

3C
+

A3

4
√

A2

4
+ 2C + 2B

3C

(24)

As a result, ξ increases with A and decreases with B. Therefore, the optimal

size of reproduction ξ̂ will increase with positive changes in the reproduction

scale parameter η or the determinant of asymptotic size k
κ
, as well as negative

changes in mortality parameters b or c.

These mathematical results aid biological insight. Because optimal size

does not depend on the parameter φ, species suffering proportional reduc-

tion in offspring production will, certibus paribus, not vary in flowering size

(Mylius and Diekmann, 1995). An example of this might be density depen-

dence of seed establishment (Metcalf et al., 2003). Furthermore, if species’

relative ranking with respect to asymptotic size k/κ, scaling of reproductive
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output with size η, and mortality parameters, b and c, are known, relative

ranking in terms of flowering size could be predicted.

Conclusion: The simplicity of the semelparous life cycle permits for-

mulation of general mathematical models that predict key features of life his-

tories. The analytical framework presented here unifies predictions of timing

of reproduction and offspring size. This framework provides insights into

how basic demographic features shape the diversity of age trajectories across

species and plasticity within species in response to environmental cues. This

permits separation of these patterns from complications such as variation

in growth, both across individuals (Metcalf et al., 2003) and through time

(Rees et al., 2000). Variants of the models may also be relevant for other

life-history switches such as metamorphosis (Wilbur and Collins, 1973).
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α̂1 α̂2 α̂3 Age

Population rate of increase, r

0

Figure 1: The optimal age at reproduction α̂ is defined when r(α) (three solid

curves) is maximal and equal to ḿ(a)− µ(a) the difference between the rate

of growth of reproductive capacity and the force of mortality (dashed line).

Note that α̂ increases as r(α̂) decreases. Where the solid curve and dashed

curve intersect at the horizontal dotted line, the population is at equilibrium,

r(α̂) = 0 and ḿ(α) = µ(α). We produced the graph using (18)-(20), with

k = 3, κ = 1, η = 1, b = 0.6, and c = 0.1. We used φ = 0.100, φ = 0.042,

and φ = 0.020 respectively, for the three solid curves.
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µ

m

α̂ Ageα̂2α̂3 α̂1

Figure 2: If r = 0, then at the optimal age at reproduction, the force of

mortality µ(a) (blue line) is equal to the rate of growth of reproductive

capacity ḿ(a), (black line). The equilibrial optimum decreases if conditions

worsen as a result of increased mortality (α̂1) or a decreased rate of growth

in reproductive potential (α̂2) or both (α̂3). We produced the graph by using

(18)-(20), with k = 5, κ = 0.9, η = 3, b = 4.2, c = 0.3 and φ = 1 for the

best environment. We set κ = 1.4 to slow growth and c = 0.4 to increase

mortality.
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1 Seed size

0

n(α,ι)

0

p( ι)
a)

1 ι̂ Seed size

β

b)

−n ι
 /

p ι
/

Figure 3: a) n(α, ι) is the number of offspring of size ι produced by individuals

reproducing at age α (solid line) and p(ι) is the probability of surviving until

recruitment (dashed line). b) If the population growth rate r = 0, then at

the optimal offspring size ι̂, the force of offspring mortality ṕ(ι) (dashed line)

is equal to the rate of decrease with seed size of offspring number −ńι(α, ι)

(full line). To produce the graph it was assumed that n(α, ι) = m(α)/(ιβ),

m(α) as in (19) and β is an elasticity parameter capturing economies or dis-

economies of scale in producing more offspring. In this case ńι(α, ι) = −β/ι

and at equilibrium, the optimal offspring size is defined by ṕ(ι̂) = β/ι̂.
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