Max-Planck-Institut fiir demografische Forschung
Max Planck Institute for Demographic Research

Konrad-Zuse-Strasse 1 - D-18057 Rostock - GERMANY

B \ Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202;
‘ http://www.demogr.mpg.de

MPIDR WORKING PAPER WP 2009-031
NOVEMBER 2009

Understanding the Shape of the
Mixture Failure Rate (with Engineering
and Demographic Applications)

Maxim Finkelstein (FinkelM.SCI@mail.uovs.ac.za)

This working paper has been approved for release by: James W. Vaupel (jwv@demogr.mpg.de),
Head of the Laboratory of Survival and Longevity.

© Copyright is held by the authors.
Working papers of the Max Planck Institute for Demographic Research receive only limited review.

Views or opinions expressed in working papers are attributable to the authors and do not necessarily
reflect those of the Institute.



Understanding the Shape of the Mixture Failure Rate (with
Engineering and Demographic Applications)

Maxim Finkelstein
Department of Mathematical Statistics, University of the Free State, 339 Bloemfon-
tein 9300, South Africa.
e-mail : FinkeIM.SCI@ufs.ac.za
and
Max Planck Institute for Demographic Research, Rostock, Germany

Abstract: Mixtures of distributions are usually effectively used for modeling hetero-
geneity. It is well known that mixtures of DFR distributions are always DFR. On the
other hand, mixtures of IFR distributions can decrease, at least in some intervals of
time. As IFR distributions often model lifetimes governed by ageing processes, the
operation of mixing can dramatically change the pattern of ageing. Therefore, the
study of the shape of the observed (mixture) failure rate in a heterogeneous setting is
important in many applications. We study discrete and continuous mixtures, obtain
conditions for the mixture failure rate to tend to the failure rate of the strongest popu-
lations and describe asymptotic behavior as t — o. Some demographic and engineer-
ing examples are considered. The corresponding inverse problem is discussed.

Keywords: failure (mortality) rate, mixture of distributions, aging distributions, mor-
tality plateau, frailty

1. Introduction

The wording of our title was inspired by the groundbreaking paper by Aalen and
Gjessing (2001). These authors were discussing the shape of the ‘ordinary’ failure rate
by using the stochastic processes-based reasoning. Our paper is devoted to the failure
rate of mixtures and the employed methods are mostly based on the analysis of the
corresponding lifetime distributions. Its genre is close to a review: in a compact way
we are discussing and analyzing some of the relatively recent results in this area. This
is not a ‘complete’ review of the subject as only those our findings and results of other
authors are used that are aligned with our vision of this topic. We also include some
new discussions, examples and specific results. Note that the paper by Steinsaltz and
Wachter (2006) was also devoted to a qualitative analysis of the shape of the failure
(mortality) rate for heterogeneous human populations at advanced ages. We deal with
this application in Section 5.

One can hardly find homogeneous populations in real life, although most of the
studies on failure rate modelling deal with a homogeneous case. Neglecting existing
heterogeneity can lead to errors and misconceptions in stochastic analysis in reliabil-
ity, survival and risk analysis as well as other disciplines.

Mixtures of distributions usually present an effective tool for modeling heterogene-
ity. It is well known that mixtures of decreasing failure rate (DFR) distributions are
always DFR (Barlow and Proschan, 1975). On the other hand, mixtures of increasing
failure rate (IFR) distributions can decrease, at least in some intervals of time. Note
that IFR distributions often used to model lifetimes governed by ageing processes,
which means that the operation of mixing can dramatically change the pattern of
population ageing, e.g., from positive ageing (IFR) to negative ageing (DFR). There-



fore, the study of the shape of the observed (mixture) failure rate in a heterogeneous
setting is important in many applications (reliability, demography, risk analysis, etc).

A useful interpretation of mixing in heterogeneous populations is based on a notion
of a non-negative, unobserved random parameter (frailty) Z . The term “frailty” was
suggested in Vaupel et al. (1979) for the gamma-distributed Z . It is worth noting,
however, that this specific case of the gamma-frailty model was, in fact, first consid-
ered by the British actuary Robert Beard (Beard, 1959, 1971). Our presentation
mostly deals with a study of the shape of the mixture failure rate in popular in applica-
tions frailty models, i.e., additive, proportional and accelerated life models.

A convincing ‘experiment’ showing the deceleration in the observed failure (mor-
tality) rate is performed by nature. It is well known that human mortality follows the
Gompertz lifetime distribution with an exponentially increasing mortality rate. It can
be shown that the multiplicative gamma-frailty model results in this case in the mix-
ture failure rate that asymptotically tends to a constant as t — oo, although ‘individ-
ual’ failure rates increase sharply as exponential functions for all # = 0. This surpris-
ing result can explain the recently observed human mortality plateau (Thatcher.
1999).

Our presentation is partially based (but not limited) on chapters 6 and 7 of Finkel-
stein (2008). As usually, we use the terms, “increasing” and “decreasing” meaning
“non-decreasing” and “non-increasing”, respectively.

2. Failure Rate of Mixture of Two Distributions

Suppose, for instance, that a population of some manufactured items consists of items
with and without manufacturing defects. The time to failure of an item picked up at
random from this population can be obviously described in terms of mixtures. We
start with a mixture of two lifetime distributions F(t) and F,(t) with the pdfs f,(¢)

and f,(r) and failure rates A (r) and A,(r), respectively, whereas the Cdf, pdf and
the failure rate of the mixture itself are denoted by F,(¢), f, (t) and 4 (), accord-

ingly. This specific case will help us to analyze certain general patterns of the shape
of the mixture failure rate for the case of continuous mixing distributions which is the
main topic of this paper.

Let the masses 7 and 1—7 define the discrete mixture distribution. The mixture
survival function and the mixture pdf are

F, (t) = 7F,(t) + (1 - m) F, (1),
fu @) =7fi () + A= 7)f, (1),

respectively. In accordance with the definition of the failure rate, the mixture failure
rate in this case is

_ [0+ A=-m)f(0)
() + (=) F, (1)

4, (D)
As A.(t)=f,(t)/ }71 (1), 1 =1,2, this can be transformed into
A, @)=+ (1 -7m()A, (1), (2.1)

where the time-dependent probabilities are



7[([) _ ﬂ’-Fi (t)

_ = U=DR®
7 (1) + (1= ) F, (1)

S0+ (1-mE®)

(2.2)

It follows from Equation (2.1) that A (¢) is contained between min{4,(¢),4,(¢)} and
max {4 (1),4,(t)}. Specifically, if the failure rates are ordered as A4,(r) < A,(¢), then

A< A, (1) SA(1). (2.3)
Differentiating (2.1) results in (Navarro and Hernandez, 2004):
4,(t) = T A (@) + (1= () Ay (1) = () A = 2 (1) A (1) = 4, (1)) . (2.4)

Assume that A.(r) i =1,2 are DFR. It follows from (2.3) that the mixture failure rate

in this case is also decreasing, which is the well-known fact for general mixtures (Bar-
low and Proschan, 1975).

As F‘l (0)=1,i =1,2, the initial value of the mixture failure rate (#=0) is just the
‘ordinary’ mixture of initial values of the two failure rates, i.e.,

A,,(0) = 74,(0) + (1- ) 4,(0) .

When ¢ >0, the conditional probabilities 7(#) and 1—7(t) are obviously not equal
to 7 and 1—x, respectively. Assume that A,(f) < 4,(¢). Dividing the numerator and
denominator in the first equation in (2.2) by F,(¢) it is easy to see that the proportion
of the survived up to ¢ items in the mixed population, i.e., 7(¢f) is increasing
(1=7(¢) is decreasing): the weakest items are dying out first. Therefore

A, () <A +A=1)A,(1), 1 >0, (2.5)

Thus, A

m

(t) is always smaller than the expectation 74, (1) + (1—7)A, (1) .

Assume now that both 4 (r) and A,(r) are increasing for #>0. Can the mixture

failure rate initially (at, least, for small 7) decrease? Equation (2.4) helps us to give
the positive answer to this question. The corresponding sufficient condition is

70+ (1= m) A1) = (1= 1)(4(0) = 4,(0))* <0, (2.6)

where the derivatives are obtained at 7=0. Inequality (2.6), e.g, means that if
| 4,(0)—A,(0) 1 is sufficiently large, then the mixture failure rate is initially decreasing

no matter how fast the failure rates A (1) and A,(¢) are increasing in the neighbour-
hood of 0, which is a remarkable fact, indeed. Let, for instance,

AW =ct+a, L,(t)=ct+a,,0<¢ <c,,0<q <a,,

then if
n 1 1/2
‘“—a {Mj |

w(l1—-7)



A, (1) is initially decreasing.

What about the asymptotic (for large 7) behaviour of A, (r) ? Due to the weakest
populations are dying first principle the intuitive guess would be: the mixture failure
rate tends (in some suitable sense) to the failure rate of the strongest population as
t — oo, Block and Joe (1997) give some general conditions for this convergence. We

will just consider here an important specific case of proportional failure rates that al-
lows formulating these conditions explicitly:

A@) = At,z) =2A@), L) =At,2,) = 2,A(1), 2, > 7,

where A(f) is some baseline failure rate. We will distinguish between the conver-

gence
A, (0)—At,z)) >0 as t —>oo 2.7

and the asymptotic equivalence
A, (1) =At, 7)1+ 0(l)) as 1 —> oo, (2.8)

which will mostly be used in the following alternative notation: A _(¢) ~ A(t,z,) as
I —>o00,

When A(t) has a finite limit as ¢ — oo, these relationships coincide. The following
theorem (Finkelstein and Esaulova, 2001) specifies the corresponding conditions:

Theorem 2.1. Consider the mixture model (2.1)-(2.2), where
ﬂ’(t’ Z]) = Zl/,l(t)’ ﬂ(la Z2) = Zzﬂ(l)’ Z2 > Z1 > O’

and A(f) > o as t —> oo,
Then
e Relationship (2.8) holds;

e Relationship (2.7) holds if

A0 expl=(z, = 2))[ Aw)du) = 0 as t —eo. (2.9)

The proof is straightforward and is based on considering the quotient A, (¢)/A(t,z,) as
in Block and Joe (1997).

Condition (2.9) is a rather weak one. In essence, it states that the pdf of a distribu-
tion with an ultimately increasing failure rate tends to 0 as ¢t — oo. All distributions
that are typically used in lifetime data analyses meet this requirement.

Similar reasoning can be used for describing the shape of the failure rate for the
mixture of n > 2 distributions (Block and Joe, 1997; Finkelstein, 2008).

We have described some approaches to describing the general pattern of the shape
of the mixture failure rate for two distributions focusing on initial and tail behaviour.
The concrete shapes can be versatile. We will just present here a few examples. More
information on specific shapes of the mixture failure rate of two distributions can be
found in Gurland and Sethuraman (1995), Jiang and Murhphy (1998), Gupta and
Waren, (2001), Block, Li and Savits (2003), Block, Savits and Wondmagegnehu



(2003), Lai and Xie (2006), Navarro and Hernandez (2004), Wondmagegnehu (2004),
Finkelstein (2008), Block et al (2008). Note that Vaupel and Yashin (1985) also ana-
lyze different shapes of the mixture mortality rate for the relevant in demographic
studies values of parameters.

As follows from Gupta and Waren, (2001), the mixture of two gamma
distributions with increasing failure rates (with the same scale parameter) can
result either in the increasing mixture failure rate or in the modified bathtub
(MBT) mixture failure rate (it first increases and then behaves like a bathtub
(BT) failure rate). This shape agrees with our general reasoning of this section,
as it can be easily verified that condition (2.6) does not hold in this case and
therefore the initial decreasing is not possible.

Similar shapes occur for the mixtures of two Weibull distributions with increas-
ing failure rates. Note that that in this case, MBT shape results when p in

Equation (2.1) is less than some &, 0< ¢ <1 and the mixture failure rate in-
creases for p > ¢ (Jiang and Murhphy, 1998).

Navarro and Hernandez (2004) state that the mixture failure rate of two trun-
cated normal distributions (we are dealing with lifetime random variables), de-
pending on parameters involved, can also be increasing, BT-shaped or MBT-
shaped. The BT shape obtained via the generalized mixtures (when p is a real

number and not necessarily p e [0,1]) where studied in Navarro and Hernandez
(2008).

Block, Savits and Wondmagegnehu (2003) give explicit conditions which de-
scribe the possible shapes of the mixture failure rate for two increasing linear
failure rates. Again the possible shapes in this case are IFR, BT and MBT (for
the non-crossing linear failure rates).

Block et al (2008) present an interesting generalization when one of the distri-
butions is itself a continuous mixture of exponentials (and therefore, decreas-
ing) and the other is a gamma distribution. It is shown that for the specific val-
ues of parameters involved the mixture failure rate has a BT shape. In essence,
these authors are ‘constructing’ the BT shape using the specifically decreasing
in (0,00) to ¢ >4, >0 failure rate of the first distribution and the increasing to

A, failure rate of the second distribution. Note that, as follows from (2.3),
A, (t) is contained between these two failure rates. Block et al (2008) also

prove that mixtures of DFR gamma distributions with an IFR gamma distribu-
tion are bathtub and mixtures of modified Weibull distributions (the failure rate
is decreasing not to 0, as for ‘ordinary’ Weibull distribution, but to ¢ ) with an

IFR gamma are also bathtub.

It is worth noting that the analysis of the shape of the failure rate function (and the
mixture failure rate as well) is often based on the Glaser’s approach (Glaser, 1980),
which states that the shape of the failure rate is defined by the shape of the following
function

piV)

n(t) = 0



which is usually easier to analyze than the shape of the corresponding failure rate
A)= f()/ F (¢). For instance, when n(t) is increasing (decreasing) the failure rate

is also increasing (decreasing). However, our results mostly rely on some general
properties of distributions and are more suitable, e.g., for asymptotic analysis.

3. Continuous Mixtures

Let Z be a mixing random variable (frailty) with support in [0,c0) and the pdf 7(z).

Similar to the previous section, the mixture survival function and the mixture pdf are
defined as the following expectations:

F,(0)=[F (t,7(2)dz,
! 3.1)
f0=[f t.27(2)dz,

respectively, where the notation for conditional functions F(¢1Z =z)= F(t,z) and
f@lZ=z)= f(t,z) means that a lifetime distribution is indexed by parameter z .
The corresponding conditional failure rate is denoted by A(z,z), whereas the mixture
(observed) failure rate is

Tf (t,2)m(z)dz
A, () =2 . (3.2)
[ Ft.2m(2)dz

Equation (3.2) can be transformed to (Lynn and Singpurwalla, 1997):

7()F(t,7) (3.3)

2,0 =[AtD7(z10dz,  7(z11)=
’ F(t,2)m(2)dz

Oy 8

where 7(z1t) denotes the conditional pdf of Z on condition that 7 > ¢, i.e, an item
described by a lifetime 7 with the Cdf F, (¢) had survived in [0,7]. Denote this ran-
dom variable by Z |¢. Obviously the masses 7z(¢) and 1—7z(¢) in (2-1) correspond to
7(z1t) in the continuous case.

Under the mild assumptions (see Theorem 3.1), a similar to (2.5) property holds
for the continuous case as well, i.e.,

A ()< A ()= Iﬂ(t,z)ﬂ'(z)dz, t>0;4,0)=4,(1) (3.4)
0

meaning that the mixture failure rate is always smaller than the ‘ordinary’ expecta-
tion. Thus, owing to conditioning, the mixture failure rate is smaller than the uncondi-
tional one for each r >0, which, as in the discrete case, can be interpreted via the
weakest populations are dying out first principle. As time increases, those subpopula-
tions that have larger failure rates have higher chances of dying, and therefore the
proportion of subpopulations with a smaller failure rate increases.



The following theorem (Finkelstein and Esaulova, 2006) states also the condition
for A4,(t)— A, (¢) to increase:

m

Theorem 3.1. Let the failure rate A(z,z) be differentiable with respect to both argu-
ments and be ordered as

At z) < At,z,), z,<2,,Vz,2,€[a,b],t20. (3.5)
Then
e Inequality (3.4) holds;
o If, additionally, dA(z, z)/ dzis increasing in ¢, then A,(t)— A, (¢) is increasing.

We will consider now two important in applications specific cases of model (3.3).
Let A(z,z) be indexed by parameter z in the following additive way:

At,2)=A1)+z, (3.6)

where A(f) is a deterministic, continuous and positive function for 7>0. It can be
viewed as some baseline failure rate. Equation (3.6) defines for ze€ [0,00) a family of
‘horizontally parallel’ functions. We will be interested in an increasing A(f). Apply-
ing (3.3) to this model results in

[2F(t, 27(2)dz
A, =A)+L =AU+ E[ZI1], (3.7)
j F(t,2)7(2)d6

where, in accordance with (3.3), E[Z|t] denotes the expectation of the random
variable ZIt. It can be easily shown by direct derivation that
E'[Zt]=-Var(Z|t) < 0. Differentiating (3.7) and using this proprty, we obtain the
following result (Lynn and Singpurwalla,1997; Finkelstein and Esaulova, 2001).

Theorem 3.2. Let A(z) be an increasing, convex function in [0,c0). Assume that
Var(Z |t) is decreasing in t € [0,o0) and

Var(Z10) > 1'(0).

Then A,(r) decreases in [0,c¢) and increases in [c,o0), where ¢ can be uniquely
defined from the following equation:

Var(Z 1t) = (¢t).

It follows from this theorem that the corresponding model of mixing results in the
bathtub shape of the mixture failure rate: it first decreases and then increases, con-
verging to the failure rate of the strongest population, which is A(7) in our case. It
seems that the conditional variance Var(Z |t) should decrease, as the “weak popula-
tions are dying out first” when ¢ increases. It turns out, however, that this intuitive
reasoning is not true for the general case and some specific distributions can result in



initially increasing Var(Z1t). The corresponding counter-example can be found in
Finkelstein and Esaulova (2001). It is also shown that Var(Z | t) is always decreasing
in [0,00) when Z is gamma-distributed.
The most popular and elaborated in applications model of mixing is the multiplica-
tive one:
Alt,2) =z A1), (3.8)
where, as previously, the baseline A(¢) is a deterministic, continuous and positive

function for 7> 0. In survival analysis, (3.8) is usually called a multiplicative frailty
model (proportional hazards). The mixture failure rate in this case is

A1) = ]o/l(t, Dz )dz = AQ)E[Z 1 1]. (3.9
0

Differentiating both sides gives
A t)=A@EZt]+ A)E[Z |1]. (3.10)

m

Thus, when A(0) =0, the failure rate A (¢) increases in the neighbourhood of 1 =0.

Further behaviour of this function depends on the other parameters involved. Similar
to the additive case, E[Z 1t]= — A(t)Var(Z |t) <0, which means that E[Z |¢] is de-

creasing in ¢ (Gupta and Gupta, 1996). Therefore, it follows from Equation (3.9) that
the function A4 (¢)/A(¢) is a decreasing one, which imply that A(f) and A, (r) cross
at most at only one point. It immediately follows from Equation (3.10) that when A(z)
is decreasing, A, (1) is also decreasing (another proof of this well-known property).
When A(0) #0 and

A'(0) Var(2)

A0) E[Z]

the mixture failure rate is decreasing in [0,€), € >0 meaning, e.g., that for the fixed
E[Z] the variance of Z should be sufficiently large.
Asymptotic behavior of A, (f) as t — oo for this and other (more general models

will be discussed in Section 6. Note that the accelerated life model (ALM) to be stud-
ied in this section does not allow the foregoing reasoning based on considering expec-
tation E[Z |t].

4. Some Examples

4.1 Weibull and Gompertz distributions

Consider multiplicative frailty model (3.8). Let Z be a gamma-distributed random
variable with shape parameter & and scale parameter 3 and let A(t) = yt""', ¥>1 be
the increasing failure rate of the Weibull distribution, lim, ,_ A(f) =co. The mixture
failure rate 4 () in this case, can be obtained by the direct integration, as in Finkel-
stein (2008) (see also Gupta and Gupta, 1996):

7
A (t) = BT 4.1)




The shape of the mixture failure rate differs dramatically from the shape of the in-
creasing baseline failure rate A(t). Thus A (7) is equal to 0 at 7 =0, increases to a

maximum at

01p B =0.04 1

0.08} 1

= 0.06} B =0.01 :
<

0.04} 1

002k B =0.005 ]

0 L L L L L L
0 5 10 15 20 25 30 35

Figure 1. The mixture failure rate for the Weibull baseline distribution, ¥ =2, @ =1

and then decreases to 0 as t — .

Weibull distribution with ¥ >1 is often used for modelling aging processes as its

failure rate is increasing. Therefore the mixture model results in the dramatically dif-
ferent shape (the upside-down bathtub shape) when after a certain point the mixture
failure rate is decreasing. This phenomenon should certainly be taken in account in
reliability practice.

The described shape of the mixture failure rate was experimentally observed in
Finkelstein (2005) for a heterogeneous sample of miniature light bulbs. The failure
rate of the homogeneous population of these light bulbs, however, follows the
Weibull law. Therefore, the observed shape complies with the predicted one.

Let again the mixing distribution be the gamma distribution with shape parameter
¢ and scale parameter [, whereas the baseline distribution be the Gompertz distribu-

tion with the failure rate A(t) = aexp{bt}, a,b >0. Owing to its computational sim-

plicity, the gamma-frailty model is practically the only one widely used in applica-
tions so far. Direct computation in accordance with Equation (3.3) for this baseline
failure rate results in

bcexp{bt}
exp{bt}+[b’6—1j
a

If b =a,then A4, (t)=bc. However, if b >a,then 4, (¢) increases to be and if
bp < a, it decreases to bc .

A, (1) =

4.2)
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Am(1)

bp<a

bp=a

bp>a

v

Figure 2. Gamma-Gompertz mixture failure rate

Thus, we are mixing exponentially increasing failure rates and as a result obtaining a
slowly increasing (decreasing) mixture failure rate, which converges to a constant
value.

It is well known that human mortality can be described by the Gompertz lifetime
distribution with an exponentially increasing mortality (failure) rate. Therefore, the
shape of the mixture (observed) mortality rate should follow this pattern if the as-
sumption of the heterogeneous population is true. The other question is whether the
mixing distribution is the gamma distribution or not (which refers to the previous ex-
ample as well)? We will address this question in Section 6 devoted to limiting behav-
iour of mixture failure rates. In any case, the derived pattern of the mixture mortality
rate can explain the recently observed deceleration in human mortality at advanced
age (human mortality plateau, as in Thatcher, 1999).

An impressive experiment on mortality was reported by Carey et al (1992). A
population of 1.2 millions of Mediterranean fruit flies (medflies) was maintained in
cages of 7200 animals each. Their deaths were precisely monitored. The observed
mortality rate initially rose as an increasing exponential or power function (both fits
were reasonable) but then levelled off at about 20 days of age (16 percent survival),
slowly increased to a peak at 58 days of age (0.2 percent survival) and then declined
thereafter. This pattern suggests that the tail of a baseline mortality rate is definitely
not exponential, as in this case the mortality plateau should be observed. Therefore it
is more likely to be described by a power or, more generally, polynomial function.
The temporary plateau with duration for several days probably has some biological
explanation and is not a result of mixing, but this should be investigated more thor-
oughly.

4.2 Reliability theory of aging

Consider now a discrete frailty parameter (i.e., unobserved random variable) Z =N
with the Cdf F (n)=P(N <n). We will be interested in the following meaningful
reliability interpretation.

Let N be a random number of initially (at ¢t =0 ) operating independent and iden-
tically distributed components with constant failure rates 4. Assume that these com-
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ponents form a parallel system, which, according to Gavrilov and Gavrilova (2001),
models the lifetime of an organism on some suitable level (generalization to the se-
ries-parallel structure is straightforward). These authors also provide a biological jus-
tification of the model. In each realization N =n,n >1, the degradation process of
pure death can be defined as just the number of failed components. When this number
reaches n, the death of an organism occurs. Denote by A4 (f) the mortality (failure)

rate, which describes 7, —the time to death for the fixed N =n,n=12,... (n=0 is

excluded, as there should be at least one operating component at ¢t =0 ). It is shown in
Gavrilov and Gavrilova (2001) that as r — 0, this mortality rate tends to an increas-
ing power function (the Weibull law), which is a remarkable fact. On the other hand,
for random N, similar to (2.1) and (3.3), the observed (mixture) mortality rate is
given as the following conditional expectation with respect to N :

A, ()= ELA, ()T >1]. 4.3)

Therefore, as previously, 4 (¢) is a conditional expectation (on condition that the sys-
tem is operable at 7) of a random mortality rate A,(7). Note that, for small ¢, this

operation can approximately result in the unconditional expectation
A,(1) = E[A, (D] =D P4, (1), (4.4)
n=1

where P, =Pr[N =n], but the limiting transition, as t — 0, should be performed

carefully in this case. As t — o, we observe the following mortality plateau (Finkel-
stein and Vaupel, 2006):
A@)—>A. (4.5)

This is due to the fact that the conditional probability that only one component with
the failure rate A is operating tends to 1 as t — oo (on condition that the system is
operating).

Assume now that N is Poisson distributed with parameter 77 (on condition that the
system is operable at ¢t =0 ). Therefore

__exptnmin o,
n!(1-exp{-77})

It can be shown via direct integration that the time to death in our simplified model
has the following Cdf (Steinsaltz and Evans, 2004):

n

1-exp{-n7exp{~Ar}}

F(t)=Pr[T <t]= (4.6)
1 —exp{-77}
The corresponding mixture mortality rate is
(6= F'(t) _ nAexp{-At} 4.7

1-F(1) B exp{nexp{-At}} -1’

Performing, as t — oo, the limiting transition in (4.7), we also arrive at the mortality
plateau (4.5).
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In fact, the mortality rate given by Equation (4.7) is far from the exponentially in-
creasing Gompertz law. The Gompertz law can erroneously follow (as in Gavrilov
and Gavrilova (2001)) from (4.4) if this approximation is used formally, without con-
sidering a proper conditioning in (4.3), However, for some specific values of parame-
ters and sufficiently small 7, exponential approximation can still hold. The relevant
discussion can be found in Steinsaltz and Evans (2004).

4.3 Burn-in and minimal repair in heterogeneous populations

In this example, we want to clarify the notion of minimal repair for heterogeneous
case. Minimal repair is usually defined in a classical sense as the repair that brings an
item to the statistically identical state it had just prior to the failure (Barlow and Pro-
schan, 1975). For an item with the distribution function F(¢), that has failed and was

instantaneously minimally repaired at time #=a, it means that the time to the next
failure is distributed as (F(t+a)— F(t))/(1- F(a)), which is equal to the distribution

of the corresponding remaining lifetime of a nonrepairable item. This type of minimal
repair is sometimes called a statistical minimal repair. (Arjas and Norros, 1989;
Finkelstein, 1992) to emphasize the repair to the mentioned above statistically identi-
cal state, but usually the term “statistical” is omitted. For a repairable item with a de-
creasing failure rate, minimal repairs during burn-in result in an improvement in reli-
ability for further field usage. A similar conclusion can be obtained for the case of a
bathtub failure rate. In this case, the burn-in procedure should be performed in the
time interval where the failure rate is decreasing.

It is not so simple to define minimal repair for heterogeneous populations (Finkel-
stein, 2004). Assume that our population consists of the weak and strong subpopula-
tions with the distributions functions F () and Fy, (¢), respectively, and therefore, the

lifetime of a picked at random item is described by a mixture of two distributions as in
Section 2, i.e., F, (t)=7nF;(t)+(1—7m)F, (t). This means that formally, in accordance

with the classical definition of minimal repair, the time to the next failure should be
distributed as (F, (t+a)—F, (¢))/(1-F, (a)). The only theoretical possibility to per-
form this operation is to replace the failed item by another item from our population
that had functioned the same time but did not fail. It is also obvious that it is impossi-
ble in practice to perform this ideal statistical minimal repair for our heterogeneous
setting. As discussed in Section 2, the failure rates of mixtures of two distributions are
often decreasing (at least initially) and therefore, the same burn-in considerations as in
the homogeneous case can be applied, but we note once again that minimal repair of
this kind usually cannot be realized in practice. On the other hand, we can execute
another type of minimal repair.

Assume that the corresponding minimal repair is, in fact, a physical minimal repair
(Finkelstein, 1992) in the sense that a ‘physical operation’ of repair (not a replacement
as above) brings an item in the state which is ‘statistically identical’ to the state it had
just prior the failure. Note that, obviously, we do not know whether the failed item is
‘strong’ or ‘weak’. On the other hand, the described operation of repair in some sense
retains this property automatically: if an item is, e.g., ‘strong’, the time to the next
failure is distributed as (F(t+a)— F(t))/(1—-F,(a)). An example of this ‘physical

operation’ is when a ‘small’ defect (fault) is corrected (repaired) upon failure,
whereas a number of the possible inherent defects in the item is ‘large’. In practice,
the physical minimal repair of the described type can be usually performed (at least
approximately) and therefore our assumption is quite realistic. It is also clear that for
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the homogeneous case these two types of minimal repair (approximately) coincide,
i.e., result in the same distribution of time to the next failure, whereas they differ for
the mixed population. Not that the burn-in process for repairable items for the de-
scribed case is, in fact, a test procedure which helps to classify an item from a mixed
population as being ‘strong’ or ‘weak’.

4.4. Parondox paradox

There are many situations where the concept of mixing helps to explain results that
seem to be paradoxical. A meaningful example is a Parondo paradox in game theory
(Harmer and Abbot, 1999), which describes the dependent losing strategies which
eventually win. Di Crescenzo (2007) presents the reliability interpretation of this
paradox. This author compares pairs of systems with two independent components in
each series. The ith component of the first system (i=1,2) is less reliable than the

corresponding component of the second one (in the sense of the usual stochastic or-
der). The first system is modified by a random choice of its components. Each com-
ponent is chosen randomly from a set of components identical to the previous ones,
and the corresponding distribution of a new component is defined as a discrete mix-
ture (with 7 =1/2) of initial distributions of components of the first system. Thus,
the described randomization defines a new system that is shown to be more reliable
(under suitable conditions) than the second one, although initial components are less
reliable than those of the second system. A formal proof of this phenomenon is pre-
sented in this paper, but the result can easily be interpreted in terms of the decreasing
failure rate of the corresponding mixture.

4.5. Coherent systems

In a rather unexpected way mixtures can also be used to represent lifetimes of coher-
ent systems. It turns out (Samaniego, 2007) that the lifetime distribution of a coherent
system of n 1.i.d. components F(z) (with common Cdf F,(¢)) can be written as a

function that depends on the system’s design only through signatures in the following
‘mixture form”:

F(t)= isi Pr(X,, >1), (4.8)

where F(t)=Pr(T >t) X,,,X,,...X,, are order statistics obtained from n lifetimes

nn
of components, s, =Pr(T'=X,,) and the vector (s,,s,,...,s,) is called the system’s

signature.

Kochar et al (1999) consider relationships between different stochastic orders for
signatures of two systems and their lifetimes. The shape of the system’s failure rate
can be also analyzed using (4.8) and our reasoning of the previous sections (at least,
for some simple examples).

Section 5. Mixture Failure Rate for Large ¢

Among the first to consider the limiting behaviour of mixture failure rates for the con-
tinuous mixtures were Clarotti and Spizzichino (1990). They showed that the mixture
failure rate for a family of exponential distributions with parameter &€ [a,>) con-

verges to the failure rate of the strongest population, which is a in this case. Block et
al (1993), Block, Li and Savits (2003) and Li (2005) extended this to a general case.
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As the approach (and obtained important mathematical results) of these authors is
very general and some assumptions are rather restrictive, it does not provide specific
asymptotic relationship that can be used in practical analysis for mixed populations.
In order to be able to perform this analysis, Finkelstein and Esaulova (2006) devel-
oped an approach that was applied to reasonably general survival model that allows
for explicit asymptotic relationships and covers (as specific cases) three most popular
in survival analysis frailty models: additive, proportional and accelerated life. The
main results that were obtained using this approach are discussed below.

Let T >0 be a lifetime with the cdf F(¢), pdf f(¢) and the failure rate A(z). Let,

as previously, these functions be indexed by the realization of the frailty parameter
Z=z,ie., F(t,2), f(t,2), A(t,z), respectively. Consider the following general sur-

vival model:

A(t,2) = A(z9(0) + ¥ (1), (5.1

where A(t,z)zjﬂ(t,z) denotes the corresponding cumulative failure rate and
0
A(),w() and ¢(-) are some increasing, differentiable functions of their arguments.

The meaning of relationship (5.1): we perform a scale transformation ¢(¢) in the ar-
gument of the cumulated failure rate A(¢) and ‘insert’ a frailty parameter. An impor-

tant feature of the model is that parameter z is a multiplier.
This model includes a number of well-known in survival analysis and reliability
specific cases, i.e.,

Additive Model: Let

Aw)=u, 9(t)=t, y(0)=0.
Then
At,2)=z+y' (1), At,z)=zt+y(t) (5.2)
PH (multiplicative) Model: Let

Aw)=u, ¢(t) = A(1).

Then

A(t,z) = ZA(2),

A(1,2) = 2A(1) = 2 Aw)du 5-3)

0
Accelerated Life Model: Let
A(w)=Au), ¢(t)=t.
Then
Alt,2) = j Au)du = A(zt), (5.4)

A(t, z) = zA(zt) (5.5)
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We are interested in asymptotic behaviour (as t — o) of A (7). For simplicity of

notation (and, in fact, not loosing the generality), we will assume further that
w()=0.

Theorem 5.1. Let the cumulative failure rate A(z,z) be given by Equation (5.1)
(w(t) =0) and let the mixing pdf 7(z), z€ [0,o0) be defined as

n(z)=z2"7,(2), (5.6)

where & >-1 and 7,(z), 7,(0) # 0 is a function bounded in [0,o0) and continuous at
z=0. Assume also that ¢(t) — o as t — o and that A(s) satisfies

o

j exp{—A(s)}s%ds < . (5.7)
Then '
#(1)
A @ ~(@+)—=, 5.8
(D)~ (a )¢(t) (5.8)

where, as wusual, asymptotic notation a(t)~b(t) as t-—>c means that
lim, . a(t)/b(t)=1. As we had mentioned, another possible notation for (5.8) is

A,@) = (a+DF 1)/ ()1 +0(1)).

The proof of this result is cumbersome and is based on Abelian-type theorems for
the corresponding asymptotic integrals. That is why the multiplicative form in
A(z¢(t)) is so important. The specific case of this theorem for the multiplicative
model (5.5) was independently considered by Steinsaltz and Wachter (2006).

Assumption (5.6) just states the ‘form’ of the admissible mixing distribution and
holds for the main lifetime distributions, such as Weibull, gamma, truncated normal,
etc. However it does not hold for a lognormal distribution, as the corresponding as-
ymptote is proportional to 1/z when z — 0. Assumption (5.7) is a very weak one
(weaker than just having a finite expectation for a lifetime) and can be omitted in
practical analysis.

A crucial feature of this result is that the asymptotic behaviour of the mixture fail-
ure rate depends only on the behaviour of the mixing distribution in the neighbour-
hood of 0 and on the derivative of the logarithm of the scale function ¢(¢), i.e.,

(logg(1)) = ¢'(t)/ $(1) .

When 7(0)#0 and 7z(z) is bounded in [0, o), the result does not depend on the mix-

ing distribution at all , as @ =0 in this case. Intuitively, the qualitative meaning is
quite clear: as t — oo, only the most robust survivors are left and in, accordance with
the model (5.1), this corresponds to the small values of z (weak populations are dy-
ing out first).

It is easy to see that for the multiplicative model (5.3), equation (5.8) reduces to
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A, (1) ~ GFDAD. (5.9)
Iﬂ(u)du
and to
A (-~ 2! (5.10)

for the ALM (5.4)-(5.5).
Note that (5.10) is a really surprising result, as the shape of the mixture failure rate
for large ¢ does not depend on the baseline distribution F(t). It is also dramatically

different from the multiplicative case (5.9). This means that the ‘nature’ of the ALM
is such that it ignores’ the baseline distribution for large .

Comparing (5.9) and (5.10) we see that the latter will never result in the asymp-
totically flat observed failure rate (mortality plateau), whereas the multiplicative
model can as in the case of a gamma frailty model for the Gompertz distribution (see
Equation 4.2 and discussion in the next section).

Note that, by direct integration, Equation (4.2) can be generalized to the case of an
arbitrary (absolutely continuous) baseline distribution characterized by the failure rate

A):

A ()= cAt) cA() 5.11)

P+A® B+ I/l(u)du

It is clear that ¢ = +1 for the gamma pdf and this formula perfectly comply with the
general asymptotic result (5.9) and a classical result by Vaupel et al (1979).
Let, for instance, z(z) be the uniform density in [0,1]] and let also

A(t) =exp{t} (a,b =1 for simplicity of notation). Then A(z,z) = zexp{r} and

[Fe. o2z = i(l—exp{—w}) ,

° -w} 1
[ .m0z = (w+1)[—M+—z(l—eXP{—w})}
0 w w
where w=exp{t}—1 and @ — o as t — . Therefore, in accordance with Equation
3.2):
m,_ A ()=1.

The same limit holds for 4 (7)in (5.11) for the considered specific values of parame-

ters. This example illustrates the fact that the asymptotic value of the mixture failure
rate does not depend on a mixing distribution if 7(0)#0.

Theorem 5.1 deals with the case when the support of a mixing distribution includes
0, i.e., z€[0,00). In this case, the strongest population cannot usually be properly
defined. If, however, the support is separated from 0, the mixture failure rate can tend
to the failure rate of the strongest population as r — oo. The following theorem
(Finkelstein and Esaulova, 2006) states reasonable conditions for this convergence
(we assume, for simplicity, as previously, that () =0):
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Theorem 5.2. Let, as in Theorem 5.1, the class of lifetime distributions be defined by
Equation (5.1), where ¢(¢) — o, () =0 and let A(s) be twice differentiable.

Assume that, as s — o

A,”(s)2 - (5.12)
(A'(s))

and
SA'(s) = oo, (5.13)

Also assume that for all b,c>a,b<c, the quotient A'(bs)/ A’(cs) is bounded as
s — oo . Finally, let the mixing pdf 7(z) be defined in [a,), a >0, bounded in this
interval and continuous at z=a and 7(a) #0.
Then
A, () ~ ad' (1) A'(ad(1)). (5.14)

The assumptions of this theorem are rather natural and hold at least for the specific
models under consideration and for the main lifetime distributions. Assume addition-
ally that the family of failure rates A(z,z) is ordered in z (as for additive or multipli-

cative models), i.e.,
At 7)) < At,2,), 2, <2,,V2,,2, € la,],a>0,. (5.15)

The right-hand side of (5.14) can be interpreted in this case as the failure rate of the
strongest population. Specifically, for the multiplicative model:

A (1) ~ aA(r). (5.16)

m

Thus, as intuition suggests, the mixture failure rate asymptotically does not depend on
a mixing distribution. A similar result holds also for the case when there is a singular-
ity in the pdf of the mixing distribution of the form:

7(2)=(z—a)"m(z—a), (5.17)

where o >—1 and 7,(z —a) is bounded, 7,(0) #0.

6. Mortality plateaus

As it was mentioned in Section 1, demographers had recently observed the decelera-
tion in human mortality at advanced ages which eventually results in human mortality
plateau (Thatcher, 1999). The most reasonable explanation of this fact is via the con-
cept of heterogeneity of human population which obviously takes place. The follow-
ing refers to the interpretation of our results for this application.

e As follows from Equation (5.9), the ALM (5.5) never results in the asymptoti-
cally flat failure rate. Moreover, it asymptotically tends to 0 and does not de-
pend on a baseline distribution, which is Gompertz for the case under consid-
eration
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e The only function g(t), for which g(z)/ I g(u)du tends to a constant as t — oo,

is the exponential function. Therefore, as follows from relationship (5.9), the
asymptotically flat rate in the multiplicative model (5.3) can result via mixing a
random lifetime distributed only in accordance with the Gompertz distribution
or in accordance with a distribution with the failure rate that asymptotically
converges to an exponential function.

e In accordance with Theorem 5.1, the admissible mixing distributions (i.e., the
distributions that can lead to the asymptotically flat mortality rate) are those
with behaviour as z%,a > —1 for z — 0. The behaviour outside the neighbour-
hood of 0 does not contribute to asymptotic properties of the failure rate.
Therefore, the power law (Weibull distribution), the gamma distribution and
some other distributions are admissible. Note that, when the mixing pdf is such
that 7(0)#0 and has a finite limit when z — 0 (as, e.g., for the exponential

distribution), relationship (5.9) reduces to

A1)

t

j A(w)du

A, (1) ~

and therefore, the mixture mortality rate does not depend on the mixing
distribution at all! The same result holds for, e.g., the mixing density that is
1/a,a >0 in [0,a] and is O in (a,c) (uniform distribution).

In view of the foregoing discussion, the asymptotically flat rate (as for human
populations) can be viewed as an indication of:

- that the mixing model is multiplicative,

- that the underlying distribution is definitely Gompertz or asymptotically con-
verges to the Gompertz distribution,

- that the mixing pdf is proportional to z%,z>-1, when z—0, e.g., the
gamma distribution. The form of this distribution outside neighbourhood of 0
has no influence on the asymptotic behaviour (¢ — o) of A(¢).

7. Inverse Problem

A well-known fact from survival analysis states that the failure data alone do not
uniquely define a mixing distribution and additional information (e.g., on covariates)
should be taken into account (a problem of non-identifiability, as, e.g., in Tsiatis,
1974 and Yashin and Manton, 1997). On the other hand, the following inverse prob-
lem can be solved analytically at least for additive and multiplicative models of mix-
ing (Esaulova, 2006; Finkelstein, 2008):

Given the mixture failure rate A, (t) and the mixing pdf 7(z), obtain the failure rate
A(t) of the baseline distribution.
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This means that under certain assumptions any shape of the mixture failure rate can be
constructed by the proper choice of the baseline failure rate. To illustrate this state-
ment, consider the additive model (3.6):

F(t,2)= exp{—-A®@)—zt}, f(t,z)=At)+z)exp{-A(t)— zt}. (7.1)

Therefore, the mixture survival function in (3.1) can be written via the Laplace trans-
form as

F ()= exp{—A(z)j exp{—zt}7(z)dz =exp{-AO " (t), (7.2)
0

where, 7 (t) = E[exp{—zt}] is the Laplace transform of the mixing pdf 7(z). There-
fore, Equation (3.7) yields

_fz exp{—zt}m(z)dz
A, )= A1) +% = A1) — ilog 7 (1) (7.3)
Iexp{—zt}ﬂ(z)dz

0

and the solution of the inverse problem for this special case is given by the following
relationship:

A=A, 1)+ %logﬂ'* (t)=2,(1)—E[Z1]. (7.4)

If the Laplace transform of the mixing distribution can be derived explicitly, then
Equation (7.4) gives a simple analytical solution for the inverse problem. Assume,
e.g., that ‘we want’ the mixture failure rate to be constant, i.e., A,(t)=c. Then the

m

baseline failure rate is obtained as

At)=c—E[Z|1].

The corresponding survival function for the multiplicative model (3.8) is
exp{—zA(#)} and the mixture survival function for this specific case is

F, ()= feXp{—Z/\(t) (2)dz =7 (A(D)). (7.5)
0

It is obtained in terms of the Laplace transform of the mixing distribution as a func-
tion of the cumulative baseline failure rate A(z) . Therefore

A, ()= —%log 7 (At)). (7.6)

The general solution to the inverse problem in terms of the Laplace transform is also
simple in this case. Note that

7' (A@)) = exp{-A,, (1)}, (6.7)

where A () denotes the cumulative mixture failure rate. Applying the inverse

Laplace transform L' (-) to both sides of this equation finally results in
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A0 = N6 = L' (expl-A,, (). (1.8)

The Laplace transform methodology in multiplicative and additive models is usu-
ally very effective. It constitutes a convenient tool for dealing with mixture failure
rates when the Laplace transform of the mixing distribution can be obtained explic-
itly. The exponential family (Hougaard, 2000) presents a wide class of such distribu-
tions. The corresponding pdf is defined in this case as

exp{—0z}g(z)
_ , 7.9
7(z) @) (7.9)

where g(z) and 7(z) are some positive functions and € is a parameter. The function
1n(6) plays the role of a normalizing constant ensuring that the pdf integrates to 1.
The gamma, the inverse Gaussian and the stable distributions are relevant examples.
Note that the Laplace transform of 7(z) depends only on the normalizing function
n(z) (Hougaard, 2000), i.e.,

neé+s)

* Eoo _ d —
7' (s) {exp{ sahmdz ==

This means that under certain assumptions any shape of the mixture failure rate can be
constructed by the proper choice of the baseline failure rate. Specifically, for the ex-
ponential family of mixing densities and for the multiplicative model under considera-
tion, the mixture failure rate is obtained as

n@+ A(t))
A, (1) = = g—n(é’)
an + A(1))
_an 4O+ AW) (7.10)
nee+A@))

Therefore, the solution to the inverse problem can be obtained in this case as the de-
rivative of the following function:

A =77 (exp{~4,(1)}7(8) - 6. (7.11)

It can be easily calculated (Finkelstein, 2008) that when the mixing pdf is gamma
with parameters & and £, the solution of the inverse problem is obtained as

A@) = ’8/1 (t)exp{ n( )} (7.12)

Assume that the mixture failure rate is constant, i.e., 4, (t) =c. It follows from (7.12)
that for obtaining a constant A, (¢) the baseline A(r) should be exponentially increas-

ing, i.e.,
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A@t) = Vs c exp{c—t)} :
(04 o

But this is what we would really expect. As we already mentioned, this result is really
surprising: we are mixing the exponentially increasing family of failure rates and ar-
riving at a constant mixture failure rate.

8. Concluding Remarks

The mixture failure rate A, (¢) in frailty models is a conditional expectation of a ran-
dom failure rate A(r,Z). A family of failure rates of subpopulations
A(t,z), z€ [a,b],0<a < b < describes heterogeneity of a population itself. One can

hardly find homogeneous populations in real life, although most studies on failure rate
modelling deal with a homogeneous case. Neglecting existing heterogeneity can lead
to substantial errors and misconceptions in stochastic analysis in reliability, survival
and risk analysis and other disciplines. If, for instance, a replacement is scheduled for
an item from a heterogeneous population with exponentially distributed subpopula-
tions, then the necessity of this replacement should be questioned, as the observed
failure (mixture) failure rate is decreasing. Therefore, it may happen in this case that
the failure rate of the replacement item can be larger than the failure rate of the used
one.

Mixtures of increasing failure rate distributions can decrease at least in some inter-
vals of time, which means that the IFR class of distributions is not closed under the
operation of mixing. As IFR distributions usually model lifetimes governed by ageing
processes, the operation of mixing can dramatically change the pattern of ageing, e.g.,
from positive ageing (IFR) to negative ageing (DFR).

The mixture failure rate is ‘bent down’ due to “the weakest populations are dying
out first” effect. This should be taken into account when analysing the failure data for
heterogeneous populations.

There are many applications where the behaviour of the failure rate at relatively
large values of ¢ is really important. The relevant example is the oldest-old mortality
of humans when the exponentially increasing Gompertz mortality curve is ‘bent
down’ at advanced ages (mortality plateau). The other example deals with a mixture
of subpopulations with increasing (Weibull) subpopulations. In this case the mixture
failure rate tends to 0 as t — oo.

Some of the obtained results are really surprising. For example, when the support
of the mixing distribution is [0,c0), the mixture failure rate in the accelerated life

model converges to 0 as # — o and does not depend on the baseline distribution.
Under reasonable assumptions, we show also that the asymptotic behaviour of the
mixture failure rate for other models under consideration depends only on the behav-
iour of the mixing distribution in the neighbourhood of the left-hand endpoint of its
support, and not on the whole mixing distribution.
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