
MPIDR WORKING PAPER WP 2010-006
FEBRUARY 2010

Joshua R. Goldstein (goldstein@demogr.mpg.de)
Thomas Cassidy

How slowing senescence changes life 
expectancy

Max-Planck-Institut für demografi sche Forschung
Max Planck Institute for Demographic Research
Konrad-Zuse-Strasse 1 · D-18057 Rostock · GERMANY
Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202; 
http://www.demogr.mpg.de

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review.
Views or opinions expressed in working papers are attributable to the authors and do not necessarily 
refl ect those of the Institute.



HOW SLOWING SENESCENCE CHANGES LIFE
EXPECTANCY

JOSHUA R. GOLDSTEIN AND THOMAS CASSIDY

Max Planck Institute for Demographic Research

Abstract. Mortality decline has historically been a result of re-

ductions in the level of mortality at all ages. The slope of mortality

increase with age has been remarkably stable. A number of leading

researchers on aging, however, suggest that the next revolution of

longevity increase will be the result of slowing down the rate of ag-

ing, lessening the rate at which mortality increases as we get older.

In this paper, we show mathematically how varying the pace of

senescence influences life expectancy. We provide a formula that

holds for any baseline hazard function. Our result is analogous to

Keyfitz’s “entropy” relationship for changing the level of mortality.

Interestingly, the influence of the shape of the baseline schedule on

the effect of senescence changes is the complement of that found

for level changes. We also provide a generalized formulation that

mixes level and slope effects.

1. Introduction

So far in human history, longevity gains have come largely from de-

clining levels of mortality rather than slowing senescence. Recently,

however, there have been a number of calls for taking the problem of
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aging head-on by reducing the rate at which people get old. In demo-

graphic terms, this means reducing the rate at which mortality rises

with age. A prominent example by researchers in the British Medical

Journal argues for medical research in aging to turn away from the

disease specific model, and instead focus on slowing the aging process:

“The most efficient approach to combating disease and disability is to

pursue the means to modify the key risk factor that underlies them all

– ageing itself” (Butler et al., 2008). Some observers such as De Grey

and Rae (2007) in Ending Aging are optimistic about the possibility of

slowing the aging process in the near future. In this article, we show

formally how large the pay-off to slowing senescence would be. Our

results complement the classic work of Keyfitz (1977) on the effect of

changing the level of mortality on life expectancy.

Senescence is often defined as the increase of mortality risks that

accompany the weakening of an organism with age (Medawar 1952).1

Thus, one way to think about slowing senescence is as a reduction

in the speed with which the risk of death increases with age. In the

Gompertz case, when hazards are exponential, µ(a) = αeβa, slowing

senescence is equivalent to reducing β. More generally, for any pattern

of increasing hazards, a slowdown in senescence can be modelled by

1It is worth quoting Medawar in full:
It is a curious thing that there is no word in the English language
that stands for the mere increase of years: that is, for ageing si-
lenced of its overtones of increasing deterioration and decay. We
obviously need a word for mere ageing, and I propose to use ageing
itself for just that purpose. Ageing hereafter stands for mere age-
ing, and has no other innuendo. I shall use the word senescence to
mean ageing accompanied by that decline of bodily faculties and
sensibilities and energies which ageing colloquially entails.
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letting the hazard at age a be equal to the hazard observed in a baseline

schedule at age θa. For example, if θ = 1/2, then an individual with

slowed senescence is exposed at age 60 to the hazard observed in the

baseline schedule at age 30, at age 80 to the original hazard at age 40,

and so on.2

Increases in longevity that come from this kind of slowdown in senes-

cence can be contrasted with increases that come from declines in the

level of hazards (proportional hazards) and from increases that come

from shifting the distribution of deaths (accelerated failure time). In

this paper, we show how much of an impact slowing senescence has

on life expectancy, clarifying the relationship between these different

sources of mortality change. In particular, our results allow us to see

why, in modern populations, reducing the pace of senescence by 1 per-

cent, for example, will have a much larger effect than reducing mortality

levels by 1 percent. As life table entropy falls, reducing mortality levels

have a smaller and smaller effect on life expectancy, but reducing the

pace of senescence has a larger and larger effect.

Our results here echo those of life table entropy (Keyfitz 1977, Mitra

1978, Goldman and Lord 1986, Vaupel 1986), except that we consider

the case of changing the “slope” – the pace of aging – rather than the

level of mortality.

2Although the mathematics of what follow applies to any baseline hazard, regardless
of whether hazards increase or fall with age, the interpretation of θ can depend on
the baseline schedule. When hazards are rising, then θ = 1/2 slows senescence.
If hazards were falling, e.g. during childhood, then θ = 1/2 would increase the
amount of time it would take for hazards to fall. Thus the model would delay
“maturity” or slow “growth.” (See Baudisch (2008)).



4 GOLDSTEIN AND CASSIDY

The model we call “senescence-slowing” has been recently introduced

into the statistical literature by Chen and Wang (2000). They call it

the accelerated hazards model, contrasting it with proportional hazards

(Cox, 1972) and accelerated failure time (e.g., Kalbfleisch and Pren-

tice 2002) models. Because the new literature on accelerated hazards

models is primarily concerned with multivariate estimation, it appears

that the simple result (1) relating to expected values has not been pre-

viously stated in an explicit way. We believe that relationship (2) in

terms of entropy H is new.

Because it can be hard to keep straight which model is which, we

refer to the accelerated hazards model as “senescence-slowing”, and the

accelerated failure time model as “death-delaying.”

2. The effect of slowing senescence on life expectancy

We model a change in the rate of senescence by letting the hazard

at age a be the hazard observed in the baseline schedule µ0 at the age

aθ, so that

µ?(a) = µ0(aθ)

for θ ≥ 0.

Then, the new life expectancy at birth is

(1) e?(0) =
1

θ

∫ ∞
0

l(a)1/θ da.

This result is general in the sense that no restrictions are made on the

baseline lifetable.
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Furthermore, if we write θ = 1 + δ, the relative change in life ex-

pectancy that results from accelerating senescence by δ is

(2)
∆e?(0)

e(0)
≈ −(1−H)δ

where, as per Keyfitz, H = −
∫

[log l(a)]l(a) da/e(0).

Contrast this with the role of entropy H in

∆e∗(0)

e(0)
≈ −Hδ

when mortality is changed proportionally via µ∗(a) = (1 + δ)µ0(a).

Relationship (2) allows us to estimate the effect of slowing senes-

cence. Current human life tables in low mortality countries have H ≈

0.1−0.2. As Keyfitz’ analysis shows, a 10 percent decline in hazards at

all ages would increase adult life expectancy by about 1 to 2 percent.

But according to (2), a 10 percent slow-down in the pace of senescence

would increase adult life expectancy by about 8 to 9 percent.

3. Derivations

Relationship (1) for life expectancy in terms of θ can be obtained via

repeated substitution of the integral

e?(0) =

∫ ∞
0

exp[−
∫ x

0

µ0(aθ)da] dx.

First define a new variable w = aθ to get

e?(0) =

∫ ∞
0

exp[−1

θ

∫ xθ

0

µ0(w)dw] dx
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and then define v = xθ to get

e?(0) =
1

θ

∫ ∞
0

exp[−1

θ

∫ v

0

µ0(w)dw] dv =
1

θ

∫ ∞
0

l(a)1/θ da.

Values θ > 1 correspond to accelerating senescence and values of

θ < 1 represent slowing senescence. Since

(3)
de?

dθ
=

∫ ∞
0

l(x)

(
−
∫ x

0

µ′(aθ)ada

)
dx,

we can describe the impact on life expectancy of changes in θ. If

hazards are increasing, i.e. µ′ is positive, then slowing senescence has

the expected effect of increasing e?. Likewise, if hazards are decreasing,

slowing senescence implies that it will take individuals longer to reach

the lower mortality rates, and so longevity will be reduced.

Relationship (2) can be obtained by parallelling Keyfitz’s analysis,

approximating the effect of a small change in senescence on life ex-

pectancy as ∆e?(0) with δ · de?

dδ

∣∣
δ=0

. Thus,

∆e?(0)

e(0)
≈
δ · de?

dδ

∣∣
δ=0

e(0)
=
δ ·
[
−
(
e(0) +

∫ [
log l(a) ]l(a) da)

]
e(0)

= −(1−H)δ,

where the last equality is found by substituting for H.

4. Applications

4.1. Numerical illustration of reducing the pace of senescence

for Swedish females. We illustrate the consequences of reducing

mortality via slowed senescence and other models using the 2007 period

life table for Swedish females from the Human Mortality Database. In

order to consider only the senescent portion of life, we focus on adult
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Figure 1. Illustrated mortality declines by vari-
ous models. The baseline is the 2007 period life table
of Swedish females, aged 30 and over. Each model in-
volves a 20 percent reduction, with the hazards reduced
model being a 20 percent proportional reduction at all
ages, senescense slowed model being a 20 percent decline
in the rate of aging, and the deaths delayed model be-
ing a 20 percent decline both in the rate of aging and
mortality level.
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mortality, defined as ages 30 and above. This example shows us how

the life table responds to different kinds of mortality change, and to

compare and contrast these effects.
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The first panel shows the observed age-pattern of death rates, along

with three kinds of mortality reductions. The proportional hazards

model, shown with the dotted line, reduces mortality rates by 20 per-

cent at all ages. The effect is small compared with slowing senescence

by 20 percent, shown with the heavy dashed line.3 Finally, the effect

of delaying deaths by 20 percent is shown with the lighter dot-dash

line. We can see that delaying deaths is like applying the 20 percent

reduction to the hazards that are obtained by slowing senescence. The

space between the observed and proportional decline curves appears to

be about the same as that between the slowed senescence curve and

the deaths delayed curve.

The second panel shows a close-up view of the same mortality rates

across a more limited range of ages and in the logarithmic scale. The

near linearity of these logarithmic curves means that mortality is in-

creasing approximately exponentially with age, as in the Gompertz

model. The close-up view shows us that the senescence-slowing and

death-delaying models are changing the slope of mortality increase

with age, whereas the proportional decline model retains the slope of

the original observations, but at a lower level. It is in this sense that

senescence-slowing can be considered a slope change.

The third and fourth panels of the figure show us the impact of chang-

ing mortality rates on the survival curve and distribution of deaths. We

see that the change in the survival curve is great for the senescence-

slowing and delayed death models but small for the proportional decline

3This 20 percent slowdown in senescence was calculated by assigning to age 30 + a
the mortality observed at age 30 + a/1.2.
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model. The distribution of deaths is moved to older ages as a result of

the proportional change in deaths, a well-known result of applying pro-

portional hazards to the Gompertz model (e.g., Vaupel 1986, Goldstein

and Wachter 2006). In addition to a change in “location,” the slowing

of senescence also broadens the distribution of deaths somewhat.

The life expectancy at age 30 associated with the four curves are

53.5 for the observed lifetable, 55.4 for the proportional reduction, 64.3

for slowed-senescence, and 66.7 for delayed-deaths. The entropy value

H is 0.16 for the observed life table. The application of linear estimate

in relationship (2) gives an approximation for the life expectancy of

the modified schedules but it not exact because of the large value of δ

corresponding to a 20 percent change.

4.2. A more formal comparison, along with a flexible hybrid

model. It is apparent that the three approaches to changing mortality

– proportional reductions in hazards, senescence-slowing and death-

delaying – can be subsumed in a more general hybrid model. Consider

changing the baseline mortality schedule µ0(a) with two parameters θ1

and θ2 to get

µ(a) = θ1µ0(θ2a),

where the constant θ1 provides a proportional change in mortality, and

θ2 changes the rate of senescence. Within this framework, the propor-

tional hazards model is the case where θ2 = 1, the senescence-slowing

model corresponds to θ1 = 1, and the death-delaying model refers to

the particular circumstance with θ1 = θ2.
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Table 1 provides a formal comparison of the models of mortality

change we have considered, including the hybrid model.

Table 1. Models of Changing Mortality

Model Hazard Density Life expectancy ∆e
e(0)

Baseline µ(a) µ(a)l(a)
∫
l(a)da 0

Proportional
hazards

θµ(a) θµ(a)l(a)θ
∫
l(a)θda −Hδ

Senescence-
slowing

µ(θa) µ(θa)l(θa)1/θ 1
θ

∫
l(θa)1/θda −(1−H)δ

Death-delaying θµ(θa) θµ(θa)l(θa) 1
θ

∫
l(a)da −δ

Hybrid model θ1µ(θ2a) θ1µ(θ2a)l(θ2a)θ1/θ2 1
θ 2

∫
l(a)θ1/θ2da −Hδ1 − (1−H)δ2

The first column gives the name of the model as used in this paper

and the final column gives the proportional effect of a small change in

θ on life expectancy, where θ = 1− δ and so δ = θ− 1. For the hybrid

model we use θ1 = 1− δ1 and θ2 = 1− δ2

In terms of the proportional effect of a change in the parameters

on life expectancy, we see that death-delaying model is the combined

effect of senescence-slowing and proportional hazards since

−Hδ + (−(1−H)δ) = −δ.

The effect of the mixed model is also the combination of these two

models but with potentially different perturbations.
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5. Discussion

The complementarity between the entropyH of the proportional haz-

ards model and the effect of changing the rate of senescence (1 − H)

given in (2) means life tables with a large response to changing the

level of hazards will have a small response when changing the rate of

aging, and vice-versa. For example, when hazards are constant H = 1,

so transforming age will have no effect at all. At the other extreme,

when hazards are zero until some age at which they become infinite, all

deaths will be concentrated at this age. In this case, H = 0 since pro-

portional changes in zero and infinite hazards are without consequence.

Any change in the age at which hazard become infinite, however, will

be perfectly reflected in a change in life expectancy. Current human

life tables in low mortality countries have H ≈ 0.1− 0.2. A 10 percent

decline in hazards at all ages will increase life expectancy by 1 to 2 per-

cent. A 10 percent slow-down in the pace of senescence would increase

life expectancy by 8 to 9 percent.

Historically, entropy for adults has fallen over time, from about 0.3

in 19th century Sweden to about 0.1 in contemporary low-mortality

populations. This decline in H means that the relatively greater impact

of slope vs. level changes has itself increased over time. Whereas in the

19th century the benefit of slowing the aging process would have been

perhaps 2-3 times the benefit of lowering the level of mortality, today

the benefit is nearly 10 times as large. The mathematics of mortality
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change thus provide one reason why researchers on aging are focused

now, more than ever, on slowing aging itself. 4

Finally, as H gets smaller, the distinction between the senescence-

slowing model and the death-delaying model become less important.

This is because the additional effect of changing the level of hazards

has a smaller and smaller impact relative to the effect of changing the

slope.
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