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ABSTRACT 

We study prediction and error propagation in the Hernes, Gompertz, and logistic stochastic diffusion 

models and use them to forecast demographic cohort processes. We develop a unified framework in 

which the models are linearized with respect to cohort age and predictions are derived from an 

underlying linear process. For prediction variance we develop a Monte Carlo estimator which can be 

used for a wide class of underlying linear processes. For the case of random walk with drift we 

develop an analytic prediction variance estimator. The variance estimators allow the forecaster to 

make precise the level of within-model prediction uncertainty. In addition, the analytic variance 

estimator provides insights into the sources of prediction uncertainty. Applications to marriage and 

fertility rates illustrate the usefulness of the new methods, and extend them to simultaneous 

forecasting of multiple cohorts and to processes restricted by factors such as declining fecundity.  
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INTRODUCTION 

Forecasting uncompleted cohort experience is a key task in demography. Diffusion models, which 

describe how a population adopts a new innovation, technology, or behavior, are potentially useful in 

this respect. We analyze the Hernes, Gompertz, and logistic innovation diffusion models and develop 

a unifying framework for time-series based probabilistic forecasting of cohort processes with these 

models. We introduce the concept of stochastic diffusion, which both expands the theoretical 

coverage of the models to include period effects and allows evaluation of the probabilistic forecast 

uncertainty. Applications to marriage and fertility rates illustrate the usefulness of these new 

methods, and extend the methods to simultaneous forecasting of multiple cohorts and to processes 

restricted by factors such as declining fecundity.   

BACKGROUND 

The Hernes, Gompertz, and logistic diffusion models are commonly used in the social sciences. The 

Hernes model has been developed and applied for forecasting cohort marriage patterns (Hernes 1972, 

Goldstein and Kenney 2001, Li and Wu 2008). For cohort fertility forecasts, the Gompertz model 

previously used to fit period fertility (Hoem Madsen et al. 1981, Pollard and Valkovics 1992) can 

also be used to predict cohort rates (Goldstein 2010). The logistic diffusion model has not been used 

often for modeling cohort schedules (cf. Ike 2002), but is the standard model of population growth 

subject to constraints (Pearl and Reed 1920; Preston, Heuveline and Guillot 2001). Furthermore, in 

the economic literature the logistic model had been used extensively to forecast innovation diffusion 

(Gruber and Verboven 2001; Harvey 1984; Mar-Molinero 1980; Meade and Islam 2006).  
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Although developed in a deterministic setting, the logistic, Gompertz, and Hernes models can all be 

extended to a stochastic setting. We do this by allowing random shocks to influence the processes. 

Introducing randomness is appealing because it acknowledges that the model under consideration is 

not the only influence on behavior. Introducing random shocks not only incorporates the possibility 

of other influences but, in our formulation, quantifies the importance of these outside factors to 

uncertainty in forecasts. A further advantage of introducing randomness is that it allows inclusion of 

influences that may extend across periods or affect cohorts in similar or correlated ways. In short, we 

see the stochastic models we introduce here as a step forward in making diffusion models broader 

and more realistic.   

Our approach builds on the stochastic forecasting framework pioneered by Alho, Lee, Tuljapurkar 

and others (Alho 1990; Lee 1993; Lee and Tuljapurkar 1994). We take from these approaches the 

idea of modeling temporal change as a single or set of univariate stochastic time series, with the 

difference being that our approach is applied to cohort processes. An innovation of our approach is 

that we introduce stochastic elements in the context of behavioral cohort models.1 Cohort forecasting 

is of particular interest to those studying the behavioral basis of demographic rates, as it relates to the 

life course behavior of individuals. For example, cohort fertility or marriage behavior is that 

experienced by real individuals as opposed to the synthetic nature of period indices. 

                                                 

1 In the economic literature, additive shocks at the level of the directly observed non-linear process are occasionally 

incorporated into diffusion models (Meade and Islam 1995, 2006). Such an approach may be unrealistic in demographic 

applications in which the process stabilizes and uncertainty decreases with age and level of the process.  
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The models we explore were all based in their original formulation on differential equations, wherein 

the levels and previous rates of change influence the subsequent evolution of the process. We 

introduce a stochastic element to these differential equations. In physics, finance, and many other 

fields, the new field of stochastic differential equations has allowed the introduction of random 

perturbations into previously deterministic models (for example, the Ito equations with wide range of 

applications (Øksendael 2003), or the Black-Scholes (1973) option pricing equations). Here we take 

a first step at introducing a similar conceptualization to demographic models.2  

Our approach is based on linearization of the models. When forecasting is the goal, linearization has 

certain advantages over alternative methods such as fitting the diffusion curve to observed 

cumulative proportions, or change in the proportions (Billari and Toulemon 2006; Goldstein and 

Kenney 2001; Hernes 1972; Martin 2004). In particular, linearization makes the estimation easy and 

allows the incorporation of stochastic shocks in a straightforward additive, rather than multiplicative 

fashion. 3  

                                                 

2 The conceptual similarity between stochastic differential equations (SDE) and our results is masked by the fact that we 

work in an exclusively discrete set-up. Consequently, the mathematics look different. The conceptualization, however, is 

not. For example, it would be straightforward to combine the stochastic linear processes (introduced in the next section) 

with corresponding behavioral differential equations to get what are called Langevin equations in the SDE language.  

3 The tendency to treat complex processes as linear is occasionally criticized, as in the “General Linear Reality” paradigm 

the timing and order of events are often irrelevant for the outcome, and there is no feedback from the outcome to the 

effect (Abbott 1988). In the world of diffusion processes we are able to relax these assumptions since the timing and 

sequence is critical, and the diffusion process allows for dynamic feedback from the process to the effect.   
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Linearizing the diffusion model, in itself, is not new. Winsor showed in 1932 how the logistic and 

Gompertz models can be linearized with respect to time. Harvey (1984) took the next step by 

showing how the predictions of a logistic model can be constructed from an autoregressive integrated 

moving average (ARIMA) time series model fit to the underlying linear process. In much of the 

research, however, the linear process has been modeled as a deterministic time trend (Frances 1994; 

Li and Wu 2008). This is contrary to the idea of diffusion since in the deterministic time trend model 

the effect of perturbations, or period shocks, vanishes over time4. For example, Li and Wu (2008) use 

the Hernes model to predict first marriages, and base the predictions on a deterministic underlying 

process which is modeled using a linear regression line. If a more dynamic difference stationary 

structure is allowed, as in Harvey (1984), no attempt to derive prediction variance has been made. 5  

We build on prior research on modeling cohort processes with diffusion models by i) treating the 

underlying linear process as a dynamic non-stationary process; ii) showing how Monte Carlo 

simulation allows prediction interval estimation for a wide range of underlying linear processes; and 

iii) deriving an analytical prediction interval estimator for the case of random walk with drift as the 

underlying linear process. The approach allows the user to estimate and understand the sources of the 

probabilistic uncertainty in the predictions, a topic which is becoming increasingly important in 

                                                 

4 In the trend stationary specification, the effect of perturbations vanishes over time; in the difference stationary 

specification, perturbations have a long-lasting effect (Raffalovich 1994). In diffusion processes the past influences the 

future. Thus the difference stationary specification, which has “long memory”, seems to fit better for diffusion processes.  

5 For example, in a logistic analysis of the growth of a stock variable – the number of tractors in Spain – Harvey (1984: 

644) writes that “Unfortunately, finding a suitable prediction interval for the stock is not as straightforward. Various 

approximations can be derived, but a study of their properties has not been attempted here.” 
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demography (Alho et al. 2006; Keilman and Pham 2004; Lee 1998; Lutz and Goldstein 2004; Lutz, 

Sanderson and Scherbov 2001). Empirical applications extend the methods to simultaneous 

forecasting of correlated cohorts and to processes restricted by factors such as declining fecundity, 

and illustrate that the new methods are useful in quantifying the prediction uncertainty.  

Our work is distinct from the large literature that deals with diffusion in various scientific contexts. 

In spatial and network analysis, the word diffusion is often used to describe the influence or feedback 

between neighboring or linked observations (Anselin 1988; Valente 1995). In spatial analysis, the 

problem often reduces to the specification and estimation of linear regression models which describe 

how regions are linked in time and space (Doreian 1980; Land, Deane and Blau 1991; Tolnay, Deane 

and Beck 1996). In network analysis, the central focus is on describing the structure of the linkages 

between individuals, and analyzing how the linkages influence the flow of ideas or behaviors 

(Christakis and Fowler 2008; Cowan and Jonard 2004; Marsden and Friedkin 1993). In both spatial 

and network analysis, the issues of how non-linear behavioral diffusion processes can be linearized 

and estimated, and how probabilistic forecasts and forecast intervals can be derived from the 

underlying linear process, are as far as we know largely absent.  

In demography and sociology, diffusion models such as Hernes are often used to analyze and 

forecast the adoption of new ideas in the same spirit we do. The statistical issues that are confronted, 

however, are mainly about the estimation of the model parameters. The model itself is seen as 

deterministic, and the only source of prediction uncertainty comes from the uncertainty in the data 

and in the model parameters (Goldstein and Kenney 2001, Li and Wu 2008). When within-model 

stochasticity is allowed, this often pertains to individual level uncertainty. For example, in 

microsimulation and in agent-based modeling of demographic processes the diffusion arises from 
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micro level interactions (Billari and Prskawetz 2003; Hammel, Mason and Wachter 1990; Wachter 

1987). At the individual level there is uncertainty regarding the outcomes, but the macro-level 

uncertainty arises mainly from the simulation and is often seen more as a nuisance that needs to be 

averaged out rather than a feature characterizing the process.  

Also in the survival formulation of the diffusion models, the stochasticity is only at the individual 

level (Diekmann 1989). These formulations may be very useful for estimating the model parameters, 

in particular because standard statistical packages often allow flexible estimation of survival models. 

However, the uncertainty in predictions (if such are made) is then limited to the uncertainty in the 

model paramaters. The Coale-McNeil model for first marriages (Coale and McNeil 1972) also 

incorporates stochasticity only at the individual level.  

Another advantage of the consistent stochastic framework that we propose is that we allow shocks 

indexed by time to influence the cohort processes. This extends the reach of cohort models to allow 

period influences and to be consistent with stochastic period models (Alho 1990; Lee 1993; Lee and 

Tuljapurkar 1994). The framework we put forward may be useful in analyzing Gompertz mortality 

models based on a declining stock of vitality with age, or for testing the hypothesis of an invariant 

rate of aging (Vaupel 2010). Our framework potentially allows researchers to also test the behavioral 

assumptions of diffusion models by seeing if outside shocks propagate over time. 

The paper is organized as follows. The next three sections show how estimation, prediction and 

prediction interval estimation can be done in the Hernes, Gompertz, and logistic cohort diffusion 

models using the dynamic time series approach. The first section on Hernes is the most detailed as 

the Gompertz and logistic cases are highly analogous to the Hernes case. The derivations of the 

analytical variance estimators are given in the Appendix. Following the introduction of the methods, 
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we illustrate the techniques by applying them to marriage and fertility. To anticipate the results, 

Table 1 summarizes the key results by showing the model equations, linearizations, prediction 

equations and prediction variance estimators.  
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THE HERNES DIFFUSION MODEL 

The Model and Its Linearization 

Let tP  be the proportion in a cohort that by age t  has adopted the innovation under study. Assume 

that 0 1, ,..., tP P P  are observed and that 1 2, ,...,t t t kP P P+ + +  are being predicted using the Hernes model. 

The Hernes diffusion model (Hernes 1972) for a proportion tP  is 

( )tt

tt PPab
dt

dP
−= 1 .         (1) 

A behavioral interpretation of the model is that a person’s chance of 1st marriage depends on a peer-

pressure effect proportional to the fraction already married tP , the choice of remaining eligible 

partners (1- tP ), and an age effect t
b  allowing for the lessening attractiveness of marriage with age 

due either to heterogeneity or to the actual process of getting older. The model can be solved for tP  

as  

0

0

1

1
1 exp

ln

t t
P

P a ab

P b

=
 − −

+  
 

,         (2) 

where 0P  is the initial value at the 1st age of marriage. The model can be linearized with respect to 

cohort age t with  

( )
bta

PPdt

dP

tt

t lnln
1

1
ln +=









−
.        (3) 
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Following Li and Wu (2008), we accommodate the model for discrete data by approximating the 

derivative as 1 1

2
t t tdP P P

dt

+ −−
≈ . This gives us  

( ) t

tt

tt g
PP

PP
bta ≡









−

−
≈+ −+

1

1

2
lnlnln 11 .      (4) 

We call the process tg  the underlying linear process.6 This is a special case of what Li and Wu 

(2008) call the latent function of the Hernes model. If tg  is assumed to be a deterministic process, 

then tP  is also deterministic, and the source of prediction uncertainty is the uncertainty in the model 

parameters. This is the approach of Li and Wu (2008), where the latent function is modeled as a 

deterministic linear regression model. Here we take a different approach and assume that the 

underlying process tg  is a time series process, for example, an autoregressive integrated moving 

average process (ARIMA). As a special case, we consider the random walk with drift model 

0

1

t

t i

i

g g tδ ε
=

= + +∑ , where 
tε  is independent, normal and zero mean shock with variance 2

εσ . This is 

a potentially useful representation of 
tg  as the model is parsimonious but allows the past influence 

the future, consistent with the nature of the diffusion concept, and allows for arbitrary random 

shocks, perhaps due to a new period effect. The parameters ( )2, εδ σ  are estimated by  

                                                 

6 Deviations from linearity in g signal deviations from model assumptions. In principle, one can use standard methods to 

test the linearity (Hinich 1982, Harvey and Leybourne 2007). In demography the number of observations is typically 

small, resulting in low test power. Therefore visual inspection of the process may be preferred over formal testing, as in 

Wu (1990). These remarks apply also to the Gompertz and logistic models.  
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1 1ˆ
2

tg g

t
δ − −

=
−

    and    
( )

1 2

1
2 1

ˆ

ˆ
3

t

i i

i

g g

t
ε

δ

σ

−

−

=

− −

=
−

∑
.      (5) 

Here, the first observation is at time 0, and there are t+1 observations of the process P. The 

differencing in equations (4) and (5) makes the denominators in (5) t-2 and t-3, respectively. 

Prediction 

One-step and k -step ahead predictions 1
ˆ
tP+  and ˆ

t kP+  are based on predictions for the underlying 

linear process g . Under random walk with drift, these are 1
ˆˆ

t tg g δ+ = +  and ˆˆ
t k tg g kδ+ = + . The 

predictions 1
ˆ
tP+  and ˆ

t kP+  can be derived in several ways; we use the prediction equation 

( ) ( )1 1 1
ˆ ˆ ˆ ˆ ˆ1 expt k t k t k t k t kP P P P g+ + − + − + − += + − .       (6). 

The equation (6) is obtained using the approximation 

( )
( ) ( )

( )
1 1

1

1 1

1 1
exp

2 1 1
t t

t t t

t t t t

P P
g P P

P P P P

+ −
−

− −

−
= ≈ −

− −
     (7) 

and solving tP  in terms of 1tP−  and tg . The core of this approximation is the assumption that a one-

step change is close to the average change over two periods, that is, ( )1 1 10.5 t t t tP P P P+ − −⋅ − ≈ − .  

The prediction equation (6) is preferred because of its simplicity and linearity in ( )exp tg . 

Alternatives include 1 1
ˆ ˆ ˆˆ1/ [1 exp[ exp( )] (1 ) / ]t k t k t k t kP g P P+ + + − + −= + − ⋅ − , which follows directly from 

(2), and a prediction that is based on solving ˆ
t kP+  from ( ) ( )2

1
ˆ ˆ ˆexp 1 expt t k t t k t kg P g P P+ + + −+ − =   . This 
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quadratic equation arises from the approximation 1exp( ) ( ) / [ (1 )]t t t t tg P P P P−≈ − − . Simulation 

experiments indicated that these alternatives are not more accurate than (6). In fact, all three 

prediction equations resulted in a small downward bias. This is because a discrete growth factor 

( )1
ˆexp ++itg  is applied to 

itP +
ˆ , whereas optimally one would apply a continuous growth factor from 

itP +
ˆ  to 

1
ˆ

++itP . The bias could be reduced by a mid-point correction, analogous to the Euler method for 

solving differential equations numerically (Griffiths and Smith 1991). In this correction, the growth 

factor is based on the average of the current and one-step-ahead prediction of the underlying linear 

process. The bias, however, is small if the step length is small, and was negligible in simulations in 

which the step length corresponded to one year. Therefore we do not use the mid-point correction. 

These remarks apply also to the Gompertz and logistic models: A small bias resulting from the 

discretization is present and could be reduced using the mid point correction, but in practice with one 

year age groups such a correction is not needed.   

Prediction Variance 

Here we describe the analytical variance estimator in the case where the underlying linear process is 

random walk with drift, and discuss how Monte Carlo simulation can be used to estimate the 

variance for a more general class of processes. The derivations of the analytical variance estimator 

are given in the Appendix.  

Analytical variance estimator. Under random walk with drift as the underlying linear 

process, the prediction variance for a k-step ahead prediction ˆ
t kP+  is 

( ) ( ) ( ) ( )[ ]∑∑
= =

−+−++ +=
k

i

k

j

jtittkt jijigPV
1 1

11

2 exp,min2expˆ γγδσ ε ,    (8)  
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where 2

εσ  is the variance of the error term ε ; tg  is the value of the underlying linear process at last 

observation; and ( )111
ˆ1ˆ

−+−+−+ −= ititit PPγ .  

Estimator (8) reveals important facts about the sources of the prediction uncertainty. First, the 

multiplying factor 2

εσ  shows that the prediction variance grows linearly with the variance of the 

error term ε  in the underlying linear process. Second, the factor ( )exp 2 tg  implies that if the 

predictions are made at a late age, the prediction variance is small. This is because the drift in tg  is 

negative, so late age (large t) results in small tg  and small ( )exp 2 tg . Conversely, if the predictions 

are made at an early age, the variance is large. Third, the term ( )exp δ implies that if the drift in g  is 

large, that is the diffusion takes place rapidly, the variance is small. Conversely, if the drift is close to 

0 and diffusion happens at a slow pace and, the variance is large. Finally, remembering that 

( )111
ˆ1ˆ

−+−+−+ −= ititit PPγ , we see that if the proportion P is close to the upper bound 1, then the 

coefficients γ  are small and additional contribution to the variance also small. Similar remarks apply 

also to the Gompertz and logistic diffusion models (discussed in the next two sections). 

Monte Carlo variance estimator. A straightforward Monte Carlo variance estimator can be 

based on simulated paths of g. For the special case of a random walk with drift and normally 

distributed innovations, 1 2, ,...,t t t kg g g+ + +  are simulated by  

( )2

1

ˆ ˆ, ~ 0,
j

t j t i i

i

g g j N εδ ε ε σ+
=

= + +∑ .       (9) 

The simulated g-paths are transformed to predictions P̂  using (6). The variance and (non)parametric 

prediction intervals can be calculated from the simulated distribution of P . In the Monte Carlo 
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setting, one is not obliged to model the innovations as being normal. Alternative distributions could 

equally well be used if the data suggests non-normality. One could also resample from the observed 

innovations, instead of assuming a known distribution.  

Table 1 summarizes the key results of this section: The Hernes diffusion model. 
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THE GOMPERTZ DIFFUSION MODEL 

The Model and Its Linearization  

Unlike the Hernes model, the Gompertz model is valid for repeated events such as non-parity 

specific fertility. Thus the variable that is being modeled need not be restricted to the unit interval. 

To keep the notation consistent, however, we continue to denote the cumulative rate for the process 

that is being modeled by tP , where t  is the age. Values 0 1, ,..., tP P P  are observed and 1 2, ,...,t t t kP P P+ + +  

are predicted. The Gompertz growth model for tP  is  

( ) t

t Pbta
dt

dP
−= exp          (10) 

and the solution for the cumulative rate is ( )]expexp[ bt
b

a
kPt −−= . 

For a behavioral interpretation of the Gompertz model see Goldstein (2010). Log of the log-

derivative linearizes the model to bta −ln . To accommodate the model for discrete data, we use the 

discretization 1 1ln 1

2
t t t

t

d P P P

dt P

+ −−
≈ , proposed by Li and Wu (2008) in the context of the Hernes 

model. With this linearization we have  

t

tt

t

g
PP

P
bta ≡







 −
≈− −+

2

1
lnln 11 .        (11) 

We model the underlying linear process 
tg  as a time series process. In the case of a random walk 

with drift, the model parameters are estimated using (5).  
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Prediction and Prediction Variance 

One-step and k -step ahead predictions 1
ˆ
tP+  and ˆ

t kP+  are based on predictions for the underlying 

linear process. Under random walk with drift, these are 1
ˆˆ

t tg g δ+ = +  and ˆˆ
t k tg g kδ+ = + . To derive 

the predictions 1
ˆ
tP+  and ˆ

t kP+  we use the approximation ( )1 1 10.5 t t t tP P P P+ − −⋅ − ≈ − , which was used 

also in the Hernes case. We proceed in deriving the predictions as follows. First note that for the 

Gompertz model ( )exp tg  describes proportional change. This can be approximated by  

( ) ( )1 1 1
1

1 1
exp 1

2
t t t

t t t

t t t

P P P
g P P

P P P

+ − −
−

−
= ≈ − = − .      (12) 

The right hand side expression for 
tg  in (12) allows expressing 

tP  in terms of the previous 

observation 1tP−  and current value of 
tg : 1 /[1 exp( )]t t tP P g−≈ − . This leads to recursive prediction:  

( )1

1

ˆ
ˆ1 exp

t

t

t

P
P

g
+

+

=
−

   and   
( )kt

kt

kt
g

P
P

+

−+
+

−
=

ˆexp1

ˆ
ˆ 1  .       (13) 

Prediction variance can be obtained analytically or by Monte Carlo simulation. The Monte Carlo 

method is identical to the Hernes case. The analytical variance estimator for a k-step ahead 

prediction ˆ
t kP+  is derived in the Appendix; the result is  

( ) ( ) ( ) ( )2

1 1

ˆ exp 2 min , exp
k k

t k t

i j

V P g i j i jεσ δ+
= =

= ⋅ +  ∑∑ .     (14) 

As in the Hernes case, the estimator (14) reveals the sources contributing to prediction uncertainty. 

First, the prediction variance grows linearly with the variance of ε . If the predictions are made at a 
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late age, so that tg  is small, the prediction variance is small. If the diffusion is rapid so that the 

absolute value of δ  is large, the variance is small. The only major difference with respect to the 

Hernes variance equation is that (14) does not include terms of the type ( )111
ˆ1ˆ

−+−+−+ −= ititit PPγ , 

which implied that as P gets closer to one, increase in variance is small. These terms are absent here 

since the Gompertz process is not limited to the unit interval.  

Table 1 summarizes the key results of this section: The Gompertz diffusion model.  
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THE LOGISTIC DIFFUSION MODEL 

The Model and Its Linearization  

As in the Hernes case, tP  is the proportion in a cohort that has by age t  adopted the innovation under 

study, 0 1, ,..., tP P P  are the observed proportions and 1 2, ,...,t t t kP P P+ + +  are predicted. The logistic 

diffusion model for the proportion tP  is  









−=

a

P
bP

dt

dP t
t

t 1           (15) 

and the solution for the cumulative proportion is ( )]exp1/[ btaaPt −+= . For a behavioral 

interpretation of the logistic diffusion model see Mansfield (1963). The model is linearized by 

btaab
Pdt

dP

t

t −+=







)/ln(

1
ln

2
. To accommodate the model for discrete data, we use the 

discretization 1 1

2
t t tdP P P

dt

+ −−
≈ . This gives us 

t

t

tt g
P

PP
btaab ≡







 −
≈−+ −+

2

11 1

2
ln)/ln( .      (16) 

We model the underlying linear process 
tg  as a time series process. In the case of a random walk 

with drift, the model parameters are estimated using (5).  

Prediction and Prediction Variance 
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Predictions ˆ
t kP+  are based on predictions for the underlying linear process. In order to express tP  in 

terms of 1tP−  and tg , we use the approximation  

( )1 1
12 2

1

1 1

2
t t

t t

t t

P P
P P

P P

+ −
−

−

−
≈ − .        (17) 

Since ( ) 1 1

2

1
exp

2
t t

t

t

P P
g

P

+ −−
= , we can approximate tP  in terms of 1tP−  and tg : 

( )2

1 1 expt t t tP P P g− −= + . The predictions can then be constructed recursively as  

( )2

1 1
ˆ ˆexpt t t tP P P g+ += +    and   ( )2

1 1
ˆ ˆ ˆ ˆexpt k t k t k t kP P P g+ + − + − += + .    (18) 

Harvey (1984) uses a similar logistic model but does not provide uncertainty estimates as “finding a 

suitable prediction interval for the stock is not as straightforward” (Harvey 1984: 645). In the 

Appendix we derive the variance estimator for the case of random walk with drift; the result is 

( ) ( ) ( ) ( )[ ]∑∑
= =

−+−++ +=
k

i

k

j

jtittkt jijigPV
1 1

11

2 exp,min2expˆ γγδσ ε     (19) 

where 2

11
ˆ

−+−+ = itit Pγ . The interpretation of (19) is analogous to the Hernes case. If the underlying 

linear process is not a random walk with drift, Monte Carlo simulation can be used to estimate the 

variance; the process is the same as in the Hernes case.  

Table 1 summarizes the key results of this section: The logistic diffusion model.  
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APPLICATIONS AND EXTENSIONS 

We use simulated data and the Hernes model to illustrate the linearization, prediction and variance 

estimation under controlled conditions. We also consider two real data applications that extend the 

models presented above. In the first application we use the Hernes model to forecast the proportion 

ever married among the French 1965-1975 female cohorts and estimate the probability of a cohort 

cross-over. In this application, we extend the single-cohort Hernes model to allow cohorts to be 

correlated in time. In the second application we forecast Dutch fertility for the 1960-1977 the 

Gompertz model and introduce a method for correcting the predictions for age-specific fecundity 

decline.  

Illustration with the Hernes model 

We generate Hernesian data using the random walk with drift model for the linear process. 

Specifically, we generate random walk observations ttt gg εδ ++= −1  with parameter values 

1.0,15.0 =−= εσδ  and 00 =g . We set the initial value 001.00 =P  and generate observations 

3521 ,...,, PPP  using the Hernesian updating equation [ ] 1 11/ (1 exp exp( ) (1 ) / )t t t tP g P P− −= + − − . We 

then “observe” this data up to age 20 and predict 21 22 35, ,...,P P P .  

FIGURE 1 ABOUT HERE 

Figure 1 Panels A-C illustrate the process. Figure 1 Panel A shows the simulated shocks tε  for one 

sample path, simulated 95% prediction interval for t>20 from 1,000 sample paths that take off at 

t=20, and estimated 95% prediction interval based on first 20 observations. The standard deviation 

estimate ˆ
εσ  is 0.092 , a value close to the true value 0.1 .  
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Figure 1 Panel B shows one full realization of the simulated linear process ttt gg εδ ++= −1  and 

estimated 95% prediction interval based on first 20 observations. The estimate for the drift is 

154.0ˆ −=δ , close to the true drift 15.0−=δ . The prediction intervals are estimated in a standard 

way using 2ˆ
εσk  as the variance estimate for k-step ahead prediction δ̂ˆ

20 kg + . Due to the 

discretization, 20g  is not observed.  

Figure 1 Panel C illustrates how the linear process 
tg  is retransformed to 

tP . The Figure shows one 

full realization of the simulated tP  and predictions and the estimated 95% prediction interval for tP , 

t>20. The predictions are constructed using the equation (6) and prediction interval using the 

equation (8). Both are based on data that is observed only up to t=20. The difference between 

predicted tP  and the one sample path at t=35 is small. More importantly, the analytic variance 

estimator accurately captures the within-model uncertainty: for the 1,000 simulated tP  paths that take 

off at t=20, the coverage rate for the variance estimator at t=35 was 92.6% at the 95% nominal level. 

French First Marriages and a Cohort Cross-Over 

The Hernes model was developed and is often used to predict the proportion married within a cohort 

(Goldstein and Kenney 2001; Hernes 1972; Li and Wu 2008). Hernes (1972) gave no uncertainty 

bounds for the predictions. Goldstein and Kenney (2001) base their marriage rate predictions on 

survey data and estimate only the uncertainty arising from sampling variation.7 Li and Wu (2008) use 

                                                 

7 Billari and Toulemon (2006) use the Hernes model to forecast cohort childlessness and base the forecast uncertainty on 

uncertainty in the model parameters, in the same spirit as Goldstein and Kenney (2001).  
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a deterministic time trend model in conjunction with the Hernes model, and base their prediction 

intervals on a mix of within-model and model parameter uncertainty.  

We use the Hernes model to predict the proportion ever married among the French female 1965, 

1970 and 1975 cohorts, and analyze the likelihood that the younger cohorts’ would catch up with the 

older cohorts’ in proportion ever married. For the 1965 cohort data is observed up to age 40; for the 

1970 cohort up to age 35; and for the 1975 cohort up to age 30. We use the full observed data to 

construct the predictions.  

To analyze the likelihood of a cohort cross-over, we first construct the predictions and prediction 

intervals for each of the cohorts using the random walk with drift specification developed earlier in 

this paper. We then extend the basic single-cohort Hernes model to a correlated-cohorts model which 

allows a more realistic analysis of the cohort cross-over. Figure 2 shows the results of the single-

cohort approach in which no correlation between the cohorts is allowed.  

FIGURE 2 ABOUT HERE 

Figure 2 shows that the prediction bounds for the 1965 cohort do not overlap with those for the 1970 

and 1975 cohorts. Thus it seems unlikely that the 1970 or 1975 cohorts would catch up with the 1965 

cohort. The prediction interval for the 1975 cohort, however, overlaps with that of the 1970 cohort, 

suggesting that the 1975 cohort may catch up with 1970 cohort. Such inference, however, assumes 

that the cohort processes are independent. In reality, period fluctuations may influence cohorts 

simultaneously, creating correlations across cohorts. The relevant correlation is the correlation in the 

innovations in the underlying random walk with drift processes. If the correlation in cohort processes 

is assumed to be zero, Figure 2 gives a reasonable picture of the likelihood of a cohort cross-over. 
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We, however, estimate the correlation for years 1995-2005 (ages 25-35 for cohort 1970 and ages 20-

30 for cohort 1975) to be 0.31.  

We use the Monte Carlo method in conjunction with the estimated cohort correlation to analyze the 

likelihood of a cohort cross-over between the 1970 and 1975 cohorts under the assumption that the 

correlation stays the same at ages not yet observed. We first estimate the drift and variance 

parameters for the underlying random walk with drift processes for the 1970 and 1975 cohorts. We 

then simulate two sets of cohort processes with 1,000 simulated marriage paths in each: in the first 

set, the correlation in the future innovations in the underlying random walk with drift processes for 

the 1970 and 1975 cohorts is zero. These processes are transformed to predictions which start at age 

35 for the 1975 cohort and at age 30 for the 1970 cohort. The results mimic those shown in Figure 2. 

In the second set of simulations, we allow the cohorts to be correlated by generating the future 

innovations in the underlying linear processes from a bivariate normal distribution with correlation 

0.31, and transform these processes to proportions ever married.  

In the simulation without correlation, 0.8% of the 1970 and 1975 cohorts’ marriage paths had 

crossed by age 40; 2.5% by age 42; and 5.4% by age 45. In the simulation with correlated cohorts, 

0.2% of the marriage paths had crossed by age 40; 1.8% by age 42; and 4.2% by age 45. Thus when 

taking the correlation in the cohort processes into account the likelihood of a cohort cross-over drops 

from above 0.05 to below 0.05.  

Dutch Completed Fertility and the Gompertz Model 

Kohler (2001) and Bernardi (2003) show that social interaction influences fertility. Consistent with 

the social interaction theories, Goldstein (2010) shows that the Gompertz model works well in 
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predicting first births and fertility if applied to cohort data. At older ages, and especially for the later 

cohorts, however, there may be departures from the model. Without prediction intervals, however, it 

is difficult to assess what is a departure from the model and what is within-model fluctuation.  

One of the factors which may result in a departure from model is declining fecundity. At ages above 

30 declining fecundity may influence fertility, so that the Gompertz model – which as such does not 

factor in fecundity – is at risk of overpredicting fertility (for example, Goldstein 2010). We use the 

Gompertz model to forecast completed cohort fertility, and introduce a method for taking declining 

fecundity into account. We use cohort fertility data for Dutch female cohorts born from 1960 to 1970 

(Human Fertility Database 2010) to first explore the fecundity decline and then estimate an 

infecundity correction. We test the correction to out-of-sample data (cohorts 1950 and 1955) and 

then forecast cohort fertility for the 1965-1977 birth cohorts.  

Figure 3a shows the estimated underlying process tg  for the Dutch female birth cohorts born in 

1960-1970. If the Gompertz model held for these cohorts, the process tg   should be approximately 

linear. As the Figure 3a shows, the decline in tg  accelerates with age. The acceleration is present for 

all cohorts and starts at an approximately same age, close to 30, suggesting that the force behind the 

acceleration is physiological rather than cohort- or period-specific. We exploit this observation to 

develop an infecundity correction which influences the rate of fecundity decline in the Gompertz 

diffusion model. The correction is based on the empirical observation that for cohort fertility and 

ages 30 and above, the underlying process tg  departs from linearity in a predictable manner.  

FIGURES 3a, 3b ABOUT HERE 
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We model the fecundity decline by using a two-stage model in which tg  is a random walk with drift 

up to age 30. For ages above 30 we assume that for each additional year of age, the pace of the 

decline accelerates at a constant rate. That is, at ages 30 and above εδ +⋅+= −

−

)30(

1

t

tt IFCgg , 

where IFC is the infecundity correction. We estimate the IFC from the 1960-1970 cohorts as follows. 

We first estimate the drift parameter for each cohort using data up to age 30. Denote this cohort 

specific drift parameter by cδ . For each cohort we construct predictions )30(

1,,
ˆˆ −

− ⋅+= t

ctctc IFCgg δ  

for ages 31-45. We estimate the parameter IFC by minimizing the sum of weighted squared errors 

( )2

, ,,
ˆ∑ −

tc tctct ggw , where the weights are defined as ( ) )815/(145 ⋅−−= twt . With this 

specification the weights decline linearly so that 8/131 =w  and )815/(131 ⋅=w . Such a weighting 

gives more weight to young ages whose contribution to fertility matters more than that of older ages. 

Using a grid search with IFC ranging from 0 to 1.500 with step length 0.001 we estimate the IFC to 

be 1.118. Figure 3b shows the predicted 
tg  for the 1960-1970 cohorts with this IFC (observations: 

ages 15-30; predictions: ages 31-45).  

Since the IFC was estimated from the data, it is not surprising that the model fits well for the 1960-

1970 cohorts. We test the external validity of the IFC = 1.118 for two birth cohorts preceding the 

data from which the parameter was estimated, the 1950 and 1955 birth cohorts. We use observations 

up to age 30; estimate the underlying process 
tg  and its parameters; and predict 

tg  with 

)30(

1,,
ˆˆ −

− ⋅+= t

ctctc IFCgg δ , with IFC = 1.118. The predictions for cohort fertility are derived from tg  

using (13) and 95% prediction intervals are calculated using (14). For comparison, we estimate the 

predictions also without the infecundity correction (that is, set IFC = 1).  

FIGURES 4a, 4b ABOUT HERE 
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Figures 4a and 4b show the observations, forecasts with and without the infecundity correction, and 

95% prediction interval for the forecasts with the infecundity correction. For the 1950 cohort, the 

observed cohort fertility at age 45 is 1.90. Without the infecundity correction, the prediction for 

cohort fertility at age 45 is 2.02 and with the correction, the prediction matches with the true value 

1.90. More importantly, the 95% prediction interval [1.82-1.94] covers the true value. For the 1955 

cohort, completed fertility at age 45 is 1.87. Without the infecundity correction, the prediction at age 

45 is 2.11. With the infecundity correction, the prediction is 1.82 and the 95% prediction interval 

[1.73-1.90] captures the true value 1.87.8 Thus without the infecundity correction, cohort fertility is 

overestimated. With the infecundity correction the predictions seem reasonably accurate.  

FIGURE 5 ABOUT HERE 

The developed methods allow probabilistic forecasting of fertility by age over cohorts. Figure 5 

shows cohort fertility forecasts for ages 30, 35 and 45 for Dutch female cohorts 1950-1977 (1950-

1975 with 5 year birth intervals and the 1977 cohort). The data is observed up to year 2008 so cohort 

fertility is fully observed at age 30 for all cohorts. At age 35, predictions are needed for the 1975 and 

1977 cohorts. The graph shows that the prediction uncertainty grows rapidly as we move to more 

recent cohorts. For the 1977 cohort, predicted cohort fertility at age 35 is 1.55 (95% PI 1.51-1.59) 

and at age 45, 1.85 children per woman (95% PI 1.72-1.98). In other words, we know that the 1977 

cohort had cumulative fertility 1.06 by year 2008. The prediction intervals suggest that by 2012, at 

                                                 

8 The prediction interval for 1955 cohort is 42% wider than for cohort 1950 even though the predictions start at the same 

age 30, and the ultimate completed fertility rates are similar. The reason for this is that the 1955 cohort had children later 

than the 1950 cohort, which means that from the model’s perspective, predictions for the 1955 cohort start earlier. 
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age 35, we expect the 1977 cohort to have on average 0.45-0.54 children more, and by age 45, 0.67-

0.92 children more than in 2008.  

The point estimates also suggest that cohort fertility is on the increase as the prediction 1.85 for the 

1977 cohort is higher than for any cohort born after 1960. The prediction interval, however, shows 

that the uncertainty in the predictions is high and grows rapidly as we move to later cohorts. For the 

1970 cohort (for which fertility is observed up to age 38), the length of the prediction interval is 0.04 

units (1.72-1.77). For the 1975 cohort, the length of the prediction interval increases to 0.22 (1.69-

1.91) and for the 1977 cohort the interval length is 0.26 units (1.72-1.98). Thus the data is consistent 

with the hypothesis that cohort fertility is increasing, but the alternative hypothesis – stable or 

decreasing fertility – can not be rejected.  

 



 

 

29 

DISCUSSION 

This paper studied prediction and error propagation in the Hernes, Gompertz and logistic innovation 

diffusion models and applied the methods to demographic processes. We developed a unifying 

framework in which the predictions and prediction intervals can be derived from an underlying linear 

process. We showed how Monte Carlo simulation can be used to estimate prediction uncertainty for 

a wide range of underlying processes, and derived and analytic closed form variance estimator for 

the case of a random walk with drift. The analytic variance estimator revealed the role of different 

sources in contributing to total uncertainty, most importantly that the earlier the predictions are made 

and the slower the diffusion, the larger the uncertainty in the predictions. In the empirical analyses 

we further extended the methods in two dimensions. First, we showed how one can move from the 

single-cohort specification to a multi-cohort setting in which the cohort processes are correlated in 

time, allowing a realistic analysis of the probability of a cohort cross-over. Second, we developed a 

method that allows correcting cohort fertility forecasts for declining fecundity.  

Simulation studies and empirical applications to first marriages and cumulative fertility showed that 

the developed methods are useful in quantifying the uncertainty in the predictions: They give a 

precise sense of the within-model error, and allow the forecasters a new ability to characterize the 

uncertainty. We showed that if the model assumptions hold less than perfectly, as in the case 

cumulative fertility where advanced age fertility seems to be constrained by extra-model factors such 

as declining fecundity, the models can be modified to take such factors into account. When 

accommodating the model for the full complexity of reality is not possible, the constructed 

prediction intervals give a lower bound for the total uncertainty.  
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This paper considers only the within-model error in the prediction uncertainty. To assess the 

magnitude of total error, future studies will need to expand the range of fitted populations, 

incorporating fertility and marriage data from the United States and other European countries, as 

well as historical data, to compare the relative importance of the within-model error to the total error. 

It is especially interesting to see where the methods do not work – for example in the case of fertility 

postponement, the tendency of the uncorrected Gompertz model to overpredict fertility at oldest ages 

is likely to be an indication of sterility, a phenomenon the model is not built to capture. Departures 

from the model may provide means of indirectly estimating the magnitude of lost fertility due to 

sterility. More generally, if the within-model error accounts for a large fraction of the total error, our 

methods can be used as gages of the uncertainty in forecasts. If, however, the within-model error is 

small, then we would recommend characterizing our methods as providing a lower-bound on 

uncertainty, to which a substantial amount of model specification uncertainty would need to be 

added. 

The new methods give raise to several further applications and research questions. First, the methods 

may prove useful in predicting period fertility rates which could be done by combining adjoining 

cohorts. Second, the models allow testing the assumptions of the social diffusion framework by 

looking if a shock in fertility at certain age influences the cohort’s subsequent fertility at older ages. 

Third, our method for correcting completed fertility forecasts for infecundity may provide a way for 

estimating the total infecundity, and fertility lost due to infecundity, in modern populations. Fourth, it 

will be fruitful to look at the correlation in model parameters across cohorts and over time and space. 

The correlations across these dimensions may be used in increasing the accuracy of the estimated 

model parameters, and in providing a richer description of past marriage and fertility changes. 
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APPENDIX 

Here we derive variance estimators for the Hernes, Gompertz, and logistic models for the case where 

the underlying linear process is a random walk with drift. For more general processes, one can use 

the Monte Carlo method, as discussed in the main text.  

Hernes Prediction Variance. In the Hernes model, one step ahead prediction is 

1 1
ˆ ˆ(1 ) exp( )t t t t tP P P P g+ += + − . Here tP  is a constant, so the prediction variance is  

( ) ( )[ ] ( )[ ]1

2

1
ˆexp1ˆ

++ −= tttt gVPPPV         (A1) 

The delta method approximation for ( )1
ˆexp tV g +    is  

( ) ( )
( )

2

1

1 1

ˆexp
ˆ ˆexp

t

t t

d E g
V g V g

dx

+

+ +

   =    
  

      (A2) 

We assume that the contribution of the uncertainty in the drift estimate is small.9 Then  

( ) ( ) ( )
2 2 2

1 1 1
ˆˆ

t t t t tV g E g g E εδ δ ε ε σ+ + += + − − − ≈ =      (A3) 

and 

( )[ ]
( )[ ] ( )δ+== +

+
tt

t ggE
dt

gEd
expˆexp

ˆexp
1

1 .      (A4) 

                                                 

9 Chatfield (1993, 2001) discusses the contribution of parameter uncertainty on prediction intervals and concludes that 

“given all other uncertainties, it is usually adequate to compute PIs by substituting parameter estimates into the true-

mode PMSE [prediction mean squared error]” (2001: p481) 
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Combining (12)-(15) we get the one-step ahead prediction variance: 

( ) ( )[ ] ( )δσ ε 22exp1ˆ 22

1 +−=+ tttt gPPPV .       (A5) 

Variance (A5) is estimated by replacing 2

εσ  and δ  by their estimators, given in (5). 

For a k-step ahead prediction, the recursive nature of the Hernes prediction equation (6) means that 

one has to take into account the cumulation of uncertainty. We approach the problem by 

approximating the Hernes predictions with  

( ) ( )∑
=

+−+−++ −+≈
k

i

ititittkt gPPPP
1

11
ˆexpˆ1ˆˆ .       (A6) 

Variance of (17) can be approximated by the double sum of the covariances: 

( ) ( ) ( ) ( )[ ]∑∑∑
= =

++−+−+

=

+−++ =







≈

k

i

k

j

jtitjtit

k

i

ititkt gggVPV
1 1

11

1

1
ˆexp,ˆexpcovˆexpˆ γγγ ,   (A7) 

where ( )111
ˆ1ˆ

−+−+−+ −= ititit PPγ . The diagonal elements of the covariance matrix can be estimated 

using the delta method as   

( ) ( )2ˆexp exp 2 2t i tV g i g iεσ δ+ = +   .       (A8) 

The off-diagonal elements ( ) ( )ˆ ˆcov exp ,expt i t jg g+ +
 
  , i j≠  result from double-counting of the 

errors: shocks 
tε  up to t i=  influence both 

t ig +  and 
t jg + , provided that j i≥ . Simulation 

experiments indicated that these off-diagonal elements have a non-negligible variance contribution. 

We approximate the off-diagonal using first order Taylor series approximation as 
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( ) ( ) ( ) ( ) ( )2ˆ ˆcov exp ,exp min , exp expt i t j t tg g i j g i g jεσ δ δ+ +
  ≈ ⋅ ⋅ + +  .   (A9) 

The interpretation for (A9) is the following. There are ( )min ,i j  common shocks tε  in both t ig +  and 

t jg + , each contributing 2

εσ  to the covariance. The terms of the form ( )exp tg iδ+  scale the 

covariance proportionally to the size of ( )ˆexp t ig + . For i j= , the equation (A9) for the off-diagonal 

elements reduces to the equation (A8) for the diagonal elements.  

The k-step ahead prediction variance estimator is obtained by combining (A7)-(A9): 

( ) ( ) ( ) ( )[ ]∑∑
= =

−+−++ +=
k

i

k

j

jtittkt jijigPV
1 1

11

2 exp,min2expˆ γγδσ ε ,    (A10)  

where ( )111
ˆ1ˆ

−+−+−+ −= ititit PPγ . This is the estimator given in the equation (8) 

Gompertz Prediction Variance. We first linearize the predictions and then approximate the 

variance with the delta method. For small ( )ktg +
ˆexp , the predictions (13) are approximated by  

( )1 1
ˆ ˆexpt t tP P g+ +≈ +    and   ( )

1

ˆ ˆexp
k

t k t t i

i

P P g+ +

=

≈ +∑ .     (A11) 

For a one-step ahead prediction the variance is ( ) ( )1 1
ˆ ˆexpt tV P V g+ +=    . We already derived the 

variance estimator for ( )1
ˆexp tg +  in the Hernes case (equations A2-A4). Here the estimator is the 

same. Thus the one-step ahead prediction variance for the Gompertz model is  

( ) ( )2

1
ˆ exp 2 2t tV P gεσ δ+ = + .        (A12) 
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The parameters of (29) are estimated by (6). For the k-step ahead prediction, we base the estimator 

on a linearization ( )
1

ˆ ˆexp
k

t k t t i

i

P P g+ +
=

= +∑  whose variance is  

( ) ( ) ( )
1 1

ˆ ˆ ˆexp cov exp ,exp
k k k

t i t i t j

i i j i

V g g g+ + +

= = =

   =    
∑ ∑∑ .     (A13) 

The elements of the covariance matrix (30) are identical to the Hernes case (equations A8-A9). By 

combining (A8)-(A9) and (A13) we get the k-step ahead prediction variance estimator: 

( ) ( ) ( ) ( )2

1 1

ˆ exp 2 min , exp
k k

t k t

i j

V P g i j i jεσ δ+

= =

= ⋅ +  ∑∑ .     (A14) 

First order Taylor series approximation would deliver the same estimator. Note that (A14) is 

identical to the Hernes estimator (A10), with the exception that here 1 1t iγ + − = .  

Logistic Prediction Variance. The logistic prediction equation (18) looks very much like the Hernes 

prediction equation (6). The key difference is that the logistic equation does not have the terms 

1
ˆ(1 )t kP+ −−  in the updating equation. Following the steps we took to get the Hernes variance 

estimator (A10), we get the k-step ahead variance estimator for the logistic model:  

( ) ( ) ( ) ( )[ ]∑∑
= =

−+−++ +=
k

i

k

j

jtittkt jijigPV
1 1

11

2 exp,min2expˆ γγδσ ε ,    (A15) 

where 2

11
ˆ

−+−+ = itit Pγ . Note that in the Hernes case, ( )111
ˆ1ˆ

−+−+−+ −= ititit PPγ . 
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Figure 1. Simulated Hernes data with random walk with drift as the underlying process. Panel A: 

Shocks ε (epsilon); Panel B: random walk with drift; Panel C: observations and predictions P.  
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Figure 2. Forecasts and 95% prediction intervals (PI) for the cumulative proportion ever married by 

age; French female cohorts 1965, 1970 and 1975. Predictions and 95 % PIs are based on the Hernes 

model with random walk with drift as the underlying linear process.  
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Figure 3. Underlying process g(t) in Gompertz model for cohort fertility and the infecundity 

correction (IFC). Data: Dutch female cohorts 1960-1970. Panel A: Observed g(t). Panel B: Predicted 

g(t) based on the estimated IFC and data up to age 30. Source: Cohort TFR Human Fertility Database 

(2010), g(t) and IFC own calculations. 
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Figure 4. Predictions and 95% prediction intervals (PI) for cohort fertility with and without the 

infecundity correction (IFC); Dutch female cohorts 1950 and 1955. Predictions use data up to age 30 

and the Gompertz model with random walk with drift as the underlying process. Data: Human 

Mortality Database (2010). 
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Figure 5. Predictions and 95% prediction intervals (PIs) for completed cohort fertility at ages 30, 35 

and 45 for Dutch female cohorts 1950-1977. Predictions and 95% PIs are based on the Gompertz 

model with infecundity correction and random walk with drift as the underlying process. For each 

cohort, data is used until the last point of observation (year 2008).  
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 Table 1. Summary of the Hernes, Gompertz and logistic models with a random walk with drift as the underlying process.  
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