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Abstract

Statistical analysis of data on the longest living humans leaves room
for speculation whether the human force of mortality is actually level-
ing off. Based on this uncertainty, we study a mixture failure model,
introduced by Finkelstein and Esaulova (2006) that generalizes, among
others, the proportional hazards and accelerated failure time models.
In this paper we first, extend the Abelian theorem of these authors to
mixing distributions, whose densities are functions of regular variation.
In addition, taking into account the asymptotic behavior of the mix-
ture hazard rate prescribed by this Abelian theorem, we prove three
Tauberian-type theorems that describe the class of admissible mix-
ing distributions. We illustrate our findings with examples of popular
mixing distributions that are used to model unobserved heterogeneity.

Keywords: mortality asymptotics, mixture survival models, frailty distri-
butions, functions of regular variation, Tauberian theorems

1 Introduction

The International Database of Longevity IDL (2010) offers detailed infor-
mation on thoroughly validated cases of supercentenarians. Gampe (2010)
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has used these data to estimate the human force of mortality after age 110.
Her analysis revealed that human mortality between ages 110 and 114 levels
off regardless of gender. It is flat at a level corresponding approximately to
a 50% annual probability of death (Gampe 2010; Robine et al. 2005). As
human populations are heterogeneous, this finding raises an important ques-
tion, which this article addresses: what is the underlying heterogeneity model
and how is individual frailty distributed if i) human mortality approaches a
constant limit, or ii) mortality abandons the plateau at later ages, where
there are still no officially recorded survivors, i.e. if the asymptotic behavior
of the force of mortality is not constant? We address this problem in much
more general settings, not restricting ourselves to a Gompertz baseline dis-
tribution and an asymptotically flat force of mortality. In fact, for a rather
general frailty survival model (which includes as special cases proportional
hazards and accelerated life models) and given asymptotic behavior of the
hazard rate (e.g., flat force of mortality at infinity), we describe the class of
admissible frailty distributions that “generates” this behavior.

A similar inverse problem was studied by Steinsaltz and Wachter (2006).
It was restricted, though, to the special case of the proportional hazards
frailty model. Assuming that the baseline hazard is asymptotically equiva-
lent to a Gompertz curve and the frailty (mixing) distribution behaves in a
neighborhood of zero like a power function c zα, where c ≡ const and α > −1,
these authors prove an Abelian theorem that the resulting mixture (popu-
lation) hazard rate is asymptotically flat. Finkelstein and Esaulova (2006)
assume the same behavior of the frailty distribution for z → 0, but for a more
general survival model. They derive independently the asymptotic result of
Steinsaltz and Wachter (2006) and, moreover, prove that the mixture hazard
rate for the accelerated life model (ALM) tends to zero with time, regardless
of the baseline lifetime distribution. This implies that if human mortality is
asymptotically flat, then the underlying model is not ALM.

Steinsaltz and Wachter (2006) also proved a Tauberian theorem for the
proportional hazards model, i.e., assuming that the mixture hazard rate
is asymptotically flat and the underlying mortality distribution follows the
Gompertz (or asymptotically Gompertz as t → ∞) law, they described the
set of frailty distributions that could produce this leveling-off. Thus, Stein-
saltz and Wachter (2006) answer our question i) for the special case of pro-
portional hazards.

If the proportional hazards model produces a mortality plateau and the
accelerated life model results in a mortality rate that approaches zero, can we
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conclude that the observed flat mortality at oldest-old ages results necessarily
from proportional hazards? In general, no because Abelian theorems do not
provide information about the speed of convergence of the mixture failure rate
to its asymptotic value. Thus, we are not formally sure whether the plateau
after the age of 110 is the eventual leveling-off of the force of mortality
(which might well be the case), or it is merely a constancy interval that
could be followed, for instance, by an eventual decrease to zero. Therefore,
the uncertainty in the asymptotic behavior of the force of mortality requires
the study of mixture models with flexible (depending on model parameters)
asymptotics.

In this paper we, first, generalize the results of Finkelstein and Esaulova
(2006) for an important wider class of frailty distributions. Second, given the
asymptotic behavior of the mixture hazard rate, we derive simple sufficient
conditions about the form of the corresponding distribution of frailty. These
general results could hopefully contribute to the better understanding of
oldest-old human mortality patterns like, for example, the observed special
case of asymptotically flat mortality.

2 Preliminaries

Conventional survival analysis models incorporate a baseline mortality law,
a term that accounts for observed heterogeneity (usually a linear predictor
of covariates), and a scheme by which these two are linked together. For
example, factors may affect individual hazard multiplicatively, thus produc-
ing the proportional hazards model. They may instead preserve the same
mortality pattern for everyone, but assign individual-specific time scaling,
thus producing the ALM. These and other models can be extended to ac-
count for unobserved heterogeneity by introducing a random variable Z ≥ 0,
called frailty, that captures individual-specific susceptibility to experiencing
the event of interest (in demography, usually death, Vaupel et al. 1979). In
the proportional hazards settings, Z is a multiplicative factor acting on in-
dividual hazard, which means that the larger the realization of Z (i.e. the
“frailer” an individual), the larger the corresponding hazard rate. Our paper
focuses on a wider class of models, introduced by Finkelstein and Esaulova
(2006) and thoroughly studied in Finkelstein (2008), which includes as special
cases the two most commonly used survival models in demography, epidemi-
ology, medicine, biology, and engineering – the proportional hazards model
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and the accelerated life model (ALM). In order to proceed with our findings,
we must first briefly present and discuss the relevant results in Finkelstein
and Esaulova (2006).

Let T ≥ 0 be a lifetime random variable characterized by a survival
function S(t). Suppose S(t) is indexed (conditioned) by a random variable
Z ≥ 0 (frailty) with a pdf π(z):

S(t, z) := P (T > t |Z = z) ≡ P (T > t | z),

where P (A) denotes the probability of event A.
Suppose the pdf f(t, z) = −S ′t(t, z) exists and denote the corresponding

hazard rate by µ(t, z):

µ(t, z) =
f(t, z)

S(t, z)
.

Then the mixture survival function and the pdf, i.e., the survival and the
density functions of the population, are

Sm(t) =

∞∫

0

S(t, z)π(z)dz , fm(t) =

∞∫

0

f(t, z)π(z)dz,

respectively. As a result, the mixture failure rate, i.e. the hazard rate of the
population, is

µm(t) =

∞∫
0

f(t, z)π(z)dz

∞∫
0

S(t, z)π(z)dz

.

Assume that the mixing distribution’s pdf π(z), z ≥ 0, belongs to the
family defined as

π(z) = zαπ1(z), (1)

where α > −1, and the function π1(z) is (i) bounded in [0, +∞), (ii) con-
tinuous and nonvanishing at z = 0. These densities represent a product of a
power term and a function that is constant at 0.

Assume that the failure distribution is characterized by a cumulative
hazard
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H(t, z) =

t∫

0

µ(x, z)dx = A(zφ(t)). (2)

As the cumulative hazard H(t, z) is always a differentiable non-decreasing
function equal to zero at t = 0, the functions A(·) and φ(·) should be non-
decreasing, differentiable, and such that A(zφ(0)) = 0. Model (2), defined
at the level of the cumulative hazard rather than the hazard rate itself,
generalizes many standard models. For instance, when A(s) ≡ s and φ(t) =
H(t), it reduces to proportional hazards. If A(s) = H(s) and φ(t) ≡ t, then
(2) is equivalent to the ALM. Note that, (2) can be trivially adjusted by an
additive term to account for additive hazards and related models (Finkelstein
2008).

Let us assume in addition that A(·) and φ(·) are strictly increasing and
lim

s→+∞
A(s) = +∞ and lim

t→+∞
φ(t) = +∞. For e−A(zφ(t)), which is the survival

function of the mixture lifetime distribution, we assume that the following
(rather weak) condition holds:

∞∫

0

e−A(s)sα ds < ∞, (3)

which means that the mixture lifetime distribution is not “too heavy-tailed”.
Assuming (1), (2), and (3), Finkelstein and Esaulova (2006) prove that the

population’s force of mortality µm(t) has the following asymptotic behavior

µm(t) ∼ (α + 1)
φ′(t)
φ(t)

t →∞, (4)

where a(t) ∼ b(t) denotes lim
t→∞

a(t)/b(t) = 1. Eq. (4) means that asymptotic

behavior of µm(t) depends only on α and the derivative of the logarithm
of the scaling function φ(t). Thus, for the Gompertz proportional hazards
model

A(s) ≡ s , φ(t) = H(t) =
a

b
(ebt − 1) ,

the mixture failure rate tends to a constant:

µm(t) ∼ (α + 1)b ≡ const.
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Note that, this result is true for any mortality distribution such that (Stein-
saltz and Wachter 2006)

lim
t→∞

µ(t)

H(t)
= b.

Further in this paper we will refer to these distributions as “Gompertz-like”.
In this paper we show, first, that the Abelian theorem proved in Finkel-

stein and Esaulova (2006) holds not only for frailty densities (1), but also for
any pdf that is a product of zα and a function of regular variation with power
α larger than −1. Then, based on (4), we prove the inverse result stating
that the class of frailty distributions is also the family of functions of regular
variation for z → 0 with power larger than −1. Finally, we consider (as
simple examples) a number of widely used frailty distributions, among which
the gamma, the log-normal, and the inverse Gaussian, and check whether
they belong to this family.

3 Mixing Distributions and Functions of Reg-

ular Variation

We adopt the following definitions Feller (1971) for functions of slow and
regular variation at 0 (see also Bingham et al. 1989).

Definition 1. A positive function G(t) defined on (0,∞) is slowly varying
at 0 if for every fixed k > 0:

lim
t→0

G(kt)

G(t)
= 1.

Definition 2. A positive function F (t) defined on (0,∞) is regularly varying
at 0 with power (exponent) −∞ < p < ∞, if

lim
t→0

F (t)

tp G(t)
= 1.

As far as we know, only a few papers relate these functions to mixture
models. For example, in the special case of a mixture of exponential distribu-
tions Abbring and van den Berg (2007) prove that if “proportional frailty” Z
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is regularly varying at 0, then the random variable Zt converges in distribu-
tion to the gamma distribution with parameters 1 and p (see also Block and
Joe 1997). We will use the idea of regular variation for z → 0 to generalize
the Abelian theorem of Finkelstein and Esaulova (2006).

As asymptotic relationship (4) depends on the mixing (frailty) distribu-
tion just in terms of its power characteristic α in a neighborhood of zero, the
definitions above suggest that (4) can be valid for a wider than (1) class of
mixing distributions with a pdf

π(z) = zα G(z) π1(z), (5)

where G(z) is a slowly varying at 0 function. In fact, instead of G(z) π1(z)
we can assume, in general, any regularly varying function with power α,
but in view of Definition 2 and relationship (1), we consider in this section
frailty with density (5). The proof in Finkelstein and Esaulova (2006) can
be generalized to account for the extra multiplicative term G(z). Thus, the
following extension to the Abelian theorem for the general mixture model
(2) holds:

Theorem 1. Let the cumulative hazard H(t, z) of a mixture failure model be
given by (2) and the pdf of frailty Z be

π(z) = zα G(z) π1(z),

where α > −1, G(z) is a slowly varying at 0 function, and π1(z), π1(0) 6= 0,
is a bounded in [0,∞) and continuous at z = 0 function.
Assume that the survival function of the mixture lifetime distribution satisfies
(3) and, in addition

lim
s→∞

A(s) = ∞ and lim
t→∞

φ(t) = ∞.

Then

µm(t) ∼ (α + 1)
φ′(t)
φ(t)

.

The proof of Theorem 1 could be found in the Appendix. The gamma
distribution is an example of a frailty distribution, widely used in various
applications, that satisfies (5). On the other hand, it could be easily shown
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that (5) does not hold for other practically used frailty distributions like the
inverse Gaussian and the log-normal.

The class of frailty distributions defined by (5) contains also, e.g., π(z) =
zα ln(1/z), as ln(1/z) is slowly varying for z → 0. This function was consid-
ered by Steinsaltz and Wachter (2006) as an example of a pdf that is admis-
sible according to the Tauberian theorem for proportional hazards mixture
models, but not belonging to the family of densities (1) in its Abelian coun-
terpart. Thus, Theorem 1 extends the class of admissible frailty distributions
at least by functions of the type discussed in Steinsaltz and Wachter (2006).

4 “Tauberian” Results for the Mixture Fail-

ure Rate

The mortality plateau observed in Gampe (2010) is independent of gender
and time trends in supercentenarian mortality between earlier and later co-
horts. As univariate frailty models are not identifiable in the absence of
covariates (Elbers and Ridder 1982; Heckmann and Singer 1984; Hoem 1990;
Yashin et al. 1994), we have to specify first, implicitly or explicitly, the un-
derlying mortality distribution in order to describe the mixing distribution.
We will assume that the cumulative hazard rate for individuals with frailty
Z = z is given by (2). Then a class of frailty distributions that produce a
mixture hazard rate with asymptotics (4) is given by the following

Theorem 2. Let the cumulative hazard rate H(t, z) be given by (2) and
lim
t→∞

φ(t) = ∞, lim
s→∞

A(s) = ∞. Suppose that the mixture failure rate µm(t)

satisfies

µm(t) ∼ c
φ′(t)
φ(t)

> 0 t →∞,

where c > 0.
Then the pdf π(z) of the mixing (frailty) distribution satisfies for z → 0

∞∫
0

e−A(z φ(t)) z π′(z) dz

∞∫
0

e−A(z φ(t)) π(z) dz

∼ c− 1. (6)
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The proof of Theorem 2 is presented in the Appendix. Since φ(t) → ∞,
only the behavior of the integrands for values of z close to zero define the
asymptotics both for the numerator and the denominator. Therefore, if we,
for example, construct a pdf that is defined for sufficiently small z as

π(z) = Czc−1 , (7)

where C > 0 is a constant, then (7) will be a trivial solution to (6). We
will show at the end of this section that regularly varying probability density
functions, which can be always represented as (Bingham et al. 1989):

π(z) = zc−1 G(z) , (8)

where G(z) is a slowly varying at z → 0 function, also satisfy (6). Note that,
in general, densities (8) do not satisfy the following relationship:

z π′(z) = (c− 1) π(z) z → 0,

which can be clearly illustrated in the case of 0 < c < 1 (i.e., when π(z)
tends to infinity as z → 0) and G(z) = log(1/z) (see also Theorem 3).

The Tauberian theorem in Steinsaltz and Wachter (2006) is a special case
of Theorem 2 in the sense that the admissible densities in their paper are
in fact regularly varying functions given by (8), although the authors do not
express them in these terms. The proof in Steinsaltz and Wachter (2006)
is based, however, on the asymptotic properties of the Laplace transform,
which plays an important role in proportional hazards models: the mixture
survival function Sm(t) is the Laplace transform of the mixing distribution,
calculated for the baseline hazard H(t) (Hougaard 1986). In (2), however,
the mixture failure rate µm(t) cannot be expressed, in general, in terms of
the Laplace transform. That is why the proof of Theorem 2 is based solely
on the properties of limits and integrals.

Theorem 2 is in a sense an inverse (Tauberian) theorem to the Abelian
theorem of Finkelstein and Esaulova (2006) and to our generalization Theo-
rem 1. It does not use condition (3), which is not surprising because Taube-
rian theorems are by default “weaker” than their Abelian counterparts.

Condition (6) is given in asymptotic terms. As a result, it is difficult
to describe explicitly the class of admissible frailty distributions within the
framework of model (2). Nevertheless, it can be shown that certain functions
of regular variation belong to this class. We will prove first the following
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Theorem 3. Suppose the assumptions of Theorem 2 hold and, in addition,
the pdf π(z) satisfies

lim
z→0

z π′(z)

π(z)
= c− 1 (9)

Then relationship (6) holds.

Assumption (9) provides a convenient criterion for checking the admissibility
of π(z). The following theorem simplifies this procedure even more.

Theorem 4. Let

1. π(z) be a regularly varying at 0 function defined by (8), where c > 0.

2. π′(z) be asymptotically monotone as z → 0.

Then relationship (9) holds.

Note: Assumption 2. in Theorem 4 can be substituted alternatively by: let
the derivative of the slowly varying function G(z) be asymptotically mono-
tone as z → 0.

The proofs of Theorem 3 and Theorem 4 are given in the Appendix. Note
that, the assumption of monotonicity at 0 for slowly varying functions is
absolutely non-restrictive in our context as only some bizarre functions, e.g.,
sin(1/z), do not satisfy this condition (see the next section). The function
G(z) = log(1/z) mentioned above is obviously asymptotically monotone for
z → 0.

5 Examples of Mixing Distributions

In this section, just for a simple illustration, we will examine several pop-
ular mixing distributions for modelling frailty – the gamma (Vaupel et al.
1979), the log-normal (McGilchrist and Aisbett 1991), the inverse Gaussian
(Hougaard 1984), as well as the beta and the Weibull distributions that are
less commonly used. For each of them we will check whether its density
satisfies the sufficient condition (9) of Theorem 3. Thus, we can classify
the distributions mentioned above into two groups: “admissible” and “non-
admissible” within the general framework (2).
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5.1 “Admissible” Frailty Distributions

The Gamma Distribution

The gamma distribution with positive parameters k and λ is the most popular
distribution for modelling frailty, especially in proportional hazards models,
due to the convenient form of its Laplace transform. The gamma distribu-
tion was first used in demography for modeling heterogeneous populations in
Beard (1959), and was later introduced by Vaupel et al. (1979) for studying
univariate frailty models. The density of the gamma distribution

fΓ(z; λ, k) =
λk

Γ(k)
zk−1 e−λz

satisfies (9) for k = c. Indeed,

z π′(z) = π(z) (k − 1− λz)

and that is why

lim
z→0

z π′(z)

π(z)
= k − 1.

As a result, the gamma distribution is a plausible mixing distribution for
the general model (2). We can prove this also by checking the necessary
conditions of Theorem 4: the gamma density satisfies (8) with k = c, the
function G(z) = λk e−λz/Γ(k) is slowly varying at 0, and its derivative is
asymptotically (z → 0) monotone.

The Weibull Distribution

Although not frequently used as a frailty (but rather as a baseline failure)
distribution, the Weibull distribution with parameters a > 0 and b > 0 is
also admissible in terms of (9). Its density

π(z) = fWeibull(z; a, b) =
a

b

(z

b

)a−1

e−( z
b )

a

(10)

implies that
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z π′(z) = π(z)
(
a− 1− a

ba
za

)

and, as a result,

lim
z→0

z π′(z)

π(z)
= a− 1

The Beta Distribution

The beta distribution with parameters a > 0 and b > 0 is sometimes used as
an alternative to the gamma, when frailty is quantified in (0, 1) rather than
(0,∞). The beta density is given by

π(z) = fBeta(z; a, b) =
za−1(1− z)b−1

B(a, b)
, (11)

where B(a, b) =
1∫
0

xa−1 (1− x)b−1 dx is the beta function. Taking advantage

of

z π′(z) = π(z)

(
a− 1− b− 1

1− z
za

)
,

we can see that (9) is fulfilled for a = c. Alternatively, we can prove that the
beta distribution is admissible by applying Theorem 4.

5.2 “Non-Admissible” Frailty Distributions

The Log-Normal Distribution

The log-normal distribution with a location parameter m ∈ R and a squared
scale parameter σ2 > 0, used in survival models among others in McGilchrist
and Aisbett (1991), has a density

π(z) = flogN(z; m,σ2) =
1

zσ
√

2π
exp

{
−(ln z −m)2

2σ2

}
,

which implies
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z π′(z) = π(z)

(
−1− ln z −m

σ2

)
.

In this case (9) does not hold as lim
z→0

ln z = −∞. As a result, the log-normal

distribution cannot be picked up as a mixing distribution in the framework
of (2). This can be checked also in terms of the criterion in Theorem 4. If
we try to express the log-normal density in terms of (8), we will have

flogN(z; m,σ2) = zc−1 G(z), G(z) =
1

zcσ
√

2π
exp

{
−(ln z −m)2

2σ2

}
.

However, this G(z) is not slowly varying at 0, and neither is its derivative
monotone for z → 0.

The Inverse Gaussian Distribution

The inverse Gaussian distribution with parameters µ, λ > 0 has a pdf

π(z) = fInvGauss(z; µ, λ) =

√
λ

2πz3
exp

{
−λ(z − λ)2

2µ2z

}
,

which yields

z π′(z) = π(z)

(
−3

2
− λ

2µ
z +

λ3

2µz

)
.

Due to the last term in the parentheses, which tends to infinity as z → 0, (9)
does not hold. Therefore, the inverse Gaussian distribution is also excluded
from the class of plausible distributions for the general model (2).

6 Conclusion

This paper aims at answering the question what distributions we can use for
frailty if mortality has certain asymptotic behavior. We study a general mix-
ture model, proposed by Finkelstein and Esaulova (2006), which includes as
special cases the proportional hazards and the accelerated failure time mod-
els. The latter cannot produce a plateau as its mixture hazard rate tends
to zero. As a result, if mortality gets flat at oldest-old ages, the underlying
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model can be proportional hazards or some other, excluding the accelerated
failure time model. In the case of proportional hazards, the mortality dis-
tribution is ”Gompertz-like” and the frailty distribution is given either as in
Steinsaltz and Wachter (2006), or by (6). If the model is not proportional
hazards, then we can still classify the plausible mixing distributions by (6) or
(9). Theorem 4 offers a suitable sufficient condition for checking whether a
distribution belongs to a subset of the “plausible” class. Among the popular
distributions used to describe frailty, the ones that satisfy (6) are the gamma,
beta, and Weibull distribution.
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Appendix: Proofs of Theorems 1 – 4

Proof of Theorem 1:
. In the proof of Theorem 1 we will take advantage of Lemma 1 in Finkelstein
and Esaulova (2006): if g(z) and h(z) are two nonnegative locally integrable
in [0,∞) functions such that

∞∫

0

g(z) dz < ∞

and h(z) is bounded and continuous at z = 0, then

lim
t→∞

t

∞∫

0

g(tz) h(t) dz = h(0)

∞∫

0

g(z) dz.

We will further refer to this result by Lemma 1.
By definition the mixture hazard rate µm(t) is

µm(t) =

∞∫
0

f(t, z) π(z) dz

∞∫
0

S(t, z) π(z) dz

. (12)

Let us first derive an asymptotic expression for the denominator of (12) when
t →∞. Using model specification (2), we can rewrite it as

∞∫

0

S(t, z) π(z) dz =

∞∫

0

e−A(z φ(t)) zα G(z) π1(z) dz.

Performing the substitution s = z φ(t) in the integrand, we get

∞∫

0

S(t, z) π(z) dz =
1

[φ(t)]α+1

∞∫

0

e−A(s) sα G

(
s

φ(t)

)
π1

(
s

φ(t)

)
ds

17



Applying Lemma 1 for g(s) = e−A(s) sα and h(s) = π1(s), we get for t →∞

∞∫

0

S(t, z) π(z) dz ∼ π1(0)

[φ(t)]α+1

∞∫

0

e−A(s) sα G

(
s

φ(t)

)
dz ∼ (13)

∼ π1(0)

[φ(t)]α+1
G

(
1

φ(t)

) ∞∫

0

e−A(s) sα dz. (14)

The last step in these derivations is due to Definition 1. Formally, this
operation is “not uniform” with respect to s. However, since the integral on
the right-hand side is converging (see (3)), everything can be easily justified
by dividing the interval of integration into two parts and performing the
respective operations.

In a similar way, taking advantage of the fact that

f(t, z) = z φ′(t) A′(z φ(t)) e−A(z φ(t)),

and again using Lemma 1 and the property of the slowly varying function,
we can express asymptotics for t →∞ of the numerator in (12) as

∞∫

0

f(t, z) π(z) dz ∼ (α + 1)φ′(t) π1(0)

[φ(t)]α+2
G

(
1

φ(t)

) ∞∫

0

e−A(s) sα dz. (15)

Substituting (14) and (15) in (12) results in asymptotic relationship (4).
Q.E.D. /

Proof of Theorem 2:
. As shown in Appendix A, the mixture failure rate µm(t) in the settings of
model (2) can be expressed as a ratio of two integrals:

µm(t) =

φ′(t)
∞∫
0

e−A(zφ(t)) A′(zφ(t)) z π(z) dz

∞∫
0

e−A(zφ(t))π(z) dz

. (16)

18



After making a substitution s = z φ(t) and integrating the result by parts,
we express the integral in the numerator of (16) as

− φ′(t)

∞∫

0

e−A(zφ(t)) A′(zφ(t)) z π(z) dz = − φ′(t)
φ2(t)

∞∫

0

e−A(s) A′(s) s π

(
s

φ(t)

)
ds =

=
φ′(t)
φ2(t)




∞∫

0

e−A(s) π

(
s

φ(t)

)
ds +

1

φ(t)

∞∫

0

e−A(s) s π′
(

s

φ(t)

)
ds


 .

Making the same substitution s = z φ(t) for the integral in the denominator
of (16), we get

∞∫

0

e−A(zφ(t))π(z) dz =
1

φ(t)

∞∫

0

e−A(s) π

(
s

φ(t)

)
ds.

Thus, the given asymptotic result for µm(t) (t →∞)

µm(t) ∼ c
φ′(t)
φ(t)

can be rewritten as

1
φ(t)

∞∫
0

e−A(s) s π′
(

s
φ(t)

)
ds

∞∫
0

e−A(s) π
(

s
φ(t)

)
ds

∼ c− 1 (17)

or, using the initial variables,

∞∫
0

e−A(z φ(t)) z π′(z) dz

∞∫
0

e−A(z φ(t)) π(z) dz

∼ c− 1.
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Q.E.D. /

Proof of Theorem 3:
. Let us rewrite (9) in an equivalent and more convenient (for our current
purpose) form:

z π′(z) = (c− 1) π(z) [1 + o(1)],

where, as usual, lim
z→0

o(1) = 0. Substituting this expression for z π′(z) into

the left-hand side of (6), we get

(c− 1)

∞∫
0

e−A(z φ(t)) π(z) [1 + o(1)] dz

∞∫
0

e−A(z φ(t)) π(z) dz

∼ c− 1.

The last step is already asymptotic with respect to φ(t) → ∞. It implies
directly the statement of Theorem 3, as in this case only the behavior of
the integrands for z → 0 defines the asymptotics of the corresponding ratio.
Q.E.D. /

Proof of Theorem 4:
. As π(z) is regularly varying (with power c− 1) and π′(z) is asymptotically
(as z → 0) monotone, then in accordance with the monotone density theorem
Bingham et al. (1989), relationship (9) trivially holds.

Now, differentiating (8), we get

π′(z) = G′(z) zc−1 + (c− 1) G(z) .zc−2

Therefore, equation

lim
z→0

G′(z) zc + (c− 1) G(z) zc−1

zc−1 G(z)
= c− 1

holds, if
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lim
z→0

z G′(z)

G(z)
= 0,

but the last relationship is true again due to the monotone density theorem,
as c = 1 for the slowly varying functions. Q.E.D. /

21


