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Christian Dudel∗
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Abstract

Markov models are important tools for quantitative social research. In this
paper, new methods for discrete Markov chains are presented. These methods
allow us to calculate the distribution of the occupation time in a subset of the state
space, the distribution of the waiting time to first entry into a subset of the state
space, and the distribution of the waiting time to final exit from a subset of the state
space. To demonstrate the usefulness of these methods, we apply them to working
life tables for Spanish males to assess how the recent financial crisis affected the
length of working life. The results show that the duration of working life decreased
considerably, a pattern that can largely be explained by later entry to and earlier
exit from the labor market. The findings also indicate that inequality in the length
of working life increased.
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1 Introduction
Markov models are important tools for quantitative social research. Classical applica-
tions include the modeling of social and occupational mobility (Prais, 1955; Hodge,
1966) and migration (Rogers, 1975). Recent examples are the analysis of transitions
between family states (e.g., Willekens et al., 1982; Schoen et al., 2007), the estimation
of healthy life expectancy (e.g., Rogers et al., 1990; Crimmins et al., 1996; Lubitz et al.,
2003; Karas Montez and Hayward, 2014), and applications in criminology (e.g., Stander
et al., 1989; Schmertmann et al., 1998).

The popularity of Markov models stems from the ease with which they can be
applied: given a set of probabilities or rates describing the transitions between some
states, a rich set of methods can be used to derive quantities like the average time spent
in a state (Kemeny and Snell, 1971; Iosifescu, 1980; Taylor and Karlin, 1984). Most of
these methods for Markov models were established well before the 1970s. Despite their
usefulness, methods for Markov models have received little attention in recent years, in
contrast to other aspects like model estimation (e.g., van den Hout and Matthews, 2009;
Wolf and Gill, 2009; Schoen, 2016).

This paper expands the tool box for Markov models. We combine earlier work by
Sericola (2000) and Skoog and Ciecka (2010), and develop three methods that can be
applied to gain deeper insight into the dynamics captured by these models: one method
for occupation times and two methods for waiting times. Starting from a discrete-time,
finite state space, homogeneous Markov chain, and considering a finite interval of time,
the method for occupation times allows us to calculate the distribution of time units
spent in any arbitrary subset of the state space. The methods for waiting times presented
in this paper allow us to assess the timing of events in Markov chains. The first of these
methods can be used to calculate the distribution of the waiting time to first entry into a
subset of the state space, while the second method gives the distribution of the waiting
time to the final exit from a subset of states, potentially through another specific subset
of states.

To better understand what can be achieved with the methods presented here, assume
that we are interested in the migration of individuals between several regions; say,
regions A, B, and C. More specifically, we are interested in the migration of individuals
from region C to the other regions. Moreover, assume that regions A and B are in
some sense similar. For modeling, we use a Markov chain in which the regions are the
states of the chain. Applying the method for occupation times presented in this paper,
we can then assess how much time is spent in either region A or B; i.e., in a subset of
the state space; from this result, we can calculate the average time, the median time,
the variance, etc. Note that knowing both the distribution of time spent in A and the
distribution of time spent in B is not equivalent to knowing the distribution of time spent
in either A or B; but that all of these distributions might be of interest. Applying the
methods for timing of events, we can calculate the distribution of the waiting time until
an individual from C migrates to A or B or to either of them, conditional on migrating.
The method for calculating the time to final exit allows for multiple transitions between
C and A and B; that is, individuals can migrate repeatedly between C and A and B.
The method presented here could be used to calculate the distribution of the time until
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individuals finally fully relocate from C to either A or B, or the distribution of the time
until individuals from C permanently and finally return to C after migrating to A and B.

The methods presented in this paper contribute to the literature in several ways.
While most other Markov chain methods yield averages, the methods presented here
yield complete distributions. Any statistic of interest can be calculated based on these
distributions, such as, for example, measures of inequality. Looking not just at specific
single states, as Markov chain methods usually do, but at subsets of states, is especially
useful when applying complex models with many states. Assessing the timing of events
like first entry or final exit is often of prime interest to the researcher, as doing so
enhances our understanding of the social process modeled through a Markov chain. Up
to now, methods that allow us to assess the timing of events have been limited. To ensure
that these methods are readily usable, R code is supplied with this paper, and can be
accessed online.

To provide an example of how the methods presented in this paper can be used,
we apply them to period working life tables for Spanish males. Working life tables
describe transitions between labor market states. For instance, the state space could
consist of the states “active” (either employed or unemployed and looking for work),
“inactive” (out of the labor market), “retired”, and the absorbing state “dead”. Given
estimates of transition probabilities, it is standard practice to calculate the expected
lifetime spent in each of the states, including the expected lifetime spent in the “active”
state, which is of prime policy interest, and is called working life expectancy (Loichinger
and Weber, 2016). In the literature, working life tables have been reported primarily for
the United States (Warner et al., 2010; Skoog and Ciecka, 2010; Millimet et al., 2010,
2003; Hayward and Richter, 1998; Hayward et al., 1996; Hayward and Grady, 1990;
Smith, 1986), but working life tables are also available for Finland (Leinonen et al.,
2016; Nurminen et al., 2005), the United Kingdom (Haberman and Bloomfield, 1990;
Butt et al., 2008), the Netherlands (Liefbroer and Henkens, 1999), and Denmark (Hoem,
1977; Willekens, 1980).

In this paper, working life tables for Spanish males are calculated using Spanish
social security data for the years 2004 to 2013. During this period, Spain was hit hard by
the financial crisis. Unemployment increased dramatically (Jimeno and Santos, 2014),
while working life expectancy decreased (Dudel et al., 2016). The highly segregated
structure of the Spanish labor market (Bentolila et al., 2012a) might imply that the
impact of the recession was heterogeneous. To assess this potential heterogeneity of the
impact of the crisis, we calculate the distribution of the lifetime spent in the “active”
state, and assess how the recession affected the quartiles of this distribution. We then use
the interquartile range to assess for the first time the inequality in the length of working
life. Furthermore, it is not clear to what degree the decrease in working life expectancy
is due to a compression of working life (i.e., to later entry into and earlier exit from the
labor force), or to unstable career trajectories (i.e., phases of withdrawal from the labor
market during working life). There is evidence for both effects (Dolado et al., 2013;
Congregado et al., 2011). Using the methods presented in this paper, we calculate the
first time an individual enters the labor market and the final time the individual leaves the
labor market; thus, we are able to disentangle the effects of later entry and earlier exit.
Our methods are especially well suited for this, as they take into account that leaving the
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Active Inactive

Retired Disabled

Dead

Figure 1: Simplified state space of the working life table ignoring age.

labor market can happen through different pathways (e.g., a period of unemployment
before retirement) and that individuals might return to work.

The remainder of this paper is structured as follows. Preliminaries and notation are
introduced in section 2. The calculation of the distribution of the time spent in a subset
of states is introduced in section 3, while the timing of events – i.e., first entry and final
exit – is discussed in section 4. The empirical application is presented in section 5.
Section 6 concludes.

2 Notation and preliminaries

2.1 The state space
LetS = {s1, s2, . . . } denote the finite state space consisting of states s j . For the empirical
application presented later in section 5, the state space will consist of the labor force
states “active”, “inactive”, “retired”, and “disabled”, all combined with age, with 15
being youngest and 99 years being the oldest age considered. For instance, there are
states labeled as “aged 15 and inactive”, “aged 16 and inactive”, and so on, until “aged
99 and inactive”. The state space also includes the absorbing state “dead”. Transitions
are only allowed between states of consecutive age, e.g., a transition from “aged 20 and
employed” to “aged 21 and inactive”, with the exception of “dead”, which can always be
reached. This means that aging and survival and transitions between labor force states
are modeled jointly. The retired state can be left only through death, as Spaniards rarely
return to work after retirement. A simplified version of the state space ignoring age is
shown in figure 1.

Let A and B be a partition of the state space; i.e., some of the states are collected
in A, while the remaining states are in B. For example, for some of the calculations in
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the empirical application, A will be defined as

A = {aged 15 and active, aged 16 and active, . . . , aged 99 and active},

i.e., A includes all “active” states, while B includes all “inactive”, “retired” and “dis-
abled” states as well as “dead”.

2.2 Counting conventions and transitions
D will denote the random variable that captures the time spent in subset A; e.g., the
time spent in the “active” labor force state. V denotes the random variable that captures
the time to the first visit ofA, and E denotes the time to the last exit ofA; e.g., the time
to the final exit from the active state. D = 0 can be interpreted to mean that no time has
been spent in A. For V , it is assumed that V = 0 means that the first entry already has
occurred. If the first entry never happens, it is assumed that V = ∞. E = 0 means that
the final exit either has already has occurred or will never occur.

Time t is assumed to be discrete; i.e., t = 0, 1, 2, . . . 1 All of the methods presented
in this paper are over a finite interval of time, starting from time 0 and running to some
other time t′. Transitions are assumed to occur mid-interval, as is common in many
social science applications (e.g., Skoog and Ciecka, 2010).2 The variables can thus take
on the following values:

D = 0, 0.5, 1, 1.5, 2, 2.5, . . .
V = 0, 0.5, 1.5, 2.5, 3.5, . . .
E = 0, 0.5, 1.5, 2.5, 3.5, . . .

An example that illustrates the reasoning behind this approach is depicted below. The
example shows the working trajectory of a single individual. Zt captures the state the
individual is in at time t, where a denotes that the individual is active in the labor market,
o denotes that the individual is inactive or is out of the labor force, and r stands for
retired:

t = 0

Z0 = a

t = 1

Z1 = a

t = 2

Z2 = o

t = 3

Z3 = r

t = 4

Z4 = r

The process starts at time t = 0, when the individual is employed. At t = 1, the
individual is still employed; at t = 2, she is retired; and so on. If A = {r }, and the
researcher’s interest lies in determining the time spent in retirement, Dt develops as

1Note that this does not restrict the applicability of the methods presented in this paper to discrete
models. Given estimates of the transition intensities of a continuousmodel, discrete transition probabilities
can easily be calculated (e.g., Rogers and Ledent, 1976).

2The results presented in this paper can easily be adapted to different counting conventions. For
instance, if transitions are assumed to occur at the end of the interval, formulas for the probability of
waiting 0.5 time units can be used for the probability of waiting one time unit.
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follows. D0 equals zero, as the process has just started and no time has passed. D1 still
equals zero, as the individual has not yet spent time in retirement. The same holds for
D2. Between t = 2 and t = 3, the individual moves from being out of the labor force
to retirement. As the transition is assumed to occur mid-interval, D3 equals 0.5. D4
equals 1.5, because the individual stayed in retirement. The time to the first entry and
the time to the last exit follow similar rules. V0 equals 2.5, V1 equals 1.5, and V2 is 0.5,
while the values of Et will depend on how the trajectory develops after t = 4.

2.3 Transition probabilities
Transition probabilities Pr(Zt+1 = s j |Zt = si) capture the probability that an individual
in state si at time t will be in state s j at time t + 1. pi j is used as a shorthand for
Pr(Zt+1 = s j |Zt = si). The transition probabilities only depend on the present state of
the process at t and not on the history at t − 1, t − 2, and so on. For this reason, the
Markov chain has the Markov property, and is memoryless. It is also assumed that the
Markov chain is homogeneous, meaning that the transition probabilities do not depend
on t, and thus do not change over time; and that the Markov chain is absorbing, which
implies that there is at least one state that will eventually be reached with probability one
and that cannot be left once reached. The latter assumption simplifies the application of
the Markov methods presented here, even though it is not strictly necessary.

P = [pi j] denotes the transitionmatrix of theMarkov chain that includes all transition
probabilities. Using this transition matrix, several quantities can be calculated (for a
general overview, see Kemeny and Snell, 1971). The expected time spent in state s j
starting from state si, ni j , is given by

N = (Is − U)−1 , (1)

where U is a transition matrix that does not include absorbing states, and Is is an
identity matrix of dimension s × s, where s is the number of non-absorbing (transient)
states. Note that this equation follows a different counting convention, and assumes that
transitions occur at the end of intervals. Because of this assumption, nii is overestimated
by 0.5, and needs to be adjusted accordingly. The row sums of N minus 0.5 give the life
expectancy conditional on starting in state si (Caswell, 2001).

3 Time spent in a subset of states
Previously published studies that provided approaches for calculating the distribution of
the occupation time include Iosifescu (1980), Sericola (2000), and Skoog and Ciecka
(2002, 2010). Skoog and Ciecka (2002, 2010) described an approach for a model
restricted to two non-absorbing states. Using different counting conventions, Iosifescu
(1980) showed how the distribution of the time spent in one specific state can be derived.
The formulas presented in this paper are more general, as they assess the time spent in a
subset of states, and they allow for an arbitrary number of (non-)absorbing states. They
are modified versions of the formulas given by Sericola (2000), and they are closely
related to first-step analysis, one of the basic tools of Markov chain analysis (e.g., Taylor
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and Karlin, 1984). The formulas are modified such that they follow the assumptions
regarding mid-interval transitions outlined in the previous section, whereas Sericola
(2000) assumed that transitions occur at the end of intervals.

The starting point is the distribution Pr(Dt = d |Z0 = si); i.e., the distribution of
the time spent in a subset of states A, conditional on starting in state si. Conditioning
on the starting state si is common for Markov chain methods. If the researcher is
interested in the unconditional distribution Pr(Dt = d), it can be derived by combining
Pr(Dt = d |Z0 = si) with a distribution of Z0, whereby the latter can be either estimated
empirically or determined through subject knowledge about the structure of the process.

Pr(Dt = d |Z0 = si) is given by Pr(Dt ≤ d |Z0 = si) − Pr(Dt ≤ d − 1|Z0 = si).
Pr(Dt ≤ d |Z0 = si) can be obtained from the row sums of D(t, d), where D(t, d) =
[Pr(Dt ≤ d, Zt = s j |Z0 = si)] captures the probability that conditional on starting in
state si the process is in state s j at time t, and the time spent inA is at most d time units.
To calculate D(t, d), P is partitioned with respect to A and B,

P =
(

PA PAB
PBA PB

)
, (2)

where PA includes the transition probabilities pi j , where both si and s j are in A, PAB
includes the transition probabilities pi j for which si is in A and s j is in B, and so on.

D(t, d) is then calculated recursively. For t = 0, the initial conditions are given by

D(t, 0) = Im (3)

where Im is a m×m identity matrix and m is the total number of states. This means that
no time has been spent in subsetA before the process starts. For t > 0 initial conditions
are

D(t, 0) =
(

0 0
0 Pt

B

)
(4)

and

D(t, d) = Pt for d > t. (5)

Condition (4) states that no time spent in A up to time t requires not leaving subset B.
Condition (5) means that after t time units, the time spent in A cannot be greater than
t, and has to be equal to or less than t.

Using these initial conditions and the decomposition of P, D(t, d) is computed as

D(t, d) =
(

PA 0
0 0

)
D(t − 1, d − 1) +

(
0 0
0 PB

)
D(t − 1, d) (6)

+

(
0 PAB
PBA 0

)
D(t − 1, d − 0.5)

for d = 0.5, 1, 1.5, 2, . . . and t > 0. The proof follows directly from Sericola (2000)
and exploits homogeneity and the Markov property. More specifically, Pr(Dt ≤ d, Zt =
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s j |Z0 = si) can be decomposed into
∑

sk∈S Pr(Dt ≤ d, Zt = s j |Z1 = sk )Pr(Z1 = sk |Z0 =

si) which equals
∑

sk∈S Pr(Dt−1 ≤ d − I(si, sk ), Zt−1 = s j |Z0 = sk )pik , where

I(si, sk ) =




0 if si, sk ∈ B

0.5 if si ∈ A, sk ∈ B

0.5 if si ∈ B, sk ∈ A

1 if si, sk ∈ A

. (7)

Recursion (6) restates these equations in matrix notation.

4 Timing of events in Markov models

4.1 Waiting time to first entry
The existing body of work on methods for calculating the time to first entry (sometimes
called first passage) is small. Grinstead and Snell (1997) presented a method for
calculating the average time needed to reach state si from state s j , but it is only applicable
to ergodic Markov chains. The approach presented here does not assume ergodicity.
Moreover, it guarantees that the entry really is the first. For this reason, the formulas
given below differ somewhat from those for the time spent in a subset of states. For the
time spent in a state, it is sufficient to consider the history of the process; i.e., how many
times a subset of states has been visited up to time t. For the time to first entry, it is
necessary to consider both what happened before t – i.e., whether the subset has been
already entered – and how the process develops after t – i.e., when the subset will be
visited for the first time (if it has not been visited before).

Let Pr(Vt = v |Z0 = si) denote the distribution of the time needed to reach a state in
A starting from state si. The formulas given below allow us to calculate Pr(Vt ≥ v, Zt =

s j |Z0 = si), which in turn can be used to calculate Pr(Vt = v, Zt = s j |Z0 = si) and then
Pr(Vt = v |Z0 = si).

V(t, v) = [Pr(Vt = v, Zt = s j |Z0 = si)] denotes the matrix that captures the probabil-
ity of having to wait v time units to enter subsetA, and of being in state s j conditional on
starting in state si. Let W(t, v) = [Pr(Vt ≥ v, Zt = s j |Z0 = si)] capture the probability
of waiting at least v time units. For v = 0 and v = 0.5, the probability can be calculated
using

W(t, 0) = Pt (8)

and

W(t, 0.5) =
(

0 0
0 Pt

B

)
. (9)

These formulas capture the history of the process until time t, and can be interpreted
like the initial conditions for the time spent in subset A given by equations (4) and (5).
Equation (8) gives the distribution of Zt conditional on Z0 = si, as Pr(Vt ≥ 0, Zt =

s j |Z0 = si) = Pr(Zt = s j |Z0 = si). Equation (9) shows that for the time to entry to be
at least 0.5, it is necessary to start in a state in B, and to stay in one of these states until
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t. Either starting in A or moving from B to A until t means that the first entry already
happened until t, and thus does not appear in (9).

For v = 1.5, 2.5, . . . the development of the process beyond t has to be accounted
for. The following formula can be used:

W(t, v) =
[(

0 0
0 Pv−0.5

B

) (
0 0
0 1mB

)]T

◦W(t, 0.5) (10)

1mB is a matrix of the same dimensions as PB with all entries equal to one, T denotes
the transpose, and ◦ denotes the Hadamard product. The matrix on the right side of the
Hadamard product is given by equation (9), and accounts for the development of the
process until t. The term on the left side of the Hadamard product is a calculation of
the probability of staying in a state in subset B for v or more time units, conditional on
starting from a state in subset B; formally

∑
sk∈B Pr(Zt+v−0.5 = sk |Zt = s j ) for s j ∈ B.

For v = 1, 2, . . . W(t, v) will equal W(t, v + 0.5) because the transitions between states
are assumed to occur mid-interval.

V(t, v) is calculated as

V(t, v) =W(t, v) −W(t, v + 1) (11)

for v = 0.5, 1.5, . . . and

V(t, 0) =W(t, 0) −W(t, 0.5). (12)

Finally, the probability Pr(Vt = v |Z0 = si) can be calculated from the row sums of
V(t, v).

Note that the process may never visit the subset A, such that V = ∞. This will
usually happen when one or more of the states in B are absorbing. In this case, both
Pr(Vt ≥ v |Z0 = si) and Pr(Vt = v |Z0 = si) will be non-zero for arbitrarily large values
of v. Similar issues occur for the recursive schemes of Skoog and Ciecka (2010). If the
Markov chain is absorbing, as is assumed here, then for t and v above some thresholds
t′ and v′ only entries of V(t′, v′) are non-zero for which s j denotes an absorbing state,
and the calculation can be stopped. Alternatively, or if the chain is not absorbing, a
pre-specified time t′′ may be used. If the researcher is interested in the distribution of V
conditional on V being finite, it suffices to condition on V < v′.

4.2 Waiting time to final exit
So far, Skoog and Ciecka (2010) are the only scholars who have presented an approach
for calculating the time to last exit. While they used a Markov chain restricted to two
non-absorbing states, the method presented below works with an arbitrary state space.
The basic reasoning is again different from that of the two previous cases. For the
distribution of occupation times, the history of the process has to be considered; and for
the time to first entry, both the history of the process and its future development have to
be taken into account. On the other hand, for the time to final exit from a subsetA, only
the future development is of importance. Essentially, starting from t = 0, the probability
that the waiting time to final exit will equal t+0.5 is captured by the probability of being
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in subset A at time t, of being in B at t + 1, and of staying in B thereafter. The exact
path to being inA at t is of no importance; i.e., it does not matter how the process ends
up in A. This means that up to t, the process can repeatedly move between A and B.

Let E(t, e) denote the matrix with entries Pr(Et = e, Zt = s j |Z0 = si), which
capture the probability of exiting A for the last time in e time units, and of being in
state s j conditional on starting in state si. The distribution of the time to last exit,
Pr(Et = e|Z0 = si), can be calculated from the row sums of E(t, e).

To calculate E(t, e), it is assumed that transitions from A to B are only possible up
to some time step t = τE + 1 of the process. This means that the last transition from A
to B can occur mid-interval between τE and τE +1; i.e., after the process has progressed
τE + 0.5 time steps, and not any later. For some non-absorbing Markov chains, τE
might not exist, and transitions between A and B are always possible. In this case, the
researcher still needs to set a value for τE to apply the method described below. This
changes the interpretation of the results slightly, as the additional qualification is needed
that they are conditional on the final exit happening up to τE time steps, or earlier.

Assuming that there is some finite value for τE , E(τE, e) is given by

E(τE, e) = 0 for e ≥ 1, (13)

which formalizes the assumption stated above that no transitions occur after τE , as at
t = τE time to last exit can only equal zero or 0.5. The corresponding probabilities are
given by

E(τE, 0) =
[(

PA 0
PBA PB

)
1m

]T

◦ PτE . (14)

and

E(τE, 0.5) =
[(

0 PAB
0 0

) (
0 0
0 1mB

)]T

◦ PτE (15)

The matrix on the right side of the Hadamard product in both equation (14) and equation
(15) keeps track of the state si in which the process is at time τE . In equation (14), the
term on the left side of the Hadamard product captures whether there is no transition
from A to B. The term in equation (15) follows a similar logic, and accounts for
transitions from A to B.

For more general results, the following notation can be used:

PE =

(
0 PAB
0 0

)
and PS =

(
PA 0
PBA PB

)
. (16)

For e = 0.5, 1.5, . . . E(t, e) can be written as

E(t, e) = (Pe−0.5PEPτE−t−e−0.5
S 1m)T ◦ Pt (17)

The matrix on the right side of the Hadamard product again gives the state at time t. The
term on the left side, read from left to right, captures the future progress of the process
by keeping track of the state the process is in until t = e − 0.5. Then, a transition from
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A to B must occur for E to equal e, as captured by PE . PτE−t−e−0.5
S accounts for the

requirement of staying in B after moving there from A. Finally, the identity matrix
sums over all of the states the process can be in at time τE + 1, as only Zt and Z0 are of
interest. Note that

E(t, e) = 0 for e ≥ τe − t + 1. (18)

For e = 0

E(t, 0) = (PτE−t+1
S 1m)T ◦ Pt (19)

can be used, and for e = 1, 2, . . .

E(t, e) = 0. (20)

Note that E = 0 has to be interpreted differently than V = 0. V = 0 means that
the first entry already has occurred. If the first entry has not yet occurred and will not
occur in the future V = ∞. By contrast, E = 0 means that the last exit either has already
occurred or will never occur.

For the last exit, it may be desirable to not just specify which subset is left, but also
to specify whether the exit is directed to a specific subset. As before, A denotes the
subset that is left. Let B denote the exit subset, and let C denote the subset of all of the
remaining states of S that are not of special interest. PE and PS can now be written as

PE =
*.
,

0 PAB 0
0 0 0
0 0 0

+/
-

and PS =
*.
,

PA 0 PAC
PBA PB PBC
PCA PCB PC

+/
-
. (21)

Otherwise, the same formulas as before can be used, but they now give the time to last
exit to subset B.

5 Application to working life tables for Spanish males

5.1 Background
In 2008, the Spanish economy was hit hard by the global financial crisis that has since
been aptly named the “Great Recession”. According to Eurostat, the unemployment rate
in Spain increased dramatically, from 8.2% in 2007 to 24.8% in 2012, and it remains high
(19.6% in 2016). Several explanations for the severe impact of the crisis on Spain have
been proposed, including reasons related to the structure of the Spanish labor market,
which is segregated into two groups: highly protected workers with permanent contracts
and individuals with weakly protected fixed-term contracts (Bentolila et al., 2012a,b).
Moreover, the Spanish labor market is characterized by high levels of overqualification
and by regional mismatches between labor demand and supply (Dolado et al., 2013).
These factors imply that the effects of the recession may have been heterogeneous, and
that individuals who were well integrated in the labor market and were protected by
permanent contracts might not have been as affected as individuals who were already in
a more precarious position before the recession.
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While there is evidence that the length of working life decreased due to the recession,
and that the impact of the crisis was indeed heterogeneous (Dudel et al., 2016), it is
less clear to what degree the observed losses in working life expectancy are due to a
compression of working life (i.e., to later entry into and/or earlier exit from working
life), or to working life consisting of more and longer periods of temporary withdrawal
from the labor force. Earlier research has provided evidence for both effects.

First, it appears that young Spaniards have been entering the labor market later in
an effort to avoid becoming unemployed, as unemployment rates in Spain are especially
high among young adults (Dolado et al., 2013). The evidence regarding earlier exits is
less clear. In the past, individuals who exited the labor market early often went through
disability programs rather than old-age pension schemes, as disability programs were
less restrictive, and the disability benefits tended to be more generous than the pension
benefits available to early retirees (García-Gómez et al., 2012; Benavides et al., 2015).
However, since recent reforms have made this pathway less attractive, fewer Spaniards
are collecting disability benefits (Silva and Vall-Castello, 2012). Nonetheless, displaced
workers in Spain still have a high probability of retiring after reaching age 60 (Tatsiramos,
2010), and these early labor market exits may be associated with the recession.

Second, there is also clear evidence of increases in the average number and length of
spells of temporary withdrawal from the labor force (Dudel et al., 2016). This pattern
has been observed among individuals who have become unemployed, are not entitled
to unemployment benefits, and do not expect to find a job (Congregado et al., 2011).
These individuals leave the labor market as so-called “discouraged workers”, although
they might return to the labor market when economic conditions improve. Moreover,
unemployed individuals may lose their eligibility for unemployment benefits after a
period of time (Venn, 2012). These workers might then become discouraged workers
as well, or they might find work in informal labor.

5.2 Data
The data comes from the ContinousWorking Life Sample (CWLS;Muestra Continua de
Vida Laboral) for the years from 2004 to 2013. The CWLS is a 4% random sample from
the Spanish social security register, which covers all individuals who are either making
contributions to the social security systemor are receiving social security benefits (López
Gómez et al., 2016).

The initial sample was taken in 2004, and sample members are followed over time.
Individuals who lose contact with the social security as a consequence of becoming
inactive drop out of the sample, and are replaced with new individuals randomly drawn
from the register; however, these individuals might reenter the sample if they resume or
start receiving benefits or making contributions. As the dataset does not include inactive
persons, it is selective with respect to this labor force state. A similar problem exists for
migration out of Spain: individuals who leave the country are lost to the sample, but
may reenter. While it has been shown that this could bias results for females, results for
males are affected to a lesser extent (Dudel et al., 2016). For this reason, the working life
tables are reported for males only, corrected for the selectivity of the dataset (see below).
The date of death is also recorded in the CWLS. As the estimates of mortality rates and
life expectancy derived from the CWLS are closely aligned with the life tables of the
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Human Mortality Database (2015), it is assumed that the dates of death are recorded
correctly.

In total, the working life trajectories of 781, 599 males are included in the analyses.
For each year and each individual, a labor force state was generated based on which
state the individual occupied for the majority of the year. The states shown in figure 1
(“active”, “inactive”, “retired”, “disabled”, and “dead”) combined with ages 15 to 99 are
considered. It is assumed that everyone aged 15 and under is inactive. Due to the nature
of the dataset, the states are based on paying contributions or receiving benefits: active
individuals either make social security contributions or receive unemployment benefits;
retirement is defined through the receipt of pension benefits; and individuals count as
disabled if they receive disability benefits. If individuals are missing from the dataset
for one or more years, it is assumed that they are inactive, provided that they reenter the
dataset later or that no date of death is given.

5.3 Estimation
Over the period from 2004 to 2013, there are 6, 622, 086 transitions in the dataset; i.e.,
transitions from being in state si in year t to being in state s j in year t+1. The transitions
are modeled using discrete event history analysis (e.g., Allison, 1982). The transition
probabilities are estimated using multinomial logistic regression using the state at time
t+1 as the dependent variable, which leads to four equations. The state at time t is used as
one of the explanatory variables. Period is controlled for by including dummy variables.
Age is included using cubic smoothing splines (Yee and Wild, 1996). This regression
model is applied to each of five subsamples. The first subsample covers ages 15 to
29 (early working life); the second subsample includes ages 30 to 54 (prime working
age); the third subsample covers ages 55 to 64 (transition to retirement); the fourth
subsample starts with age 65 and includes all ages up to 79; and the fifth subsamples
covers ages 80 to 99 (old age). Our decision to perform the estimation by subsamples
was motivated by computational issues caused by the large sample size, but an additional
benefit of this approach is that it implicitly introduces interactions with all variables by
age group, and allows for discontinuities in the otherwise smooth age trajectory. The
transition probabilities resulting from this estimation exercise were adjusted using the
non-parametric correction procedure proposed by Dudel et al. (2016), which relies on
external data sets and corrects for the selectivity of the CWLS.

The transition probabilities estimated from transitions between 2004 and 2005 are
used for a Markov chain, viz., a working life table; the transitions between 2005 and
2006 are used for another Markov chain, and so on. The indicators derived for each
working life table thus follow a period perspective, and show how individuals would fare
if the conditions of each pair of years (e.g., 2004/2005) prevailed for a period spanning
the greater part of life starting from age 15. The use of this period perspective is standard
practice for the estimation of working life tables (e.g., Butt et al., 2008; Warner et al.,
2010; Skoog and Ciecka, 2010).

In the current analysis, all of the periods up to 2006/2007 are considered as pre-
recession periods. The period 2007/2008 is considered to be a transition period because
2007was not fully affected by the recession, whereas 2008was fully affected. 2008/2009
and the following periods are considered as recession periods. To assess the effects of the
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recession,we compare the last pre-recession period 2006/2007 with the first recession
period 2008/2009. We cannot rule out the possibility that factors other than the recession,
such as policy changes, had an impact on the indicators that are calculated. Still, the
recession itself can be seen as an exogenous shock for the labor market. Given that
before and after this shock levels of year-to-year variation in the labor market were
comparatively low, it is plausible to assume that the recession was the main driver of the
differences between 2006/2007 and 2008/2009.

For each of the periods, the expected lifetime spent in each of the labor force states
(“active”, “inactive”, “retired”, “disabled”) starting from age 15 and being inactive is
calculated. Age 15 and being inactive is also used as the conditioning state for all of
the other results, as in Spain individuals are not allowed to work before age 16. Thus,
this state is a natural starting point. The results should be interpreted accordingly. For
instance, if working life expectancy is reported to be x years, this means that an inactive
15 year old Spanish male could expect to have x years of labor market activity, given
that the conditions of a specific period prevail, as defined above.

Using the methods described in this paper, the quartiles of time spent in each state
are calculated. This allows us to assess the heterogeneity of the effects of the recession.
The interquartile range is used to assess whether inequalities in the duration of working
life have been affected by the recession. Moreover, the age at first entry into the labor
force and the age at final exit are estimated, where the final exit can be through any of
the other states. It is important to distinguish the latter age from the age at retirement,
which only captures one of the three possible pathways out of the labor market. For
instance, disability was – and to some degree still is – a form of early retirement in Spain
(García-Gómez et al., 2012; Benavides et al., 2015). Combining all of these measures
will allow us to draw a more complete picture of the impact of the recession on working
life in Spain.3

For all of the calculations, the free statistical software R was employed (R Core
Team, 2015). The vgam package for R was also used (Yee, 2010). All of the code and
the (intermediate) results are available online.

5.4 Results
Figure 2 shows how the expected lifetime spent in each of the four states has developed
over time. The time spent in disability and the time spent in retirement do not seem
to have been affected by the recession: the time spent in disability has fluctuated at
around two years, while the time spent in retirement has increased slowly but steadily in
lockstep with increases in life expectancy. In contrast, there have been drastic changes
in working life expectancy (WLE; active state): WLE was 39.7 years in 2006/2007, and
fell 6.4 years to 33.3 years in 2008/2009. The lifetime spent in the inactive state is the
mirror image of WLE, and increased by 6.6 years. After the 2008/2009 period, both
WLE and the lifetime spent in the inactive state fluctuated somewhat, but roughly stayed
at the same level.

3While standard errors and related quantities are not of major interest here due to the large sample
size of the data, they can be calculated using the bootstrap for all quantities presented in this paper (Craig
and Sendi, 2002).
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Figure 2: Life expectancy of Spanish males spent in labor market activity, inactivity,
disability, and retirement (measured in years); 2004-2013.

While results like those from figure 2 are routinely calculated in the literature, the
findings shown in figures 3a and 3b go beyond the results that are usually presented.
These figures depict the quartiles of the distribution of WLE (fig. 3a) and of the lifetime
spent in the inactive state (fig. 3b), in addition to the respective expectation that was
already shown in figure 2. As can be seen, the effect of the recession differs strongly by
quartile. For WLE, the first quartile decreased by eight years and the median decreased
by seven years, while the third quartile decreased by only five years. For the lifetime
spent in inactivity, the changes are of the same magnitude, but have the opposite sign:
the first quartile increased by four years, the median increased by six years, and the
third quartile increased by 10 years. Taken together, these findings imply that those
individuals who had low labor market attachment before the recession lost more WLE
than those who stayed long in the labor market. Moreover, the interquartile range, and
thus the levels of inequality inWLE and of the lifetime spent in inactivity, increased: for
WLE, the interquartile range was nine years pre-recession, and increased by three years
to 12 years during the recession. For the lifetime spent in inactivity, the interquartile
range was four years pre-recession and 10 years during the recession.

None of the occupation times presented so far necessarily imply a consecutive
sequence of years. For example, at one extreme, the WLE estimate of 39.7 years in
2006/2007 could mean a consecutive sequence of 39.7 years, but it could also reflect
any number of episodes of activity with breaks in-between that add up to 39.7 years of
activity. This makes the drop in working life expectancy of 6.4 years in 2008/2009 hard
to interpret: did the period in which individuals occupy the “active” state become shorter
due to later entry and earlier exit, or did the breaks between activity episodes become
longer or more common, or both? Figure 4 shows the results of an analysis based on the
approaches presented in section 4 that allow us to disentangle this problem. Figure 4a
shows the age at which the active state is reached for the first time, if it is reached at all,
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Figure 3: Quartiles (1st, 2nd, 3rd) of lifetime spend in activity (a) and inactivity (b).
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as is the case for the large majority of males. In figure 4b, the age at which labor force
activity is left for the last time is shown; i.e., the age at final exit through retirement
(solid line) and through any pathway, including, but not restricted to, retirement, and
excluding death (dashed line).

The average age at first entry was around 17.6 years before the recession. It increased
by roughly 2.9 years to around 20.5 years during the recession, which implies that young
Spaniards delayed their entry into the labor market considerably. On the other hand, the
age at withdrawal from the labor market did not change as much, and contributed to a
lesser extent to the decrease in WLE. Measured as the average age at retirement (i.e., the
average age at which individuals started receiving pension benefits), the age fluctuated
only slightly at around 63.5 years. If measured as the final exit from the labor market
through any pathway not restricted to retirement, the average age is about five years
lower. Due to the recession, the age declined slightly from 58.9 years to 57.8 years.
Taken together, these findings imply that roughly four years of the 6.4-year decrease in
WLE can be explained by later entry to and earlier exit from the labor market.

6 Conclusion
In this paper, new methods for Markov chains were presented. These methods include a
method for calculating the distribution of the time spend in a subset of the state space,
a method for calculating the distribution of the waiting time until the first entry into a
subset of states, and a method for calculating the distribution of the waiting time until
the final exit from a subset of states. To provide an example of how they can be used, the
methods were applied to working life tables for Spain in order to assess the impact of the
financial crisis on the length of working life. The recession that followed the financial
crisis of 2007/2008 had a tremendous impact on the Spanish labor force, leading to a
decrease in working life expectancy of more than six years. By applying the methods
described in this paper, we demonstrated that around 60% of this decrease could be
explained by later entry into and earlier exit from the labor market. Moreover, we found
that the impact of the recession was rather heterogeneous, and that individuals who
already had a relatively low working life expectancy before the recession experienced
greater decreases than individuals who had a relatively high working life expectancy;
these effects led to an increase in the levels of inequality in the length of working life.

These insights would not have been possible using the standard Markov chain tools,
and the example highlights the usefulness of the methods presented here, which provide
deeper insights into the process under study, and yield easily interpretable quantifications
of its underlying dynamics. Still, whether an application of these methods yields valid
results depends on the validity of the discrete time, discrete state Markov chain model
for a given application, and on valid estimates of transition probabilities. For instance,
Langeheine and van de Pol (1990) have pointed out two commonly occurring reasons
why the Markov model might be inappropriate: measurement error and population
heterogeneity. Both issues have been addressed in the literature (e.g., Heckman and
Singer, 1982; Gill, 1992; Liu et al., 1997; van den Hout et al., 2014). While these works
show that potential issues can be tackled, the methods presented in this paper do not
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resolve them. It might therefore be necessary to use these methods in conjunction with
other approaches.

The application presented in this paper focused onworking life tables commonly used
by sociologists, demographers, economists, and actuaries; but the methods developed
here are not limited to this example. Other potential applications include, but are not
limited to, multistate life tables modeling family states (e.g., first entry into marriage;
final exit from being single), migration (e.g., first move; final return to home region),
and health (e.g., first period of disability; final exit from healthy to sickness).
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