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Modelling general patterns of digit preference
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Abstract: In many applications data can be interpreted as indirect observations of a latent distri-
bution. A typical example is the phenomenon known as digit preference, i.e. the tendency to round
outcomes to pleasing digits. The composite link model (CLM) is a useful framework to uncover such
latent distributions. Moreover, when applied to data showing digit preferences, this approach allows
estimation of the proportions of counts that were transferred to neighbouring digits. As the estimating
equations generally are singular or severely ill-conditioned, we impose smoothness assumptions on the
latent distribution and penalize the likelihood function. To estimate the misreported proportions, we use
a weighted least-squares regression with an added L1 penalty. The optimal smoothing parameters are
found by minimizing the Akaike’s information Criterion (AIC). The approach is verified by a simulation
study and several applications are presented.
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1 Introduction

When people read an analog scale or report numeric results, a commonly found
effect is that certain preferred end-digits are reported substantially more often than
the general pattern of the distribution suggests. These digits are typically multiples
of 5 and 10, possibly combined with tendencies to avoid certain unpleasant numbers
like, e.g. 13. This type of misreporting leads to unusual heapings at the preferred
digits and the observed data actually present a biased, though well-understood image
of the true distribution. This tendency is called digit preference or age heaping, if the
reported numbers refer to ages.

Different techniques have been developed in various fields to deal with this
problem. Digit preference is most likely to be seen whenever laymen are involved.
Hence age misreporting has long been an issue in demography (Myers, 1940;
Das Gupta, 1975; Coale and Li, 1991; Siegel and Swanson, 2004). Suggested
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solutions to compensate for age heaping are the application of summary indices
to quantify the extent of misreporting and ad hoc procedures to reduce digit
preferences and adjust age distributions. Mari Bhat (1990) proposed a model to
estimate transition probabilities of age misstatement based on iterative adjustments
and generalized stable population relationships.

Other self-reported information like height and weight (Rowland, 1990), year of
menopause (Crawford et al., 2002) or retrospective studies in fecundability (Ridout
and Morgan, 1991; Pickering, 1992) and breast-feeding duration are the typical
examples in epidemiology, where digit preference is obvious. But professionals are
also prone to heaping of certain numbers, as is, for instance, demonstrated in blood
measurement readings (Hessel, 1986; Canner et al., 1991; Wen et al., 1993; Bennett,
1994).

Besides the quantification of digit preferences and the assessment of their
consequences, only a few studies aim to model, estimate and correct the process of
misreporting (Heitjan and Rubin, 1990; Ridout and Morgan, 1991; Pickering, 1992;
Crawford et al., 2002). In this paper, we expand the idea of Eilers and Borgdorff
(2004), and propose a general modelling technique to estimate the unobserved
latent distribution, free of the effects of misreporting. Additionally, we provide
estimates for the misreported proportions. This problem can be viewed as an inverse
problem, where the actually observed values are linear compositions of a latent
sequence representing the true distribution. This sequence is to be estimated and
the composition pattern reveals the amount of misreporting. The composite link
model (CLM), proposed by Thompson and Baker (1981), provides an elegant
framework for modelling indirect observations of counts. It is an extension of the
generalized linear model (GLM) (Nelder and Wedderburn, 1972; McCullagh and
Nelder, 1989), and can itself be easily extended to allow for smooth predictors by
incorporating a penalty on the roughness of the parameter vector (Eilers, 2007).
Such smoothness assumptions allow us to solve an otherwise under-determined
problem.

The paper is structured as follows. A typical example of age heaping will set the
stage in the following section, after which the essence of the CLM is introduced
in Section 3, including the specific form of the composition matrix. Estimation
of the model is covered in Section 4, including difference penalties for assuring
smoothness, the estimation of the preference pattern and the choice of optimal
smoothing parameters. In Section 5, we illustrate the approach via simulated data
and present some applications. A critical discussion of the method concludes the
paper.

2 An example of digit preference

As an example for manifest digit preference Figure 1 shows the age distribution of
adult Portuguese females (ages 30–89), who died during 1940 (Instituto Nacional de
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Figure 1 Age-at-death distribution for Portugal, Females, 1940.
Source: Instituto Nacional de Estatística, 1941.

Estatı́stica, 1941). Systematic peaks at ages ending in 0 and, less prominently, 5 are
typical features for countries with less accurate vital registration, which certainly was
the case in Portugal almost seven decades ago.

Flanking the peaks, troughs are found at ages ending in 9, 1, 4 and 6. Moreover,
this phenomenon seems particularly severe at older ages. Also even numbers in general
seem to be preferred over odd digits.

Current age-at-death distributions are the result of the number of births and
deaths, and migration flows in the past, and individual years may show particular
outcomes, like epidemics, when birth cohorts are considerably smaller than the
years before and after the crisis, or years of armed conflicts, when deaths are
higher, especially among men. Thus there is the possibility of irregularities in an
age distribution; however, the specific reasons for such irregularities are usually well
understood from the historic records. In the absence of such specific past events, the
assumption of a smooth age distribution is reasonable, implying that the peaks and
gaps are the result of certain preferences in reported ages. If spikes or troughs in the
distribution are due to events in the past, rather than digit preference, these digits
will be excluded from the smoothing procedure.

Statistical Modelling 2008; 8(4): 385--401
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The observed frequencies, therefore, can be viewed as the outcome of a
misreporting process that transforms a smooth, but latent age distribution into
observed data. The counts at the preferred digits are composed of the actual values
at these ages plus the misclassified cases from the neighbouring categories due to the
prevalent preference pattern.

3 The composite link model

We assume a smooth discrete sequence γ = (γ1, . . . , γJ )′, which is the unknown
latent distribution. To ensure non-negative elements of γ , we denote this sequence as
γ = exp(β), with β smooth, that is neighbouring elements of β being of similar size.
The elements γj , j = 1, . . . , J are the counts that would be expected, if there were no
digit preferences. However, the mechanism, which actually generates observations,
operates by linearly composing the values in γ to a vector µ = Cγ . The observed
counts y are realizations from Poisson variables with E(y) = µ, i.e.

P(yj ) = µ
yj

j e−µj

yj ! . (3.1)

The composition matrix C embodies the digit preference mechanism by partly
redistributing certain elements of γ to neighbouring, preferred values in µ. In a
general CLM the composition matrix C needs not be a square matrix as several
categories could be lumped together. In our application, because expected counts are
redistributed only partly, the matrix C is of dimension J × J .

3.1 The composition matrix C

The composition matrix C describes how the latent distribution γ was mixed before
generating the data, and it is characteristic for the predominant preference pattern.
Consequently, for modelling digit preferences, we have to define the matrix C
according to our assumptions of the misreporting process. Eilers and Borgdorff (2004)
allowed misreporting only for a few selected digits, with probabilities that did not
change with the size of the underlying number, e.g. the probability for a transfer from
10x + 7 to 10x + 8 was assumed to be the same for all x ∈ N0.

In this paper we will assume that misreporting will only move observations to
the immediate neighbouring digits, both to the left and the right. For example,
observations are allowed to move from 9 to 10, but also from 9 to 8. We will
not, however, consider preferences that move observations by two or more steps.
For instance, we do not assume that observations get shifted from 8 to 10 nor from
12 to 10.
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We denote by pjk the proportion of γk that is moved from category k to category j .
Allowing only one-step transitions implies that pjk = 0 for |j − k| > 1. If we
summarize these proportions in the J × J composition matrix C, we obtain

C =




1 − p21 p12 0 0 · · · 0

p21 1 − p12 − p32 p23 · · · ...

0 p32 1 − p23 − p43 p34 · · · ...

0 0 p43
. . .

. . . 0
...

...
...

. . . 1 − pJ−2,J−1 − pJ ,J−1 pJ−1,J

0 · · · · · · 0 pJ ,J−1 1 − pJ−1,J




(3.2)

The diagonal elements cjj = 1 − pj−1,j − pj+1,j of C specify the proportions of
the γj that do not get redistributed. Note that all columns in C sum up to 1. In case
we want to exclude a digit from this redistribution process, because we want to keep
specific non-smooth features attributable to known mechanisms, we can adapt the
matrix C at this very position.

It is obvious that the 2·(J −1) unknown elements pjk cannot be estimated without
imposing additional restrictions. We will estimate them via a penalized weighted
least-squares approach, which will be discussed in detail in Section 4.2.

4 Estimating the CLM and the preference pattern

4.1 The CLM for a smooth latent distribution

Thompson and Baker (1981) present the CLM and the estimation algorithm very
succinctly, and Eilers (2007) extended the approach to smooth latent distributions
estimated by penalized likelihood. For easier reference, we describe the most crucial
steps in the Poisson context here.

In case of no digit preference, we would be able to directly observe counts zj ,
j = 1, . . . , J , following a Poisson distribution such that

P(zj ) = γ
zj

j e−γj

zj ! .

In our applications γj = exp{βj }, and smoothness of β immediately implies
smoothness of γ . In case we want to model a flexible functional dependence of the
latent means γ on some covariate ν, we would expand this function into a B-spline
basis. This leads to the more general formulation γ = exp{Xβ}, where the design
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matrix X contains the basis elements covering the range of z, and the vector β gives
the weights by which the individual B-splines in the basis get multiplied. Again,
smoothness of the vector β implies smoothness of γ . In our applications X = I , the
identity matrix.

Estimates of the βj in this GLM would be achieved by the iteratively reweighted
least-squares (IWLS) algorithm, which in matrix notation is given by

X′W̃Xβ̃ = X′W̃
{
W̃

−1
(z − γ̃ ) + Xβ̃

}
, (4.1)

where W̃ = diag(γ̃ ). If we, however, do not observe z, but realizations of the
composed counts y ∼ Poisson(µ), with µ = E(y) = Cγ , or µi = ∑

j cij γj , i =
1, . . . , J , we can easily adapt the IWLS-scheme.

By defining x̆ik = ∑
j cij xjkγj/µi , the system of equations corresponding to (4.1)

becomes, in matrix notation,

X̆
′
W̃X̆β̃ = X̆

′
W̃

{
W̃

−1
(y − µ̃) + X̆β̃

}
, (4.2)

where W̃ = diag(µ̃). A detailed derivation of (4.2) can be found in Eilers (2007).
When X = I , then ln(γ ) = β and smoothness of β implies smoothness of γ . In

particular, the roughness of vector β can be measured with differences of order d,
which can be written in matrix notation as

Sd = β ′D′
dDdβ = ‖Ddβ‖2, (4.3)

where Dd ∈ R(K−d)×K is the matrix that computes d-th order differences. For d = 1
and d = 2 the Dd are

D1 =




1 −1 0 · · · 0

0 1 −1
...

...
. . . . . . 0

0 · · · 0 1 −1


 and D2 =




1 −2 1 0 · · · 0

0 1 −2 1
...

...
. . . . . . . . .

0 · · · · · · 1 −2 1


.

Both in GLMs and CLMs we can force the solution vector β to be smooth by
subtracting a roughness penalty from the log-likelihood L (Eilers and Marx, 1996).
This penalty is the roughness measure (4.3) weighted by the smoothing parameter λ:

L∗ = L − λ

2
‖Ddβ‖2 .

If we introduce this penalty into the likelihood for the CLM, we obtain the following
system of equations:

(X̆
′
W̃X̆ + λ D′D)β̃ = X̆

′
W̃

{
W̃

−1
(y − µ̃) + X̆β̃

}
. (4.4)
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The smoothing parameter λ balances model fidelity, as expressed by the log-likelihood
L, and smoothness of the parameter estimates, as expressed by the penalty term. For
a given value of λ equation (4.4) can be solved iteratively. Methods for optimal choice
of λ will be discussed in Section 4.3.

4.2 Finding the misreporting proportions

In order to estimate the proportions pjk of misreported counts in the matrix C

(cf. (3.2)), we solve a constrained weighted least-squares regression within the IWLS
procedure. From the structure of the composition matrix C in equation (3.2) we see
that we can write

µ = Cγ = γ + �p, (4.5)

where p = (p12, p23, . . . , pJ−1,J ; p21, . . . , pJ ,J−1)
′, the left-to-right and the right-

to-left transfer probabilities concatenated into a vector of length 2 · (J − 1).
Correspondingly, the J × 2 · (J − 1)-matrix � is

� =




γ2 0 · · · 0 −γ1 0 · · · 0

−γ2 γ3
... γ1 −γ2

...

0 −γ3
. . . 0 0 γ2

. . . 0
...

. . . γJ
...

. . . −γJ−1

0 · · · 0 −γJ 0 · · · · · · γJ−1




.

Since y ∼ Poisson(µ), we can approximate the distribution of (y − γ ) as

(y − γ ) distributed approximately as N(�p, diag(µ)). (4.6)

As the number of unknowns in p, namely 2 · (J − 1), is considerably larger than the
number J of available data points, additional restrictions have to be imposed on p.

Our first attempt was to add a simple ridge penalty to the least-squares problem
(4.6), but this did not lead to satisfactory results. As a ridge term penalizes the squared
norm p′p of the coefficient vector p, the resulting estimates tended to have elements
of similar sizes, which is unlike what we would expect for digit preference patterns.
We rather would suspect that particular digits attract observations while for others
the respective pjk should be close to zero. Therefore, instead of the L2 norm p′p, we
introduce an L1 penalty into the weighted least-squares problem (4.6). As pointed
out by Tibshirani (1996), this penalty tends to select a small number of elements pjk

that exhibit the strongest effects, while possibly shrinking some others to zero. Our
penalty thus is κ

∑ |pj |.
We now have to face the task of optimizing a goal which contains a quadratic

term and a sum of absolute values. The latter complicates numerical optimization.

Statistical Modelling 2008; 8(4): 385--401
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We like to avoid quadratic programming or other methods that move away from
the (iterative) least-squares, because we need a well-defined effective dimension to
be able to compute AIC. Therefore we follow the proposal of Schlossmacher (1973)
and write

∑
j |pj | = ∑

p2
j /|pj |, turning a sum of absolute values into a weighted

sum of squares. Of course, to compute the weights, ones needs to know p. This
problem is solved by iteration, using weights 1/|p̃j |, where p̃ is an approximation to
the solution.

We iteratively solve the following system of equations:

(�′V � + κQ̃)p = �′V (y − γ ), (4.7)

where V = diag(1/µ) and the matrix Q is

Q =




1
|p12|+ε

0 . . . . . .
0 1

|p23|+ε
0 . . . . .

. 0
. . . 0 . . . .

. . 0 1
|pj−1,j |+ε

0 . . .

. . . 0 1
|p21|+ε

0 . .
. . . . 0 1

|p32|+ε
0 .

. . . . . 0
. . . 0

. . . . . . 0 1
|pJ ,J−1|+ε




.

A small number ε is introduced to prevent numerical instabilities when elements of
p become very small. In our experience ε = 10−6 worked well.

The additional parameter κ in (4.7) constrains the size of misreporting proportions
pjk and has to be estimated similarly to the smoothing parameter λ (see Section 4.3).
In practice, we alternately estimate µ and γ for a few iterations before we start
updating p from (4.7).

4.3 Optimal smoothing

The estimating equations for the penalized CLM in (4.4) and for the preference pattern
(4.7) depend on the combination of the two smoothing parameters λ and κ. Once
λ and κ are fixed, the estimates γ̂ and p̂ are determined. To choose the optimal
(λ, κ)-combination we minimize AIC:

AIC(λ, κ) = Dev(y|µ) + 2 ED. (4.8)

Statistical Modelling 2008; 8(4): 385--401



Modelling general patterns of digit preference 393

Dev(y|µ) is the deviance of the Poisson model (3.1), and ED is the effective dimension
of the model for given (λ, κ). We chose the ED as the sum of the two model
components, i.e. ED = ED1 + ED2, where ED1 denotes the effective dimension
of the penalized CLM, and ED2 refers to the penalized WLS-regression. Specifically,
we have

ED1 = trace{X̆(X̆
′
WX̆ + λP )−1(X̆

′
W )}

and
ED2 = trace{�(�′V � + κQ)−1 �′V } . (4.9)

An efficient 2D grid-search for λ and κ is adequate to find the minimum of the AIC
(see Figure 3). Both IWLS iterations and penalized WLS were implemented in R (R
Development Core Team, 2007) and the code is available from the first author.

5 Simulation and applications

5.1 Simulation study

To demonstrate the performance of our approach we applied it to several simulated
scenarios. Figure 2 shows one possible true distribution, i.e. the vector γ together
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Figure 2 Raw data, true values and estimates for simulated data.

Statistical Modelling 2008; 8(4): 385--401



394 Camarda et al.

0

1

2

3

4

5

lo
g 1

0(
λ)

λ̂ = 251.19  −  κ̂ = 10

min(AIC) = 55.16

0.0

0.1

0.2

0.3

0.4

0.5

0.6

−1 0 1 2 3 4
−1 0 1 2 3 4

log
10

(κ) log
10

(κ)

pr
ob

ab
ili

ty

κ̂ = 10

Figure 3 Left panel: AIC contour plot for the simulated data in Figure 2. Right panel: change of estimated
misreporting probabilities with κ. The probabilities that are non-zero in the simulation are represented by thick
black lines, the zero probabilities by thin gray lines.

with the simulated y such that E(y) = µ = Cγ and the estimated values γ̂ . The
assumed digit preference in this example attracted additional observations to 10, 20
and 30, from both neighbouring categories. These estimates were obtained from the
optimal combination of (λ, κ) as picked from the AIC-profile shown in Figure 3,
left image. The image on the the right-hand side demonstrates the effect of the L1
penalty. On the horizontal axis the value of log κ, i.e. the weight of the L1 penalty,
is given. For big values of κ all proportions pjk are shrunk to zero. For small values
of κ most proportions are far too large, but for increasing values of κ many of them
are quickly damped down to zero, leaving the important ones in the model. The
optimally chosen κ̂ practically selects the true proportions, which are depicted by the
horizontal dashed lines.

As pointed out in Section 4.2, the model actually estimates 2 ·(J −1) misreporting
proportions, which have not been restricted to be positive. A negative value of pjk

implies that category j receives a negative proportion of γk, that is, digit preference
actually moves observations away from category j to k, but the amount is expressed
as proportion of the receiving category k. This seemingly paradoxical behaviour is a
consequence of the L1 penalty; depending on whether γj < γj+1 or γj > γj+1, that
is, whether the true distribution is increasing or decreasing at γj , the same preference
leads to a smaller L1 penalty when expressed via pj ,j+1 or pj+1,j , one of them
being negative.
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Nevertheless, we would like to see as final results the net proportions as positive
numbers. This can be easily achieved by the following transformation, which converts
2 · (J − 1) parameters to J − 1 positive proportions:

if pj ,j−1 < 0 ⇒ pj−1,j = − δj

γj

and pj ,j−1 = 0, (5.1)

if pj−1,j < 0 ⇒ pj ,j−1 = δj

γj+1
and pj−1,j = 0,

for j = 2, . . . , J −2 and where δj = µj −γj +γj ·cj−1,j −γj−1 ·cj ,j−1. This procedure
is simplified for the first step j = 1 and the last j = J − 1.

The right image in Figure 3 shows these transformed and hence positive estimates.
Additionally, Figure 4 summarizes true and estimated misreporting probabilities for
the simulation example.

Our model allows for flexible shapes of the latent distribution, but the assumption
that observations get redistributed to immediate neighbours only may be over-
simplistic. To study the effect that more general patterns of digits preference may
have, we modified our simulation setting as shown in Figure 5. In this scenario the
digits 10 and 20 attract observations both from their next neighbours and also from
digits that are two steps away (that is 8, 12, 18 and 22, respectively). Still γ and
the pjk were estimated based on the simpler model. As can be seen from Figure 5,
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Figure 5 Results from the second simulation setting. Raw data, true values and estimates (left panel). True
misreporting probabilities and estimates for simulated data (right panel).

left panel, the latent distribution γ̂ is identified without problems. The two-step
misreporting probabilities are reduced to two one-step components, as illustrated
in the right panel of Figure 5. Instead of shifting the corresponding proportions in
one sweep by two steps, which the model does not provide for, they get assigned to
their next neighbours first; however, these proportions then get stacked on top of the
one-step estimates to the preferred target digits (10 and 20 in this example). Hence
the model ‘decomposes’ more complex preference patterns into subsequent simpler
steps.

5.2 Portuguese ages at death

If we apply the model to the Portuguese age-at-death distribution introduced in
Section 2, we obtain the results shown in Figure 6. The smooth fitted curve shows a
smooth density without any age heapings. The AIC is clearly minimized for λ and κ

equal to 104 and 15.85, respectively.
The misreporting probabilities are portrayed in Figure 7. As expected, digit

preference mainly attracts observations to ages that end in 5 or 10, the latter
ones showing the strongest effects. The amount of misreporting increases with
age, and this fits well with the demographic experience that accurate age reporting
is more problematic at the high ages. Also, for ages that are multiples of 10
there is a slightly higher tendency to receive counts from their respective right
neighbours.
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5.3 Weight data

The second example is taken from the National Health and Nutrition Examination
Survey (NHANES) conducted by the US National Centre for Health Statistics
(NHANES, 1980). The survey contains both the self-reported weight (in pounds)
of n = 11 614 women and men as well as measured weight during the examination.

Figure 8 shows the raw data of both weight variables and the fitted distribution,
based on the self-reported data only. As can be seen, there is a large difference
between the self-reported weights and the measured ones: people tend to round
their weights to more pleasant digits, such as 0 and 5, resulting in a peculiar
spiky shape to the distribution. Even though we expect that also the medical
personnel doing the weight measurements will show some, though minor digit
preference, we may treat the measured distribution as a proxy to the true one.
Figure 8 demonstrates the close resemblance of the estimated latent distribution
to the measured one, despite the severe preference pattern present in the original
data.

The model was computationally quite intensive, since it fits J = 204 different
weight-categories with J + 2(J − 1) = 610 parameters. Nevertheless, the penalties
for the latent distribution and the misreporting probabilities worked properly in
reducing the effective dimensions as well as capturing the actual weight distribution
with an impressive precision. (Based on AIC, the best choice is log10 λ = 4.8 and
log10 κ = 0.2.)
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Figure 8 Self-reported and measured weight (in pounds) and fitted values for NHANES II data.
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Figure 9 Misreporting probabilities for the NHANES II data. Probabilities to digits multiples of 5 and 10 are
depicted in thicker lines.

Figure 9 shows the estimated misreporting pattern with expected outcomes: the
probabilities detected by the model are practically only the ones to weight categories
ending with 0 and 5 (depicted with thicker lines). In particular, weights of 150, 200
and 230 pounds are prone to receive counts from their neighbours, again slightly
more from the right-hand category.

6 Discussion

The method we have presented in this paper demonstrates how digit preferences can
be modelled by combining the CLM with the concept of penalized likelihood. The
only assumption that is made about the underlying true distribution is smoothness.
The approach directly addresses the process that leads to heaping of certain values.
Extracting the latent distribution will be most important in many applications;
however, the pattern of misclassification may also be of interest in itself. The proposed
model, which goes beyond the mere quantification of digit preference provided by
many indices, allows the analysis of both aspects.

The misreporting pattern was allowed to partly redistribute observations from any
digit to its adjacent neighbours. Again a penalty, in this case a L1 penalty, restrains
the problem and makes estimation feasible. By allowing this rather flexible preference
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pattern the tendency to misreport need not be the same for identical end-digits, but
may vary over the measurement range, which is often seen in real data.

As was demonstrated by the simulation study, more complicated transfer patterns
still allow estimation of the latent distribution without problems. The misreporting
probabilities over more than one digit are represented as contributions to several
single-digit moves though, and more complex preference patterns are disguised by
the model restrictions.

We currently are developing an extension of the presented model to include
even more general patterns of misreporting, i.e. allow for exchanges between digits
that are more than one category apart, which allows estimation of all different
misclassification probabilities. Also one can envision digit preferences that improve
over time, a phenomenon that is known for age reporting in demography and may
also be seen in applications, where training or experience improves the quality of
measurement readings over time. In this case, the transfer probabilities for different
measurement occasions are expected to change smoothly. If longitudinal data are
available, this trend can be handled by an additional penalty that controls the
temporal pattern in the misreporting pattern.

In both extensions, additional smoothing parameters will have to be optimized
so that faster algorithms to search for the optimal combination will be advisable.

Finally, we would like to point out that the way we handle a sum of absolute values
in a penalty as a weighted sum of squares leads to an elegant and natural definition
of the effective dimension. This seems relevant to a wide range of applications with
L1 penalties. Also this result is not dependent on the algorithm one uses to find a
solution, because in (4.9) the final result can be plugged in to compute Q.
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