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This report investigates the power issue in applying the non-parametric linkage analysis of affected sib-pairs (ASP)
[Kruglyak and Lander, 1995: Am J Hum Genet 57:439–454] to localize genes that contribute to human longevity using long-
lived sib-pairs. Data were simulated by introducing a recently developed statistical model for measuring marker-longevity
associations [Yashin et al., 1999: Am J Hum Genet 65:1178–1193], enabling direct power comparison between linkage and
association approaches. The non-parametric linkage (NPL) scores estimated in the region harboring the causal allele are
evaluated to assess the statistical power for different genetic (allele frequency and risk) and heterogeneity parameters under
various sampling schemes (age-cut and sample size). Based on the genotype-specific survival function, we derived a
heritability calculation as an overall measurement for the effect of causal genes with different parameter settings so that the
power can be compared for different modes (dominant, recessive) of inheritance. Our results show that the ASP approach is
a powerful tool in mapping very strong effect genes, both dominant and recessive. To map a rare dominant genetic
variation that reduces hazard of death by half, a large sample (above 600 pairs) with at least one extremely long-lived (over
age 99) sib in each pair is needed. Again, with large sample size and high age cut-off, the method is able to localize recessive
genes with relatively small effects, but the power is very limited in case of a dominant effect. Although the power issue may
depend heavily on the true genetic nature in maintaining survival, our study suggests that results from small-scale sib-pair
investigations should be referred with caution, given the complexity of human longevity. & 2004 Wiley-Liss, Inc.
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INTRODUCTION

The genetic studies on human longevity using
DNA data have been dominated by the associa-
tion approaches [De Benedictis et al., 2001]. The
implementation of newly developed statistical
methods [Yashin et al., 1999; Tan et al., 2001a,b,
2003] has helped the association approaches to
gain preference due to increased statistical power
[Pletcher and Stumpf, 2002]. In addition, impor-
tant interaction terms (gene-sex, gene-environ-
ment, gene-gene) can also be considered within
the framework of association [Tan et al., 2001a,
2002a]. There are, however, crucial issues that
confront the approach. Similar to the other

complex traits, longevity is likely modulated by
multiple genes [Cournil and Kirkwood, 2001].
Selecting and testing the candidate genes or
marker regions can be difficult and tedious work,
accompanied by the eventual frequent false-
positive outcomes due to multiple testing. This
highlights the need for a genome-wide approach
that takes into account the interdependence of
genomic data. Linkage analysis that is popular in
use in mapping human disease genes can be an
important approach. Although linkage analysis
has only low resolution in gene mapping [Cardon
and Bell, 2001], a more feasible approach would be
to follow the regions identified through linkage
mapping by association studies and conduct
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linkage disequilibrium fine mapping [Sham et al.
2000; Risch 2000].
The multi-point linkage analysis based on

examining patterns of disease gene co-segregation
within families has been a powerful tool to map
both Mendelian and non-Mendelian disease
genes [Ott, 1999]. Although in the context of
longevity studies, parental genotype information
is usually missing, the non-parametric linkage
analysis suitable for studying genes linked to
late-onset diseases could be a useful method
to localize genes implicated in human longevity.
The method makes use of the information on
alleles shared identical by decent (IBD) between
affected sib-pairs to infer the location of genes
that are linked to the trait of interest [Kruglyak
and Lander, 1995]. Higher probability for achiev-
ing longevity in the centenarians’ siblings
reported by recent studies [Perls et al., 1998,
2002] suggests the feasibility of sampling
long-lived sib-pair data for non-parametric link-
age analysis. As the first application, Puca et al.
[2001] scanned the whole genome by applying
non-parametric linkage analysis to long-lived sib-
pairs and reported a region on chromosome 4 that
could possibly harbor a gene affecting human
longevity.
Nemani et al. [2000] studied the efficiency of the

ASP approach in longevity and reported that the
method has high power in detecting low-fre-
quency recessive alleles that are beneficial for
survival but is inefficient in mapping dominant
genes. We think, however, that their conclusions
are incomplete because all their dominant genes
were specified as harmful so that they reduce the
probability of achieving longevity. Such situation
leads to little additional allele IBD sharing in the
long-lived siblings even though selection against
the harmful allele is strong. As the deleterious
genes are usually disease-related and since our
goal here is to map the genes that contribute to
(rather than impede) human longevity, we think it
is necessary to investigate the power issue for the
non-parametric linkage in mapping rare beneficial
genetic variations. Most importantly, as the
phenotype we are interested in, i.e., life span, is
continuous, it requires that a proper age-cut be
chosen as a threshold for defining longevity
before collecting the samples to ensure sufficient
statistical power with consideration of affordable
sample size. In addition, the samples collected
are age structured following their survival
distribution with higher ages more selected
and more valuable in the analysis. A proper

simulation should be done in accordance with
the observed population survival and age struc-
ture at high ages in order to address the above
questions.
We first introduce a recently developed survival

model [Yashin et al., 1999; Tan et al., 2001a] to
simulate siblings’ life spans for given risk and
frequency parameters. By dealing with survival
models, we try to make the simulation sensible to
the practical situation and the results instructive
to empirical studies. This is followed by the
method and strategy used to generate the geno-
type in the pedigrees and for power assessment.
After presenting the results, we discuss the
significance of, and the relevant problems in,
applying non-parametric linkage to longevity
studies. We also elaborate on some controversial
issues in the genetics of human longevity using
the results from our simulation.

MATERIALS AND METHODS

POPULATION AND GENOTYPE-SPECIFIC
SURVIVALS

We assume that there is a biallelic locus hosting
one causal allele. Then there are 3 genotypes in the
population corresponding to individuals carrying
2 (homozygous), 1 (heterozygous), and 0 copies
of the causal allele. Their genotype-specific
probabilities of survival at age x are s2ðxÞ;
s1ðxÞ and s0ðxÞ, respectively. Under Hardy-
Weinberg Equilibrium, the mean population
survival at age x is the sum of the weighted
genotype-specific survivals of the 3 genotypes,

�ssðxÞ ¼ p2s2ðxÞ þ 2pð1� pÞs1ðxÞ þ ð1� pÞ2s0ðxÞ ð1Þ
where p is frequency of the causal allele. For any
individual, defining the hazard of death at age x
(the risk of dying after surviving to age x) as
mðxÞ ¼ rizm0ðxÞ;where ri is the relative risk for
genotype i ði ¼ 0; 1 or 2Þ; z is an unobserved
individual frailty that also affects survival, and
m0ðxÞ is the baseline hazard function for an
individual with both frailty and genotype
relative risk set to 1. The corresponding individual

survival function is sðxÞ ¼ e�riz
R x

0
m0ðsÞds: To

describe the relationship of the three genotype-
specific survival functions, Yashin et al. [1999]
introduced a model that assumes that the
unobserved frailty follows a gamma-distribution
with mean 1 and variance s2 [Vaupel et al.,
1979; Vaupel and Yashin, 1985], so that
mean survival for the subpopulation carrying
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genotype i is

siðxÞ ¼ E½sðxÞ� ¼ E e�riz
R k

0
m0ðsÞds

� �

¼ ½1� ris2 lnðs0ðxÞÞ�s
�2

: ð2Þ

Here s0ðxÞ is the baseline survival corresponding
to m0ðxÞ: Assuming risk of the allele is additive on
the log hazard of death, we have ri ¼ ri when r is
the relative risk for the heterozygous genotype
[Yashin et al., 2000; Tan et al., 2002b; Ewbank,
2002]. s2 has been estimated when applying the
above model to genotype data in marker-long-
evity association studies [Yashin et al., 2000;
Tan et al., 2001a; Ewbank, 2002] but with large
variations due to small sample sizes. A higher s2

is expected to bring about larger variation in the
unobserved frailty and thus more uncertainty in
the individuals’ life spans, even if they carry the
same genotype. We take the Danish period life
table for 1990 (Befolkningens bevægelser 1990) as
the population survival in expression (1). This
period life table is used to approach the survival
rate at old ages for our samples because their
cohort life table is unavailable before they die.
With the observed population survival function
and the given allelic risk, frequency, and hetero-
geneity parameters, expression (1) can be solved
numerically to get the baseline survival function
s0ðxÞ. Once individual genotype at the locus is
specified, expression (2) can be used to generate
life spans for carriers of the different genotypes.
The genetic variation has been estimated to

explain about 25% of the total human life span
variation using the well-known Danish twin data
[Herskind et al., 1996]. In order to show the effects
on survival for the different genes in our simula-
tion, we calculate, for each of the genes, a
percentage of life span variation due to the gene
s2G in the total life span variation s2T in the
population,

Expression (3) is simply derived using the
density distribution function of life span for the
different genotypes. It represents the percentage
of life span variation explained by a specific gene,
or heritability. Here, miðxÞ is the hazard function at

age x for genotype i corresponding to siðxÞ in
expression (2) and e0 is the life span expectancy at
birth for the total population, which can be
calculated from the observed life table data. In
expression (3), heritability is a function of the risk,
frequency, and effect of the gene (dominant or
recessive). Expression (3) can be used as an overall
measurement to compare effects of the genes with
different risk and frequency parameters under
different modes of gene action as shown later in
the text.

DATA GENERATION

To simulate the data, we assume that we have
400 highly polymorphic markers (10 alleles for
each marker with equal frequency) evenly dis-
tributed along the 22 autosomal chromosome
pairs. We only take one chromosome with its
corresponding marker map for the simulation. In
addition, one extra biallelic locus is put in the
middle of the simulated chromosome between
two markers. With the marker distribution and the
allele frequencies (including the biallelic locus),
we use Allegro1.1 [Gudbjartsson et al., 2000] to
simulate the pedigrees (each with 2 siblings).
Individual life spans are simulated using the
above mentioned method for a given genotype
at the causal locus. We then select from them only
sib-pairs who both survived to above a critical
age-cut and form the pedigree files by dropping
the genotype at the causal locus. Based on
knowledge from modeling large population sur-
vival, we set s2 to 0.1 and 0.2 in our simulations
(Table I).

POWER ASSESSMENT

We performed multipoint non-parametric link-
age analysis on the data again using Allegro1.1
and record the NPL scores [Kruglyak et al., 1996]
for power assessment. The peaks for NPL scores at

the region harboring the causal allele (one marker
distance, 8.7 cM, around the two adjacent mar-
kers) are counted to calculate the statistical power.
We take an NPL score of 4.2 as the genome-wide
significance threshold [Lander and Kruglyak,

h2 ¼ s2G
s2T

¼

P2
i¼0

2
i

� �
pið1� pÞ2�i R1

0 sðxÞdx
� �2�e20

R1
0

P2
i¼0

2
i

� �
pið1� pÞ2�imiðxÞsiðxÞx2dx�

R1
0

P2
i¼0

2
i

� �
pið1� pÞ2�imiðxÞsiðxÞxdx

� �2
: ð3Þ
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1995] and pick up peaks with NPL scores above 3
as indicators of linkage. The statistical power is
evaluated for different sample sizes (300, 600, and
1,000 pairs) and at different age cuts: 95/90 (one
sib above age 95, the other above age 90), 99/90
(one sib above age 99, the other above age 90). The
relative risk for the causal allele, r, is set to 0.35,
0.5, and 0.65, corresponding to 65, 50, and 35%

reduction in the hazard of death. For dominant
alleles, allele frequency is set to 0.1 to simulate
relatively rare and dominant genetic variations
which affect longevity. Figure 1 is the genotype-
specific frequencies by age at a biallelic locus
hosting a dominant allele with frequency of 0.1
and relative risk of 0.5. Figure 1 shows that
frequencies of the 3 genotypes change as a result

TABLE I. Power for different settingsa

Setting NPL score Z3 (pairs) NPL score Z4.2 (pairs)

300 600 1,000 300 600 1,000

Dominant

r¼0.35, P¼0.10, h2 E 0.06
95/90 0.75 1.00 1.00 0.13 0.70 0.99
95/90b 0.53 0.88 1.00 0.05 0.47 0.91
r¼0.50, P¼0.10, h2 E 0.03
95/90 0.14 0.42 0.84 0.00 0.04 0.21
99/90 0.46 0.83 0.94 0.05 0.29 0.83
r¼0.65, P¼0.10, h2 E 0.01
95/90 0.01 0.03 0.08 0.00 0.00 0.00
99/90 0.05 0.08 0.16 0.00 0.01 0.02

Recessive

r¼0.35, P¼0.25, h2 E 0.06
95/90 0.99 1.00 1.00 0.83 1.00 1.00
r¼0.50, P¼0.25, h2 E 0.03
95/90 0.58 0.95 1.00 0.17 0.55 0.95
r¼0.65, P¼0.25, h2 E 0.02
95/90 0.08 0.17 0.37 0.00 0.04 0.09
99/90 0.29 0.79 0.97 0.04 0.20 0.60

aEach cell is calculated from 100 replicates, s2 is set to 0.1.
bs2 ¼ 0.2.

Fig. 1. Genotype specific frequency by age for heterozygous (solid line), homozygous (dotted line) and non-carrier (dash-dotted line)

genotypes of the causal allele. As frequency for the non-carriers of the allele decreases with advancing age, that for the carriers of the

allele increases as a result of survival selection. However, the frequency pattern at early ages is relatively stable because mortality, the
force that drives the selection, is low.
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of survival selection at advanced ages (note the
drastic change and intersection after age 90) but
keep stable at younger ages because mortality, the
force driving the selection, is low. Frequency of the
recessive alleles is adjusted to 0.25 so that the
heritability (h2) can be comparable to that obtained
for the dominant alleles with the same risk and
heterogeneity parameters.

RESULTS

In Figure 2, we show the distribution of the
estimated NPL scores at the region that harbors a
dominant allele with a frequency of 0.1 and a
relative risk of 0.5 using different age-cut and a
sample size of 1,000 long-lived sib-pairs. The
median for each 100 NPL scores by each age-cut
shows an increasing trend due to increased IBD
sharing at the extreme ages. The results from both
dominant and recessive models are shown in
Table I. For a strong dominant allele with relative
risk of 0.35, which reduces the hazard of death by
65% at all ages, the power is very high when
setting an NPL score of 3 as a threshold. A rare
dominant allele that reduces a carrier’s hazard of
death by half can be mapped by a large sample
size of 1,000 pairs with at least one sib above age
99 in each pair. However, a sample size of around

600 pairs can have sufficient power in mapping
the gene if the critical NPL score is set to 3 to trade
for a higher false-positive rate. The ASP approach
has very low power in mapping rare dominant
genetic variations with small effect (allelic risk of
0.65), even for the large samples.
The second row in Table I is the power for the

same setting as the first row but with doubled
variance of the unobserved frailty (s2¼.2). As a
result, the power is clearly dropped. This is
sensible because with increased heterogeneity,
individuals carrying the beneficial allele have
increased uncertainty in attaining longevity due
to more competing risk factors that underline the
unobserved frailty.
It is interesting to see that the statistical power is

higher in all the settings for the recessive alleles,
with heritability comparable to the dominant
settings in Table I. The power can be acceptable
even for a small effect allele using a large sample
of over 1,000 pairs with an age-cut of 90/99, which
is encouraging. The ASP approach is very power-
ful in mapping strong effect recessive alleles and
has an acceptable power for modest effect alleles
(allelic risk of 0.5), even if only a small sample size
of low age-cut (90/95) is available.
In Table II, we show the power of non-

parametric linkage by just single marker analysis
when assuming complete information for linkage

Fig. 2. Distribution of the estimated NPL scores obtained by different age-cut at the region that harbors a dominant allele with

frequency of 0.1 and relative risk of 0.5 using a sample size of 1,000 long-lived sib-pairs. The median for each 100 NPL scores by each

age-cut shows an increasing trend due to increased IBD sharing at the extreme ages. The step is set as one times the H-spread. Black

circles: The end NPL values. To save computer time, we used the Danish 2002 period life table (Statistisk Årbog 2002) for the population
survival. As the late-age survival is higher than that in the old cohort population, power applicable to current studies cannot be

assessed using this data.
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is available at the causal locus. Although the
general trend is the same as in Table I, we observe
increased power for all the settings. However,
even with increased power, the affected sib-pair
method is unable to map a dominant gene with
relatively small effect (r¼0.65, p¼0.10). This is in
contrast with the recessive case, for which the
power is 0.88 when 1,000 long-lived sib-pairs over
ages 99/90 are collected. In Figure 3, we show the
distribution of mean IBD sharing at the gene
locus. Each mean is estimated from 100 replicates
containing 1,000 long-lived sib-pairs over age-cut

90/95. Significant deviations from the prior IBD
sharing proportion when assuming no linkage are
observed for 2-allele IBD sharing (increased) and
0-allele IBD sharing (decreased) in both the
dominant and recessive models and for 1-allele
IBD sharing (decreased) in the recessive model.

DISCUSSION

Our results suggest that the IBD sharing based
ASP approach can be a powerful tool for mapping

TABLE II. Power for different settings using a fully informative marker at the causal locusa

Setting NPL score Z3 (pairs) NPL score Z4.2 (pairs)

300 600 1,000 300 600 1,000

Dominant

r¼0.50, P¼0.10, h2 E 0.03
95/90 0.27 0.65 0.94 0.04 0.21 0.62
99/90 0.61 0.96 1.00 0.21 0.68 0.98
r¼0.65, P¼0.10, h2 E 0.01
95/90 0.02 0.03 0.11 0.00 0.00 0.00
99/90 0.10 0.21 0.46 0.00 0.03 0.11

Recessive

r¼0.50, P¼0.25, h2 E0.03
95/90 0.69 0.97 1.00 0.29 0.86 1.00
r¼0.65, P¼0.25, h2 E 0.02
95/90 0.07 0.28 0.52 0.00 0.01 0.14
99/90 0.56 0.87 0.98 0.11 0.51 0.88

aEach cell is calculated from 100 replicates, s2 is set to 0.1.

Fig. 3. Box-plot showing the distribution of mean IBD sharing at the gene locus with full information content. The step is set as one

times the H-spread. Each mean is estimated from 100 replicates containing 1,000 long-lived sib-pairs over age-cut 90/95. Significant

deviations from the prior IBD sharing proportion when assuming no linkage are observed for 2-allele (increased) and 0-allele

(decreased) IBDs in both the dominant and recessive models and for 1-allele (decreased) IBD in the recessive model.
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large effect dominant or recessive genes that
contribute to human longevity. When a large
sample size with a high age-cut (90/99) is
available, it has acceptable power to localize
modest effect dominant genes or even small
effect recessive genes. This method is unlikely
to be able to detect rare dominant genetic
variations with small effect even if the sample
size is very large. Table I also shows that the
results from small-scale studies could only be
trusted if major genes that contribute
to longevity do exist. We have tried to estimate
the number of genes that contribute to human
longevity by decomposing variances in life
span using a survival model. Our results showed
that the estimated genetic component from the
family and twin data can be equally matched
by the contribution from a couple of very strong
effect genes or by that from several thousand
small effect genes [Vaupel and Tan, 1998; Begun
et al., 2000]. If the genetic component to longevity
is due to one or a few genes [Gudmundsson et al.,
2000], according to our simulation, the non-
parametric method could be a useful tool to
help mapping them. On the other hand, if
multiple genes with only small effects are
involved [Cournil and Kirkwood, 2001; Carnes
and Olshansky, 2001], one will have the power
problem, especially when only limited samples
are available. Results from the candidate
gene approach using marker-longevity association
have suggested a high likelihood of the
polygenic nature of longevity [De Benedictis
et al., 2001]. Likewise, marker-longevity associa-
tion studies using the above-mentioned survival
model have not yet detected genetic variations
that show strong effect matchable to that used
in our simulation. However, one cannot rule
out the possibility of an interplay of a handful
of major genes plus many genes with minor
effects.
As shown in Table I, heterogeneity has a

profound effect on the power of a non-parametric
approach. Several authors have tried to estimate
the parameters using a gamma frailty model
[Yashin et al., 2000; Tan et al., 2001a; Ewbank,
2002] in fitting survival functions to individual
genotype data but found that the estimated
variance of the unobserved frailty varies consider-
ably in different studies, perhaps due to small
sample sizes used. Based on our experience in
fitting survival distributions to large population
data, we set s2 to 0.1 in our simulation to ensure a
reliable result. However, as just mentioned, since

such estimation has not yet been proved by large-
scale genotype data, it could be either an
optimistic or a pessimistic one. Another signifi-
cance of heterogeneity is relevant to association
studies. Given the existence of competing risk
factors or heterogeneity, the risk for any particu-
larly observed factor (including genetic factors)
will tend to decline [Ewbank, 2002]. In our
simulation, we set the risk of the allele constant
at the individual level. Accordingly, the group
mean of the risk should decline with advancing
age because of the introduction of heterogeneity.
On the other hand, we found in our linkage
approach that the IBD sharing of the beneficial
allele is increasing in the long-lived sib-pairs
(Fig. 2) indicating a growing importance of the
allele in maintaining survival. However, one
should not conclude that the genetic influence is
increasing at extreme ages [Perls et al., 2002], as
the phenomenon is only the result of a propor-
tional hazard model.
High age-cut is essential for the collected

sample to merit a longevity study. However,
raising the age-cut also adds difficulty to the
sample collection, a situation one always has
to balance. The two age-cuts in our simulation
are selected with consideration of the sample
collection as extremely long-lived sib pairs are
very rare. Fortunately, our results show that
regions harboring important genes can be loca-
lized using samples with lowest critical age set
to 90.
Our results in Table II show that even with

complete information content, the non-parametric
linkage applied to long-lived sib-pairs is incapable
of mapping dominant genes that account for a
small proportion of life span variation (h2 E 0.01).
Although we are dealing with survival traits,
our result is consistent with that from a power
study on QTL mapping for sib-pair data by
Sham et al. [2000] who suggested that a genome
scan using association instead of linkage
be performed to detect QTLs that account for
only 1% of the phenotypic variance. In order to
improve the power, a two-step strategy can
be adopted by which promising genome
regions are identified using lower level critical
NPL scores in an initial linkage scan and then
linkage disequilibrium mapping using very
dense markers can be conducted within these
regions.
Gerdes et al. [2000] estimated genotype-specific

relative risk for APOE gene and concluded
that the gene is a frailty gene, rather than
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a ‘‘longevity gene.’’ As we have mentioned at
the beginning, if one genetic variation is
harmful to longevity, survival selection will
not bring about additional IBD sharing at
the locus. In this case, the IBD-based non-
parametric linkage approach is unlikely to be
an efficient method for mapping the gene.
We hope this helps to explain the negative result
in mapping the APOE gene using long-lived sib-
pair data [Nemani et al., 2000]. On the contrary,
such genes can be mapped by using sib-pairs
affected by relevant genetic disorders but not
these long-lived siblings who are enjoying their
lives.
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