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The effect of constant illumination on the development of
spontaneous tumors in female CBA mice was investigated.
Fifty female CBA mice starting from the age of 2 months
were kept under standard light/dark regimen (12 hr light:
12hr dark; LD) and 50 CBA mice of similar age were kept
under constant illumination (24 hr a day, 2,500 Lux, LL).
Exposure to the LL regimen decreased food consumption
but did not influence body weight, significantly accelerated
age-related disturbances in estrous function, and was fol-
lowed by a significant increase in spontaneous tumor inci-
dence in female CBA mice. Tumor incidence as well as the
number of total or malignant tumors was significantly in-
creased in the LL group compared to the LD group (p <
0.001). The incidence of lung adenocarcinomas, leukemias
and hepatocarcinomas was 7/50; 6/50 and 4/50 in the LL
group and 1/50; 0/50 and 0/50 in the LD group. Mice from the
LL groups had shorter life spans then those from the LD
group. The data demonstrate, for the first time, that expo-
sure to constant illumination was followed by increases in the
incidence of spontaneous lung carcinoma, leukemias and
hepatocarcinoma in female CBA mice.
© 2004 Wiley-Liss, Inc.
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Alternation of the day and night circadian cycle is an important
regulator of a wide variety of physiological rhythms in organisms.
Light exposure at night has been found to be related to a number
of serious behavioral and health problems including cancer. In
rodents, light-at-night leads to disruption of the ovulatory cycle
followed by hyperplastic processes and tumor development in
mammary gland, ovaries and uteri.1,2 A tumor-promoting effect of
exposure to the LL regimen was shown on chemical carcinogen-
esis in the mammary gland of rats.3–6 Prolonged light exposure
suppresses the night peak of melatonin, the ‘hormone of the
night.’7,8 Melatonin is the principal hormone of the pineal gland,
the small neuroendocrine gland connected with the brain that
mediates information on light from the retina to the organism.7,8

A significant increase in the risk of breast and colorectal cancers
was shown in women who frequently did not sleep during the
period of the night, about 1:30 a.m., when melatonin levels are
typically the highest.9–12 The ‘Melatonin hypothesis’ suggests
reduced pineal melatonin production might increase human breast
cancer risk because lower melatonin output would lead to an
increase in female sex hormones and stimulate proliferation of
breast tissue.13 Data on the enhancing effect of constant illumina-
tions on spontaneous endometrial carcinogenesis in BDII/Han
rats14 agree with this suggestion. There are data on the promoting
effect of the LL regimen on hepatocarcinogenesis induced by
N-nitrosodimethylamine (DENA) in rats15 and on the development
of neurogenic and kidney tumors in progeny of rats exposed to
N-nitrosomethylurea in utero.16 We report, for the first time, that
exposure to constant illumination increased the incidence of spon-
taneous lung carcinoma, leukemias and hepatocarcinoma in female
CBA mice.

MATERIAL AND METHODS

Animals
One hundred 2-month-old female CBA mice were purchased

from the “Rappolovo” Animal Farm of the Russian Academy of

Medical Sciences. There are data on synthesis and secretion of
melatonin by pineal gland of CBA mice.17 Mice were randomly
subdivided into 2 groups and kept 5 per polypropylene cages
(30 � 21 � 10 cm) under standard light/dark regimen (12 hr
light:12 hr darkness; LD) or constant light regimen (LL) at a
temperature of 22 � 2°C and received standard laboratory chow18

and tap water ad lib.

Experimental design
In the LD regimen mice were exposed from 08:00–20:00 hr to

electric lamps (75 W, 200 V, Russia) with the illumination of 300
Lux at the bottom of cages at a distance of 1.7 m. In the LL
regimen mice were exposed to 2 luminescent lamps LB-40-2
(Russia) with illumination of 2,500 Lux at the bottom of cages at
a distance of 1.5 m. It was shown earlier in our experiments that
the constant exposure to 2,500 Lux more effective induced distur-
bances in estrus function and promoted spontaneous carcinogen-
esis in HER-2/neu mice as compared to the exposure to 300 Lux.19

Control of the illumination was carried out weekly with the luxme-
ter U-116 (GOST-14841, Russia). The weekly measure of air
temperature at the level of the cages with animals failed to show
any significant changes in the room temperature at the constant
illumination conditions as compared to the room at the LD regi-
men. Once a week, all mice were palpated to detect mammary
tumors. Once every 3 months, 5 times daily for 2 weeks, vaginal
smears were cytologically examined to determine estrus function.
Animals were kept under LD or LL regimens until their natural
death.

Pathomorphological examination
All dead animals were autopsied. All tumors, as well as tissues

and organs with suspected tumor development, were excised and
fixed in 10% neutral formalin. After routine histological process-
ing, tissues were embedded in paraffin; 5–7 �m thin histological
sections were stained with haematoxylin and eosin and microscop-
ically examined. Tumors were classified according to the Interna-
tional Agency for Research on Cancer recommendations.20

Statistics
Experimental results were analyzed using STATGRAPH. The

significance of discrepancies was defined by the Student’s t-crite-
rion, Fischer’s exact method, �2 and non-parametric Wilcoxon-
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Mann-Whitney. Student-Newman-Keuls method was used for
pairwise comparisons.21 For discrepancies in neoplasm incidence
to be estimated, an IARC method of combined contingency tables
calculated individually for the fatal and incidental tumors.22 For
survival analysis, Cox’s method23 was used for testing 2 groups.
Taron’s life table test24 was used. All test values reported for
survival analyses are 2-sided.

Mathematical models and estimations
Survival is described using the Gompertz hazard with the sur-

vival function,

S� x� � exp ��
	



[exp(
x) � 1]�

where 
 and 	 are parameters associated with age and the initial
mortality rate, respectively. Parameters were estimated using the
maximum likelihood method implemented in the Gauss statistical
system.25

RESULTS

Daily observations have shown that, under constant illumination
mice were more active, had increased locomotor activity, aggres-
siveness and depilation (baldness) compared to mice from the LD
group. The cases of cataract never were registered in groups kept
at the LD or LL regimens.

Food consumption of the LL group was significantly less (on
average 30%) compared to LD groups from the 6–16 months of
age (Table I). The body weight of mice in both groups increased
with age but did not significantly differ (Table II). There were no
significant differences in the length of estrous cycles between
groups exposed to LD or LL regimen (Table III). At 6 months of
age the relative number of days with estrus was increased in the LL
group. In the LD group, the age-related decrease of the incidence

of short estrous cycles (�5 days) and increase of long cycles (5–7
days) as well as increase in the rate of irregular estrous cycles was
observed (Table III). Exposure to the LL regimen significantly
accelerated age-related disturbances in estrous in CBA mice. At 6
months of age no mouse had short estrous cycles; 80% had
irregular estrous cycles.

The mean life span of mice was similar in both groups, however
the mean life span of last 10% survivors was reduced in the LL
group (P � 0.001). The population aging rate estimated as 
 in the
Gompertz equation was increased, and MRDT decreased, in the
LL group in comparison to the LD group (P � 0.05) (Table IV,
Fig. 2a).

Exposure to constant illumination was followed by a significant
increase in spontaneous tumor incidence in female CBA mice
(Table V). The 1st tumor in the LL group (leukemia) was detected
10 months earlier than in the LD group. At autopsy enlargement of
the spleen, liver, thymus and mesenterial lymph nodes was ob-
served. Microscopically significant infiltration of the liver and
some other organs with atypical lymphocytes was revealed (Fig.
1). Total tumor incidence as well as the total number of malignant
tumors was significantly greater in the LL compared to the LD
group (p � 0.001). Cumulative tumor yield curves for the LD and
LL mice were significantly different (Fig. 2b). The incidence of
lung adenocarcinomas, hepatocarcinomas and leukemias was
higher in the LL group than the LD group. There were no signif-
icant differences in the incidence of other spontaneous tumors
between LD and LL groups.

Survival in mice exposed to the LD or the LL regimen is
presented in Figure 2. Survival was similar in both groups. The
curves crossed at age 27 months. At age 32 months survival was
2 times higher for mice from group LD than group LL (p � 0.05;
Fischer exact test). The last mouse from the group LL died at age

TABLE I – FOOD CONSUMPTION DYNAMICS IN FEMALE CBA MICE EXPOSED TO VARIOUS LIGHT/DARK REGIMENS

Light/dark
regimen

Daily food consumption (g/mouse)

3 months 6 months 8 months 12 months 16 months

LD 2.6 � 0.2 3.8 � 0.3 3.9 � 0.1 3.4 � 0.4 3.5 � 0.4
LL 3.1 � 0.2 2.5 � 0.31 2.7 � 0.22 2.4 � 0.13 2.4 � 0.13

1Significant difference with LD (p � 0.01).–2Significant difference with LD (p � 0.001).–3Significant difference with LD (p � 0.02).

TABLE II – BODY WEIGHT GAIN DYNAMICS IN FEMALE CBA MICE EXPOSED TO VARIOUS LIGHT/DARK REGIMENS

Light/dark
regimen

Body weight (g)

3 months 6 months 8 months 11 months 16 months 19 months

LD 22.3 � 0.21 25.9 � 0.3 28.7 � 0.5 29.5 � 0.8 30.1 � 0.8 30.2 � 0.8
LL 22.2 � 0.21 26.2 � 0.5 28.9 � 0.5 28.8 � 0.7 29.0 � 0.8 31.6 � 1.1
1The difference of all ages with the age of 3 months is significant at p � 0.05 using Student’s t-test.

TABLE III – AGE-RELATED DYNAMICS OF ESTROUS FUNCTIONAL PARAMETERS IN CBA MICE EXPOSED TO VARIOUS LIGHT/DARK REGIMENS

Age
(months)

Mice
(n)

Length of estrous cycle
(days)

Rate of separate
phases of estrous

cycle (%)
Rate of estrous cycles (%) Number of mice

with regular
cycles (%)

Number of mice
with irregular

cycles (%)
Estrus Diestrus �5 days 5–7 days � 7 days

LD regimen
3 29 6.0 � 0.3 45.8 49.4 29.0 47.0 24.0 88.4 11.6
6 22 6.9 � 0.4 34.0 64.7 27.0 37.0 36.0 85.0 15.0
9 18 7.2 � 0.4 60.0 37.7 14.0 72.0 14.0 67.0 33.0

12 18 7.9 � 0.6 52.0 46.0 11.0 67.0 22.0 43.0 57.0
LL regimen

3 30 6.7 � 0.5 46.7 52.8 24.0 40.0 36.0 67.61 32.41

6 30 9.2 � 0.8 54.51 43.7 0 17.0 83.03 20.03 80.03

9 27 5.6 � 0.4 50.0 50.0 0 100 0 7.2 92.8
12 26 6.7 � 0.5 42.4 54.6 0 50.0 50.01 4.03 96.02

1p � 0.05 compared with corresponding LD group using Fischer’s exact test.–2p � 0.002 compared with corresponding LD group using
Fischer’s exact test.–3p � 0.001 compared with corresponding LD group using Fischer’s exact test.
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971 days. At this age 30% of mice in the LD group were alive. The
last died 2 months later.

DISCUSSION

In mammals, exposure to bright constant illumination alters the
central circadian pacemaker activity of the suprachiasmatic nu-
cleus in the hypothalamus. Constant light exposure or pinealec-
tomy blocks the circadian melatonin signal emanating from the
mammalian pineal gland every 24 hr.7,8 When introduced during
the dark phase, bright light inhibits melatonin production.7,8

Artificially increasing the length of light phase of day (by 2–4
hr) was followed by increases in the duration of estrous cycle and
in some cases to disturbances. If the light is on 24 hr/day the
majority of female mice and rats in a short period showed a
persistent estrus syndrome. In physiological circumstances, this

FIGURE 1 – Lympholeukemia in CBA mice exposed to constant light
regimen. There is a significant lymphatic infiltration of liver (H&E, �320).

FIGURE 2 – Effect of the exposure to the constant illumination (LL)
on survival and tumorigenesis in female CBA mice. Abscissa, age,
days. (a) Survival. Ordinate, number of mice, %. The difference in the
survival of mice kept at the LD and the LL regimen was significant
(p � 0.05) at the age of 900–1050 days. (b) Age-dependent tumor rate
curves. Ordinate, number of tumor-bearing mice, %.

TABLE IV – PARAMETERS OF LIFE SPAN IN FEMALE CBA MICE
EXPOSED TO DIFFERENT LIGHT/DARK REGIMENS1

Parameters
Light/dark regimen

LD LL

Number of mice 50 50
Mean life span,

days (mean �
SE)

665 � 45.3 694 � 34.3

Median 713 741
Mean life span of

last 10% of
survivors

1020 � 4.5 965 � 1.83

Maximum life span 1036 971

 (days-1)1 3.42 (3.37–3.46) 5.42 (5.36–5.47)4

MRDT, days2 203 (200.2–205.5) 128 (126.7–129.3)4

1Constant 
 in the Gompertz equation: R 
 R0 (exp) 
t, where
R0 
 mortality at t 
 0–2MRDT, mortality rate doubling time, days.
95% confidence limits are given in parentheses.–3p � 0.001 compared
with LD group using Student’s t-test.–4p � 0.05 compared with LD
group using Cox’s method.

TABLE V – TUMOR INCIDENCE, LOCALIZATION AND TYPE IN FEMALE
CBA MICE EXPOSED TO DIFFERENT LIGHT/DARK REGIMENS

Parameters
Light/dark regimen

LD LL

Number of mice 50 50
The time of the 1st tumor

detection, days
610 312

Mean life span of tumor-bearing
animals, days

700 � 39.4 699 � 48.9

Tumor-bearing mice, n (%) 4 (10) 15 (35)1

Total tumors, n 5 22
Malignant tumors, n 3 19
Tumor, incidence, localization

and type
Lungs

Adenoma 1 1
Adenocarcinoma 1 72

Liver
Hemangioma — 1
Hepatocellular carcinoma — 4

Malingnant
lymphoma/leukemia

— 63

Mammary gland,
adenocarcinoma

1 24

Soft tissues, histiocytic
fibrous sarcoma

1 —

Skin, basalioma 1
Forestomach, papilloma — 1

1p � 0.001 compared with LD group using Fischer’s exact test.–
2p � 0.05 compared with LD group using Fischer’s exact test.–3p �
0.02 compared with LD group using Fischer’s exact test.–4One mouse
had a metastasis into the lungs.
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syndrome naturally develops at some age (in rats, usually between
15th and 18th months) and precedes anestrus,26 being the physio-
logical equivalent of climacteric syndrome and climacteric in
women. The ovary of persistent-estrus rats contains follicular
cysts, hyperplasia of theca-tissue, whereas corpora lutea are ab-
sent.1,2,26 Instead of cyclic production of gonadotropins, prolactin,
estrogens and progesterone characteristic for the normal reproduc-
tive period of life, their production was acyclic with hyperplastic
processes in mammary gland, ovaries and uterus.1,2,26,27 Decrease
in glucose tolerance and of sensitivity to insulin have been ob-
served in rats with persistent-estrus.2 We have found that exposure
to the LL regimen leads to increases in the threshold of sensitivity
of the hypothalamus to feedback inhibition by estrogens in female
rats.28 This is crucial in the aging of reproductive system in female
rats as well as in women.28–30 Disturbances in estrous function
developed earlier in CBA mice from the LL group.

Exposure to the LL regimen promoted spontaneous mammary
carcinogenesis in female C3H and transgenic HER-2/neu FVB/N
mice31,32 and mammary carcinogenesis induced by 7,12-dimeth-
ylbenz(a)anthracene (DMBA) or N-nitrosomethylurea (NMU) in
female rats.2–6,33 Exposure to the LL regimen accelerated sponta-
neous uterine carcinogenesis in BDII rats.14 In our experiments
constant light illumination promoted development of spontaneous
hepatocarcinomas, lymphomas/leukemias and lung adenocarcino-
mas. Blask et al.33 reported that when male rats bearing tissue-
isolated hepatoma 7288CTC and ER� adenocarcinoma of the
liver were exposed to constant bright light during the dark phase of
12L:12D photoperiod, the latency to onset was significantly re-
duced whereas the growth of tumors was markedly increased over
a 4-week period as compared to control tumors in the LD group.
There is evidence of the promoting effect of the LL regimen on
DENA-induced hepatocarcinogenesis in rats.15 On the other hand,
treatment with melatonin inhibited the growth of mouse hepatoma
cell line HEPA 1-6,34 inhibited cellular proliferation, doubled

mean life-time and increased survival of rats inoculated with
hepatoma AH 13035 and inhibited induction of preneoplastic liver
lesions in rats exposed to DENA.36 A low serum melatonin level
was observed in hepatic porphyria patients with hepatocellular
carcinoma.37

Spontaneous malignant tumors of liver, lung and hematopoietic
tissues are common in male CBA mice,38 whereas lung adenomas,
ovarian hemangiomas and low incidence of mammary carcinomas
are typical for female CBA.38,39 Disturbances in estrous function
due to constant illumination can be a key factor in development of
liver tumors in female CBA mice. An increased production of
aromatized (nonclassic) phenol steroids was found in ovaries of
rats exposed to the LL regimen.40,41 The persistent estrus syn-
drome induced by orthotopic ovarian transplantation after ovari-
ectomy or X-ray irradiation was characterized by similar changes
in ovarian steroidogenesis and masculinization in female rats.26,30

We failed to find any references to the effect of the LL regimen
on hematopoietic tissue and lung tumor development. There is
evidence of the oncostatic effect of melatonin on mammary tumor
growth in vitro and in vivo experiments.2–6,18,33,42 There are data
on the inhibitory effect of melatonin on DMBA-induced cervico-
vaginal carcinogenesis in mice43 and 1,2-dimethylhydrazine-in-
duced colon carcinogenesis in rats.44,45

Mechanisms of the inhibitory effect of melatonin on carcino-
genesis include a variety of possibilities, discussed in several
comprehensive reviews and include antioxidant and antiprolifera-
tive effects, increase in apoptosis and inhibitory effect on telom-
erase activity in tumor cells in vivo and in vitro, antiestrogenic
effects, decreased IGF-1 and insulin levels, etc.2,3,46–49

In conclusion, the data in our study demonstrates that exposure
to light-at-night may have an important role in the development of
not only mammary tumors but also a wide spectrum of tumors of
different localization.
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