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sex-specifi c HRRs to infer gene-sex interaction. We also 
evaluate the haplotype effects on human survival while 
taking into account individual heterogeneity in the unob-
served genetic and nongenetic factors or frailty by intro-
ducing the gamma-distributed frailty into the survival 
function. After model validation by computer simulation, 
we apply our method to an empirical data set to measure 
haplotype effects on human survival and to estimate 
haplotype frequencies at birth and over the observed 
ages. Results from both simulation and model applica-
tion indicate that our survival analysis model is an effi -
cient method for inferring haplotype effects on human 
survival in population-based association studies. 

 Copyright © 2005 S. Karger AG, Basel 

 Introduction 

 Although multidisciplinary approaches have been 
used in the search of genes implicated in human aging 
and longevity  [1] , the association-based linkage disequi-
librium (LD) mapping exhibits more power than the link-
age-based methods  [2] , a situation that mimics the map-
ping of complex or non-Mendelian disease genes  [3] . 
With the completion of the human genome sequence and 
the newly emerging high-throughput single nucleotide 
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  Abstract 
 Association-based linkage disequilibrium (LD) mapping 
is an increasingly important tool for localizing genes that 
show potential infl uence on human aging and longevity. 
As haplotypes contain more LD information than single 
markers, a haplotype-based LD approach can have in-
creased power in detecting associations as well as in-
creased robustness in statistical testing. In this paper, we 
develop a new statistical model to estimate haplotype 
relative risks (HRRs) on human survival using unphased 
multilocus genotype data from unrelated individuals in 
cross-sectional studies. Based on the proportional haz-
ard assumption, the model can estimate haplotype risk 
and frequency parameters, incorporate observed covari-
ates, assess interactions between haplotypes and the co-
variates, and investigate the modes of gene function. By 
introducing population survival information available 
from population statistics, we are able to develop a pro-
cedure that carries out the parameter estimation using a 
nonparametric baseline hazard function and estimates 
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polymorphism genotyping techniques which enable the 
high-density whole-genome screening of complex trait 
genes, LD mapping is gaining more popularity  [4] . At the 
same time, instead of the traditional single-locus model, 
multi-locus statistical approaches  [5]  that take into ac-
count the interdependence of genetic variants important 
in complex disease etiology are appealing. 

 Because particular DNA variants may remain togeth-
er on ancestral haplotypes (set of ordered markers) for 
many generations, groups of neighboring genetic variants 
can form haplotypic diversity with distinctive patterns of 
LD that can be exploited in both genetic linkage and as-
sociation studies  [6] . Haplotype analysis is more effi cient 
than the single-locus association test because it makes use 
of the LD information contained in the fl anking markers 
 [7] . The ‘haplotype relative risk’ (HRR) approaches have 
been applied to detect allelic associations when parental 
genotypes are available for phase inference and for con-
structing the controls  [8, 9] . Unfortunately, such methods 
are not applicable in longevity studies because parental 
genotype information is unavailable for the long-lived. In 
order to reconstruct the missing phases in the genotype 
data, different algorithms have been proposed. These in-
clude the rule-based algorithm  [10] , the E-M algorithm 
 [11]  and the recent Bayesian approaches  [12–14] . Model 
comparison  [15]  has shown that the Bayesian approach, 
which uses the MCMC algorithm and Gibbs sampling 
 [12] , can be regarded as an effi cient tool for estimating 
haplotypes  [16] . It is necessary to point out that although 
a haplotype association analysis of disease traits can be 
conducted by directly treating the inferred haplotypes per 
subject as if they were observed, such practice can result 
in biased estimates of haplotype effects with possibly in-
creased errors in the estimation  [17, 18] . The E-M algo-
rithm provides maximum likelihood estimates and there-
fore allows hypothesis testing using the likelihood ratio 
statistic  [19, 20] . However, the method is confi ned to 
case-control data and provides no estimate or test of in-
dividual haplotypes. Epstein and Satten  [21]  introduced 
a retrospective likelihood method to estimate and test the 
effects of individual haplotypes on binary traits, but their 
method is again restricted to case-control data. Using the 
generalized linear model, Schaid et al.  [22]  proposed a 
score test for haplotype inference. The model can be gen-
eralized to a variety of different disease traits and per-
forms effi cient tests on individual haplotypes. In the con-
text of human longevity studies, the traditional E-M
based haplotype-estimating technique has been im ple-
ment ed in data analysis  [23–25] . In these applications, 
the study designs are consequently limited to a simple 

case-control or two-group setup with cases consisting of 
the long-lived or centenarians and controls of young in-
dividuals. Although popular in use, the case-control de-
sign has low power when applied to longevity studies as 
the phenotype of interest (i.e. age) is a continuous trait 
 [26] . Furthermore, in cross-sectional studies, the ob-
served ages are those at participation which are all cen-
sored and cannot be modeled by the traditional survival 
analysis models. It is thus necessary that effi cient haplo-
type inference methods be derived to accommodate the 
situation. 

 For the single-locus analysis, new statistical methods 
have been developed to model genotype-specifi c survivals 
 [27–29] . These methods make full use of individual phe-
notype information and are thus inherently more power-
ful  [26] . In this paper, we propose a new survival analysis 
method to apply to unphased multi-locus genotype data 
to evaluate haplotype effects on human survival and to 
estimate haplotype frequencies at birth and over the ob-
served ages. By incorporating population survival infor-
mation in the analysis and based on the proportional haz-
ard assumption, we show how our model can estimate 
sex-specifi c haplotype effects, incorporate observed co-
variates, assess haplotype-environment interactions, ex-
amine modes of haplotype function (multiplicative, dom-
inant and recessive) and model heterogeneity in the un-
observed individual frailty while using a nonparametric 
baseline hazard function. Data-analyzing strategies are 
also suggested to optimize the throughput of the data. Af-
ter model validation using computer simulation, the 
model is applied to an empirical multi-locus genotype 
data set collected in an association study on the interleu-
kin 6 (IL-6) gene and longevity  [30]  to estimate the rela-
tive risks and frequencies of the haplotypes. Finally, we 
discuss the signifi cance of our method in mapping genes 
that modulate human survival and some practical issues 
in model application. 

   Methods 

 Population and Haplogenotype-Specifi c Survivals 
 First we denote the collection of all the observed multi-locus 

genotypes over the typed loci with  G  and the collection of all the 
haplotypes that make up the genotypes with  H . When haplotype 
frequencies are in Hardy-Weinberg equilibrium (HWE), the fre-
quency of the haplotype pair or haplogenotype ( h  i ,  h  j ) is 
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 where  p  i  and  p  j  are haplotype frequencies at birth for haplotypes  h  i  
and  h  j . Assuming that the risks of the haplotypes (denoted as  r  i  and 
 r  j  ,  respectively) are multiplicative, in a proportional hazard model 
the hazard of death at age  x  for the haplogenotype made up of hap-
lotypes  h  i  and  h  j  is  

�i, j (x) = rirj �0 (x)                                                                    (2)

  where   �   0 ( x ) is the baseline hazard function. Correspondingly, the 
survival of carriers of the haplogenotype is 
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   The Likelihood Function 
 The parameterization in equation 4 is haplotype based, i.e. we 

assume that haplotypes are known explicitly for each individual. 
In the practical situation, what we observe are unphased multi-lo-
cus genotypes instead of haplotypes. However, for each multi-locus 
genotype  g , there is a set of haplotype pairs denoted as  S ( g ) that 
are consistent with  g . With this relationship, the frequency of the 
observed genotype  g  at age  x  can be expressed in terms of haplo-
type frequencies and haplogenotype-specifi c survivals by using 
equation 4, 
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 With equation 5, we construct the likelihood function at age  x  us-
ing the multinomial distribution of the multi-locus genotype fre-
quencies in the population as 
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 In equation 6,  n  g ( x ) is the number of individuals carrying the multi-
locus genotype  g . The log likelihood of the entire data is simply the 
sum of equation 6 over all the observed ages. The covariance matrix 
obtained by inversing the information matrix can be used to calcu-
late the univariate Wald statistic for signifi cance inferences of the 
risk parameters. 

 Similarly to the calculation of allele frequencies from genotype 
data, with the maximum likelihood estimates from equation 6 and 
using equation 4, we can calculate the frequency of any haplotype 
 h  i  at age  x  as 
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 Modeling Heterogeneity 
 As a complex trait, human survival is modulated by the inter-

play of both genetic and nongenetic factors which form competing 
risks (frailty) that contribute to the individual hazard of death  [31] . 

Ignoring the existence of heterogeneity in the unobserved individ-
ual frailty can lead to a substantial underestimation of the risks of 
genetic factors  [28, 29] . Under the proportional hazard assumption, 
if an individual carrying a haplotype pair ( h  i ,  h  j ) has the frailty  z , 
the hazard of death at age  x  is

�i, j (x � z) = z�i, j  (x) = zrirj �0 (x).

The mean hazard of death for a heterogeneous population carrying 
the haplogenotype is 
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   Following the traditional approach  [32–34] , we assume that the 
frailty  z  is gamma distributed with mean 1 and variance   �   2 . Then 
z–(x) in equation 8 can be derived as 
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Substituted into equation 8, we get 
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  where  H  0 ( x ) is the cumulative baseline hazard function. Corre-
spondingly, we have the mean survival for the haplogenotype, 
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 In order to fi t a frailty model, we replace equation 3 with equation 
10 in the analyses. Estimating the variance parameter   �   2  requires 
a large sample size  [35] . In small-scale investigations,   �   2  can be de-
termined by a grid search for the peak of the likelihood for tenta-
tively assigned values of   �   2   [29, 36] . Based on our experiences in 
fi tting the gamma frailty model to large population data sets, one 
can alternatively fi t a frailty model by simply setting   �   2  to 0.1. This 
can be conservatively compared with some empirical results  [29, 
35, 36] . However, we think that it is applicable to small data sets. 

   The Baseline Hazard 
 The baseline hazard function can take a parametric form such 

as that of the Gompertz model,   �   0 ( x ) =  ae  bx . However, by introduc-
ing the population survival information available in population 
statistics into equation 4, our model allows the estimation of a non-
parametric baseline hazard function. This is done by using a two-
step procedure described by Yashin et al.  [28]  and in more detail 
by Tan et al.  [29] . The idea is that, with a known population sur-
vival, equation 4 can be solved by using a numerical procedure to 
get a nonparametric  s  0 ( x ) for the given haplotype risk and frequen-
cy parameters. In the estimation procedure, we start with an initial 
guess of the haplotype risks and frequencies and apply it to equa-
tion 4 to calculate  s�  0 ( x ). This  s�  0 ( x ) is introduced into equation 6 
to estimate a new set of haplotype parameters which are then used 
to calculate an updated  s�  0 ( x ). This process iterates until the likeli-
hood function converges  [28, 29] . 

   Sex-Specifi c HRRs 
 As a well-known phenomenon in demography, a sex difference 

in human mortality exists in all populations. Such a difference is 



 Haplotype Effects on Human Survival  Hum Hered 2005;59:88–97 91

crucial in longevity studies because the majority of centenarians 
are females  [37, 38] . To take this into account, we introduce the 
sex-specifi c population survival functions s–m(x) and s–f  (x) from the 
population statistics into equation 4 and rewrite it as 
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 By calculating the sex-specifi c baseline survival functions  m  s  0 ( x ) 
and  f  s  0 ( x ), we are able to estimate sex-specifi c HRRs to capture the 
sex-dependent effects or gene-sex interaction in human survival. 
When no sex-specifi c effect exists, the same risk parameters can be 
assigned to reduce the number of parameters in the model. Note 
that, in any case, the same haplotype frequency parameters are 
specifi ed for both sexes. 

   Incorporating Covariates and Interactions 
 In our proportional hazard model, it is possible to incorporate 

nongenetic or environmental covariates to account for effects of the 
observed confounding factors as well as gene-environment interac-
tions. If there is one environmental factor, geographical location 
(south and north) that affects the mean population survival with 
relative risk  r  e  ,  and in addition has an interaction with one of the 
haplotypes (haplotype  h  i ) in our data, the risk of the haplotype is 
 n  r  i  in the north and  s  r  i  in the south. And if the proportion of north-
erners is  p , we can rewrite equation 4 as 

                                                                                                    
(12)

 In equation 12, the environmental effect  r  e  is defi ned as the risk of 
being a northerner as opposed to being a southerner. Relative risks 
for haplotype  h  i  are estimated separately to allow for area-specifi c 
effects or gene-environment interaction. 

   Nonmultiplicative Effects 
 Up to now, we have been assuming that the risks of haplotypes 

are multiplicative. By strategic parameterization, our model can be 
applied to detect effects of haplotypes that are dominant or reces-
sive. If the effect of haplotype  h  i  is dominant over the others, then 
equation 4 can be expressed as 

   )(),()(),()( 0 ��
��

��
�

��
Hj,i

j,iji
Hj,i

r
ji xshhPxshhPxs i            (13)

   where the same risk parameter  r  i  is imposed on carriers of the hap-
lotype regardless of their haplogenotypes. In the same manner, 
when the effect of haplotype  h  i  is recessive, we have 
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 In equation 14, the risk of haplotype  h  i  is only assigned to those 
who have two copies of the haplotype. Note that, for the last terms 
in both equation 13 and 14, the specifi cation of the risk parameters 
is ambiguous. This has to do with the data-analyzing strategies in 
the next section. 

   Model Selection 
 In our model, we assign one risk and one frequency parameter 

to each haplotype. Because the number of haplotypes increases ex-
ponentially with the number of typed loci, there will be too many 
parameters to be estimated, thus reducing the power of the model. 
Similar to Epstein and Satten  [21] , we recommend testing the as-
sociation between each haplotype and survival by setting the rela-
tive risk for each of the other haplotypes to 1. To further reduce the 
numbers of parameters, we can group the rare haplotypes  [22]  and 
similarly set the group risk to 1. In the analysis, different modes of 
haplotype function can be assumed and tested. The subset of hap-
lotypes exhibiting a potential association with survival can be se-
lected and put together into the model for an extensive analysis. In 
both the single-haplotype and the extensive analyses, the haplo-
types with risk set to 1 (including the grouped rare haplotypes) serve 
as the reference or the baseline to ensure that the model is identifi -
able. The Akaike information criterion (AIC)  [39]  can be applied 
to select a model with the maximum number of important haplo-
types  [21] . Once the best performance model is selected, we suggest 
using the log likelihood ratio test to obtain an overall signifi cance 
for the haplotype effects. 

   Simulation 

 We conduct a limited simulation study to examine the 
performance of our model. Data sets of different sizes are 
generated (1,000 replicates) for the given parameters us-
ing population survival data in the 2001 Danish life table 
 [40] . We take the haplotype frequencies estimated from 
an empirical data set (3 single nucleotide polymorphisms, 
8 haplotypes) [unpubl. data from our laboratory] to gen-
erate the haplotypes. Among the 8 haplotypes, we choose 
one with a frequency of 0.145 as a benefi cial haplotype 
and set its HRR to 0.8. Besides the haplotype parameters, 
we also assume that geographical location has an effect 
on survival with the relative risk of 1.25 for the north and 
1 for the south. The frequency of northerners is assigned 
as 0.65 in the simulation. In addition, we assume that the 
unobserved frailty is gamma distributed with mean 1 and 
variance 0.1. Multi-locus genotypes over the 3 single nu-
cleotide polymorphism loci are simulated for individuals 
from the ages of 50 to 99 with 10, 20 and 40 individuals 
at each age (corresponding to sample sizes of n = 500, 
1,000 and 2,000). 

 We specify 4 models to validate our method (models 
1 and 3) and evaluate the effects of heterogeneity (model 
2) and the observed nongenetic covariate (model 4) on 
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parameter estimation. For models 1 and 2, we generate 
our data by assuming that, in addition to the risk of area, 
the risk of haplotype is area dependent with an HRR = 
0.8 in the north and an HRR = 1 in the south. Simulation 
results in  table 1  show that all parameters used in gener-
ating the data are well retrieved by our model that takes 
into account the unobserved frailty (model 1). In model 
2, however, the estimated relative risks for area and the 
benefi cial haplotype are all biased towards 1. The results 
indicate that ignorance of individual heterogeneity in un-
observed frailty can lead to conservative estimates of the 
risk parameters  [41] . In addition, one can see that a sam-
ple size of n  1  500 is required to ensure that the range of 
the 2.5–97.5% percentile for the estimated HRRs is ex-
clusive of the null risk of 1. In generating the data for 
models 3 and 4, the same risk and frequency parameters 
are assumed for the haplotype of interest and for area but 
the HRR is no longer area dependent because here our 
interest is to examine how ignorance of the existing risk 
covariate (area) can affect the estimated HRR. Similar to 
model 1, model 3 captures all the parameters adequately. 

However, the median of the estimated HRRs by model 4 
is biased towards 1 for all the three different sample sizes 
( table 1 ) which reminds us of the situation of model 2. 
Moreover, by comparing the distribution of the estimated 
HRRs in models 3 and 4 for n = 500, we see that the 
ranges of the 2.5–97.5% percentile of HRRs for model 3 
is well beyond 1 but that for model 4 includes the null risk 
of 1. These results suggest that the exclusion of existing 
risk covariates not only leads to biased estimates on the 
relative risk parameters but could also result in reduced 
power in haplotype effect inferences. 

 In  fi gure 1 , we show the simulated and the estimated 
age patterns of haplotype frequency for the benefi cial hap-
lotype in model 1 in the north ( fi g. 1 a) and the south ( fi g.  
 1 b; 1,000 individuals at each age). The estimated haplo-
type frequency (solid) using unphased genotype data cap-
tures the haplotype frequency trajectory in the simulated 
data (dotted), which again validates our model. Further-
more, the area-dependent haplotype effect or haplotype-
environment interaction is clearly shown by the different 
haplotype frequency patterns revealed in  fi gure 1 a and b. 

Table 1. Estimated risk and frequency parameters by different models in the simulation study (1,000 replicates for each model)

Model and parameter True n = 500 n = 1,000 n = 2,000

medium percentile medium percentile medium percentile

2.5% 97.5% 2.5% 97.5% 2.5% 97.5%

Model 1 (�2 = 0.1)
Haplotype freq. 0.145 0.144 0.113 0.177 0.145 0.124 0.167 0.145 0.125 0.162
HRR, north 0.800 0.800 0.614 1.057 0.801 0.666 0.960 0.801 0.707 0.918
HRR, south 1.000 1.006 0.735 1.385 1.008 0.795 1.253 1.007 0.856 1.169
Freq., north 0.650 0.652 0.598 0.701 0.650 0.611 0.686 0.650 0.624 0.678
Risk, north 1.250 1.254 1.113 1.420 1.250 1.147 1.360 1.252 1.178 1.325

Model 2 (�2 = 0)
Haplotype freq. 0.145 0.144 0.115 0.177 0.145 0.123 0.166 0.145 0.130 0.161
HRR, north 0.800 0.825 0.652 1.021 0.819 0.705 0.965 0.827 0.733 0.923
HRR, south 1.000 1.014 0.791 1.345 1.007 0.827 1.212 1.003 0.873 1.141
Freq., north 0.650 0.646 0.589 0.696 0.646 0.609 0.683 0.646 0.621 0.673
Risk, north 1.250 1.214 1.094 1.346 1.211 1.125 1.306 1.211 1.150 1.277

Model 3 (�2 = 0.1)
Haplotype freq. 0.145 0.143 0.115 0.176 0.145 0.125 0.167 0.145 0.130 0.160
HRR 0.800 0.794 0.640 0.986 0.801 0.675 0.939 0.801 0.712 0.895
Freq., north 0.650 0.648 0.594 0.699 0.651 0.611 0.686 0.650 0.625 0.675
Risk, north 1.250 1.248 1.125 1.393 1.249 1.165 1.351 1.251 1.189 1.317

Model 4 (�2 = 0.1)
Covariate ignored

Haplotype freq. 0.145 0.144 0.114 0.174 0.145 0.124 0.166 0.145 0.130 0.160
HRR 0.800 0.806 0.643 1.020 0.809 0.698 0.942 0.807 0.721 0.896
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   Application 

 The increased level of IL-6 gene activity has been 
linked to stress conditions that characterize the aging pro-
cess. Previous studies have revealed associations of IL-6 
with age-related diseases such as Alzheimer’s disease  [42] , 
cardiovascular events  [43]  and type 2 diabetes  [44] . The 
infl uence of IL-6 on human aging and survival was inves-
tigated by Christiansen et al.  [30] , who carried out haplo-
type analysis on a total of 1,143 subjects genotyped at 2 
single-point polymorphisms (–572G/C and –174G/C) 
and 1 AT stretch polymorphism (–373AnTm, 4 alleles) 
in the promoter region. In their study, haplotype frequen-
cies in the young ( ! 70 years, 567 individuals) and the old 
(93 years, 576 individuals) age groups were compared for 
the 6 most common haplotypes ( table 2 ) by the E-M al-
gorithm. A slight decrease with age in the frequency of 
the –572G/–373A 8 T 12 /–174C haplotype (denoted as G/
A 8 T 12 /C in  table 2 ) was found. Instead of dividing the 

subjects into young and old groups, we applied our HRR 
model to the same data to estimate HRRs and infer the 
effects of IL-6 on human survival. To fi t the model, we 
introduced the population survival data from the 2001 
Danish life table  [40] . Because our preliminary analysis 
showed no sex-dependent haplotype effect in the data, we 
assigned the same haplotype risk parameters for both sex-
es to reduce the number of parameters in the model. In 
the analyses ( table 2 ), effects of the haplotypes were as-
sumed to be multiplicative, dominant (equation 13) and 
recessive (equation 14). In  table 2 , the HRR for each hap-
lotype was estimated by setting the HRRs for the other 
haplotypes to 1. For each haplotype tested, we calculated 
AIC for selecting the best-fi tting model under the differ-
ent modes of haplotype function (multiplicative, domi-
nant, recessive). Among the 6 haplotypes, haplotype G/
A 8 T 12 /C showed the lowest AIC (5,413.244) in a multi-
plicative model with an HRR = 1.087 (p = 0.050) suggest-
ing the harmful effect of the haplotype on human sur-
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  Fig. 1.  The age patterns of the theoretical (dashed), the simulated (dotted) and the estimated (solid) haplotype 
frequencies in the north ( a ) and the south ( b ). The simulated age pattern is based on a large sample of 1,000 in-
dividuals at each age from 50 to 99 years. The fi gure shows that the model correctly captures the true haplotype 
frequency trajectory by age as well as gene-environment interaction or area-dependent HRR. 
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vival. Consistent with Christiansen et al.  [30] , our model 
pointed to G/A 8 T 12 /C as the only haplotype exhibiting 
potential infl uence on human lifespan. Even though more 
than half of the subjects in our sample were of the same 
age (93 years), our model produced a higher signifi cance 
level for the effect of the G/A 8 T 12 /C haplotype as com-
pared with the two-group method  [30] . However, as the 
haplotype was only of marginal signifi cance and consider-
ing the multiple haplotypes tested in  table 2 , we cautious-
ly conclude that our result of the G/A 8 T 12 /C haplotype is 
only suggestive. The second lowest AIC was observed for 
the recessive model of haplotype G/A 9 T 11 /G. In contrast 
to the G/A 8 T 12 /C haplotype, its HRR (0.826) indicates 
that it might be a benefi cial haplotype that reduces the 
hazard of death for homozygous carriers of the haplotype. 
By calculating the Wald statistic, we obtain a p value of 
0.060 which is insignifi cant. 

 In  table 2 , AIC was merely applied to single-haplotype 
models to evaluate the haplotype effects under different 
modes of haplotype function. To illustrate how AIC can 
be used to select the best model of the models with differ-
ent subsets of haplotypes, we also fi tted a 2-haplotype 
model by adding the recessive G/A 9 T 11 /G haplotype to 

the G/A 8 T 12 /C dominant model. We got a higher AIC 
(5,413.270) from the 2-haplotype model as compared 
with the AIC (5,413.244) from the 1-haplotype model 
(G/A 8 T 12 /C dominant). As expected, the 2-haplotype 
model which includes an insignifi cant haplotype does not 
outperform the previous 1-haplotype model. 

 Assuming that the effects of the 6 haplotypes are mul-
tiplicative, we also fi tted a multiple-haplotype model (log 
likelihood: –2,694.759) to illustrate how the likelihood 
ratio test can be used to assess the overall statistical sig-
nifi cance of the effects of the 6 haplotypes included in the 
model. Since the log likelihood is –2,698.472 in the mul-
tiple-haplotype model that assumes no haplotype effect, 
we obtain a likelihood ratio test statistic with 6 degrees 
of freedom of –2[–2,698.472 – (–2,694.759)] = 7.427. 
This leads to an overall p value of 0.283 which again 
means that there is no association between the haplotypes 
and survival. In  fi gure 2 , we show the estimated haplotype 
frequency trajectories over the observed ages from the 
multiple-haplotype model. The modest effect of the G/
A 8 T 12 /C haplotype is shown by its frequency pattern that 
slightly decreases with increasing age. Due to the low 
death rate at early ages and low risks of the haplotypes, 

Haplotype Frequency
at birth

Relative riska AIC

HHR SE 95% CI p value

Multiplicative
G/A8T12/C 0.473 1.087 0.044 1.000–1.173 0.050 5,413.244
G/A9T11/G 0.200 0.949 0.050 0.851–1.047 0.313 5,415.939
G/A10T11/G 0.193 0.925 0.053 0.821–1.029 0.158 5,414.931
G/A10T10/G 0.072 1.046 0.082 0.885–1.207 0.575 5,416.666
C/A10T10/G 0.038 1.031 0.106 0.823–1.237 0.773 5,416.870
C/A9T11/C 0.013 0.758 0.162 0.440–1.075 0.136 5,414.771

Dominant
G/A8T12/C 0.460 1.068 0.059 0.952–1.183 0.250 5,415.617
G/A9T11/G 0.209 0.991 0.057 0.879–1.102 0.876 5,416.921
G/A10T11/G 0.194 0.911 0.056 0.801–1.020 0.110 5,414.424
G/A10T10/G 0.070 1.017 0.086 0.848–1.186 0.841 5,416.906
C/A10T10/G 0.039 1.066 0.117 0.837–1.294 0.570 5,416.626
C/A9T11/C 0.013 0.758 0.162 0.440–1.075 0.136 5,414.771

Recessiveb

G/A8T12/C 0.461 1.097 0.067 0.967–1.227 0.145 5,414.726
G/A9T11/G 0.202 0.826 0.093 0.645–1.006 0.060 5,413.795
G/A10T11/G 0.208 1.008 0.061 0.889–1.127 0.889 5,416.939
G/A10T10/G 0.070 1.613 0.587 0.463–2.758 0.296 5,415.127
C/A10T10/G 0.036 0.556 0.333 0.000–1.205 0.182 5,415.659

a Heterogeneity model with �2 = 0.1.
b No estimate on C/A9T11/C haplotype due to low frequency.

Table 2. Paremeter estimates and model 
comparison by single-haplotype models 
fi tted to IL-6 data
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frequency changes (although insignifi cant) are mainly ob-
served at high ages. In  table 3 , we compare the calculated 
haplotype frequencies at the ages of 46 (the youngest age 
in our subjects) and 93 with the frequencies calculated by 
the E-M algorithm  [30] . It is interesting to see that both 
models produced consistent frequency estimates for the 
same data. However, it is important to point out that our 
HRR model not only estimates the frequency for each 
haplotype, but also provides point and interval estimates 
on its relative risk. 

   Discussion 

 We have shown that our HRR model can be applied 
to multi-locus genotype data from unrelated individuals 
to estimate frequencies and risks of haplotypes while in-
corporating additional covariates. In addition, our pro-
portional hazard model facilitates the estimation of sex-
specifi c HRRs and the assessment of interactions between 
haplotypes and covariates as well as examination of the 
modes of gene function. By introducing the gamma-dis-
tributed frailty, our model can also infer the haplotype 
effects on human survival with consideration of individ-
ual heterogeneity in the unobserved frailty which is im-
portant in the context of longevity studies because of the 
complex nature of the human lifespan. Given the crucial 
role of association studies in the genetics of human aging 
and longevity, we think that our HRR model may serve 
as a useful tool for researchers in this fi eld. 

 The basic assumption in our model is that haplotype 
frequencies at birth follow the Hardy-Weinberg law. As 
we have mentioned, such an assumption is sensible as 
differential survival driven by the association between 
the haplotypes and hazard of death has not yet imposed 
survival selection on the subjects as long as the haplotypes 
we are interested in do not affect in utero survival and 
there is no preferential transmission of a particular ge-
netic variant in the region under investigation. Under this 
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  Fig. 2.  Estimated haplotype frequency tra-
jectories over the observed ages for the IL-6 
data. The modest effect of the G/A 8 T 12 /C 
haplotype is shown by its frequency pattern 
that slightly decreases with increasing age. 
Due to the low death rate at early ages and 
the low risk of the haplotypes, frequency 
changes are mainly observable at high 
ages. 

Table 3. Comparison of the estimated haplotype frequencies by the 
HRR model and the E-M algorithm assuming multiplicative hap-
lotype effects

Haplotype HRR model E-M algorithma

46 93 <70 93

G/A8T12/C 0.472 0.430 <0.470 0.432
G/A9T11/G 0.201 0.219 <0.203 0.217
G/A10T11/G 0.195 0.221 <0.196 0.222
G/A10T10/G 0.072 0.066 <0.071 0.066
C/A10T10/G 0.038 0.035 <0.038 0.035
C/A9T11/C 0.013 0.021 <0.013 0.020

a From Christiansen et al. [30].
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assumption, genotype frequency information at other 
ages can contribute to the maximum likelihood estima-
tion of the haplotype frequencies at birth. Most impor-
tantly, as long as HWE holds at birth, we can relax with 
regard to the HWE assumption on haplotype frequencies 
at other ages except when a multiplicative effect model is 
preferred. This is important because different genetic 
mechanisms or modes in the haplotype function in hu-
man survival can be tested without imposing HWE at the 
advanced ages. Here, it is necessary to point out that 
HWE might not be a reasonable assumption in case of a 
subdivided human population as it can destroy HWE at 
any age (including at birth). In family-based association 
studies, such a problem can be solved by conducting the 
transmission/disequilibrium test  [45] . However, in genet-
ic association studies of human aging and longevity, pa-
rental genotype information is usually missing which 
means that one has to stick to the population-based as-
sociation approaches. Using unlinked markers, Pritchard 
and Rosenberg  [46]  proposed a statistical method to de-
tect population stratifi cation. Furthermore, statistical 
tests that account for population substructure have been 
developed for case-control association studies  [47, 48] . 
More work is needed for implementing these ideas in the 
genetic association analysis of human survival traits. 

 Because we assume that the risk of haplotype on the 
hazard of death is constant over the ages, our model is a 
proportional hazard model  [49]  in nature. Antagonistic 
pleiotropic effects have occasionally been reported in the 
genetic studies on human longevity  [50, 51] . To deal with 
this situation, parametric survival models were proposed 
in the analysis of single-locus data  [27] . Such approaches 
model the antagonistic effect as an intersection of the 
mortality curves for different genotypes. Although they 
can easily be implemented in our model, there are impor-
tant issues to be considered regarding the parametric 
modeling. Firstly, when the sample size is limited, there 

will be a considerable error in estimating the genotype-
specifi c survival distributions. Consequently, the age-de-
pendent effect modeled by the differential survival be-
tween the genotypes is unreliable. This becomes more 
problematic at advanced ages when sample collecting is 
diffi cult. Secondly, the choice of a proper parametric form 
for the survival function can be crucial in determining the 
results. At extreme ages, the validity of the parametric 
survival function, such as the Gompertz or the Gom-
pertz-Makeham models, has been questioned recently 
 [52] . On the other hand, when the proportional hazard 
model is applicable, our method works without imposing 
any parametric form on the baseline hazard function 
when population survival from population statistics is 
introduced.  

 Although our model is capable of incorporating covari-
ate, it must be pointed out that because the likelihood 
function is based on the age pattern in the frequency 
changes of the subgroups formed by the combination of 
haplogenotypes and the covariate, the covariate has to be 
an attribute fi xed early in life. We refer the fi xed attributes 
or covariates to factors that characterize an individual’s 
social class, education or persistent living environment. 
Studies on Danish twins have shown that such fi xed at-
tributes are important factors in determining an individ-
ual’s lifespan  [53, 54] . Most importantly, the capability 
of assessing the interaction effect between haplotype and 
the observed covariate ( fi g. 1 ) could help us to better un-
derstand the mechanisms in human aging and survival. 
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