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On importance sampling in the problem of global

optimization

Trifon I. Missov and Sergey M. Ermakov

Abstract. Importance sampling is a standard variance reduction tool in Monte Carlo integral

evaluation. It postulates estimating the integrand just in the areas where it takes big values. It

turns out this idea can be also applied to multivariate optimization problems if the objective

function is non-negative. We can normalize it to a density function, and if we are able to

simulate the resulting p.d.f., we can assess the maximum of the objective function from the

respective sample.
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1. Introduction

Global optimization is usually performed by using lattice-based search methods (see,

for example, [15] and [12]). However, they are applicable just to functions with unique

global extremum and are feasible just in a bounded search region. Their most general

framework incorporates at each step the simulation of a sequence of uniformly dis-

tributed random vectors, in which the objective function is evaluated. Then, in a vicin-

ity of the record value a new procedure of the same type is executed. In addition, the

use of low discrepancy deterministic vector sequences leads to more accurate results.

Nevertheless, such methods converge slowly and, for example, Zhigljavsky (1987)

provides an estimate of the minimum number of algorithm steps N for reaching an

ε-vicinity of the global optimum x∗ with a 1 − γ, 0 < γ < 1 level of certainty:

N(ε, γ) =

⌈

ln γ

ln (1 − µ(B(x∗, ε)))

⌉

, (1.1)

where B(x∗, ε) is the s-dimensional ball of radius ε centered at the global optimum.

In the case when we have information about the approximate location of the opti-

mum, we can simulate points out of some other (non-uniform) distribution. For in-

stance, we can choose a p.d.f., which incorporates such information. In particular, if

the objective function is non-negative and, consequently, we search for its maximum,

we can sample from a p.d.f., resulting from the normalization of the objective function
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itself. Hence, the mode of the resulting distribution will capture the maximum point

we are searching for.

Let us illustrate this idea on a simple example. Suppose we search for the maximum

of the function f(x) = xn in [0, 1]. First, we construct a p.d.f. p(x) = (n + 1)xn,

whose mode is apparently x = 1 (the corresponding maximum equal to n + 1). If

we optimize f(x) by evaluating it in uniformly distributed points in [0, 1], we can

get into an ε-vicinity of 1 after ≍ 1/ε steps. On the other hand, if we choose the

points of f(x) evaluation from p(x), we will need just ≈ 1/((n + 1)ε) steps. As a

result, the bigger n, i.e. the maximum of the function we want to evaluate, the smaller

the number of algorithm steps. This simple idea addresses a class of problems in

which particular p.d.f. simulation can lead to efficient optimization algorithms. More

specifically, it suits the maximization of non-negative functions with distinct and high

maximum values.

2. The problem of exact D-optimization

Let us focus on a particular class of problems in statistics in which we can apply the

importance sampling idea. Assume a set X with a σ-finite measure µ, x1, . . . , xn ∈ X ,

and an orthonormalized system of functions ϕ1, . . . , ϕm in L2(X, µ), n > m. We are

interested in the maximum of the following function:

fn,m(Q) = det

∥

∥

∥

∥

∥

n
∑

i=1

ϕk(xi)ϕl(xi)

∥

∥

∥

∥

∥

m

k,l=1

, (2.1)

where Q = (x1, . . . , xn).
This determinant, known as the information design matrix, plays an important role

in the design of experiment problems. In particular, the argument of its maximum

corresponds to the D-optimal design. In regression analysis a D-optimal design pro-

vides a vector parameter estimate with the lowest volume of its corresponding vari-

ance ellipsoid. Solving D-optimization problems is a difficult task, which is most

often approached by studying continuous designs and applying the equivalence the-

ory of Kiefer and Wolfowitz ([7], 1959). As a result, the D-optimal design is de-

termined by rounding its corresponding continuous one. However, exact D-optimal

designs are known just in a several one-dimensional cases like, for instance, polyno-

mial and trigonometric regression. Moreover, continuous design theory does not cover

the m = n case. For an arbitrary region, Wynn ([14], 1970) and Fedorov ([6], 1971)

proposed an iterative numeric procedure, which is, though, associated with highly op-

eration consuming matrix transforms. As a result, it is important to develop approaches

that evade such kind of complexity. The procedure we would like to offer in this paper

might serve at least as an initial step for allocating the maximum of the information

design matrix. After that a number of local optimization gradient methods could be

applied for specifying the maximum more accurately.
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Simulating distributions with densities proportional to (2.1) is a difficult task. How-

ever, Bogues et al. ([1], 1981), Ermakov and Missov ([3], 2005), and Missov ([8],

2007) proposed methods evading the computation of determinants of high orders. Let

us consider the following density function

∆
2
n,m(Q) =

(n − m)!

n!
det

∥

∥

∥

∥

∥

n
∑

i=1

ϕk(xi)ϕl(xi)

∥

∥

∥

∥

∥

m

k,l=1

. (2.2)

It suits our framework as the maximum of the determinant in (2.2) increases rapidly

with m and n. As a result, by applying the above stated idea, we can find at least a

good initial approximation of the objective function’s global maximum.

Note that (2.2) is a generalization of the ∆
2 (or Ermakov–Zolotukhin, [5]) distri-

bution in the case when the number n of points x1, . . . , xn exceeds the number m
of functions ϕ1, . . . , ϕm. The original Ermakov–Zolotukhin distribution is designed

for n = m. Coherently, we shall further call (2.2) the p.d.f. of the generalized ∆
2-

distribution.

3. Simulation of the generalized ∆
2-distribution

The simulation of the generalized ∆
2 distribution is based on the algorithm of Ermakov

and Missov ([3], 2005). First, we orthonormalize ϕ1, . . . , ϕm and keep the same nota-

tion for the resulting system. Then we subsequently simulate the conditional densities

of the generalized ∆
2-distribution. Each conditional density is a composition of distri-

butions with iteratively computable coefficients.

When the region X has a complex structure, orthonormalizing ϕ1, . . . , ϕm might

not be trivial. A possible solution in this case is to inscribe X within another region Y
in which this procedure can be easily performed. Afterwards, we simulate points in Y
narrowing the distribution to X . Note that affine transformations of X result in affine

transformations of ϕ1, . . . , ϕm. As a result, by finding the optimum in X , we know

the solution for any other region Y = F (X), where F is any affine transformation.

Depending on the orthonormalized system of functions ϕ1, . . . , ϕm in L2(X, µ),
(2.1) can have multiple maxima. This is the case especially when n 6= km, k ∈ Z.

We will not focus on this problem analytically, but rather show numerical examples

unveiling some basic mechanisms.

Last but not least, sampling from the generalized ∆
2-distribution leads to the fol-

lowing minimum number of algorithm steps N = N(ε, γ) for reaching an ε-vicinity

of the global maximum with a fixed level of certainty γ:

N(ε, γ) =













ln γ

ln

(

1 − max
Q

∆2
n,m(Q) · µ(B(x∗, ε))

)













. (3.1)
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As the maximum of ∆
2
n,m(Q) increases rapidly with m and n, the number of al-

gorithm steps is considerably smaller than the one in (1.1). The latter is illustrated in

Tables 1, 2, and 3, which provide comparison for the N values in pure random and

generalized ∆
2 search for s = 1, n = m = 1, . . . , 11, and ϕ1, . . . , ϕm – the orthonor-

malized system of Legendre polynomials. This is exactly the case when ∆
2
n,m(Q) is

equal to the square of the Vandermonde determinant, adjusted for normalizing terms.

The maximum of the squared Vandermonde determinant is well known, [13]:

22 · 33 . . . nn · 22 · 33 · (n − 2)n−2

33 · 55 . . . (2n − 3)2n−3
.

4. Numerical examples

Let us first illustrate the important sampling idea in the well-known one-dimensional

case, when X = [0, 1], µ is the Lebesgue measure, m = 3, and ϕ1, . . . , ϕm are

orthonormalized univariate polynomials, i.e.

ϕ1(x) = 1, ϕ2(x) =
√

3 (2x − 1), ϕ3(x) =
√

5 (6x2 − 6x + 1).

In these settings, when n = m = 3, (2.1) reaches its maximum for x1 = 0, x2 = 1/2,

x3 = 1 ([4]). In general, if n = km, k ∈ Z, maximizing (1) is equivalent to choosing k
times each of these m points. Suppose n ≡ 1(mod m), for instance, n = 4. Simulating

samples of size N = {500, 1000, 2000, 5000, 10000} from the respective generalized

n ε = 0.05 ε = 0.025 ε = 0.01 ε = 0.001

2 94 380 2382 238391

3 634 5084 79463 7.95 · 107

4 5268 84313 3.29 · 106 3.29 · 1010

5 50383 1.61 · 106 1.57 · 108 1.57 · 1013

6 536860 3.44 · 107 8.39 · 109 8.99 · 1015

7 6.25 · 106 8.00 · 108 4.88 · 1011 6.07 · 1018

8 7.83 · 107 2.00 · 1010 3.06 · 1013 4.70 · 1021

9 1.05 · 109 5.36 · 1011 2.08 · 1015 4.12 · 1024

10 1.48 · 1010 1.52 · 1013 1.52 · 1017 4.01 · 1027

11 2.20 · 1011 4.50 · 1014 1.18 · 1019 4.31 · 1030

Table 1. Sampling from the generalized ∆
2-distribution. Minimum number of algorithm steps

N for reaching an ε-vicinity of the D-optimal design with a level of certainty 1−γ = 0.95 for

X = [−1, 1], m = n.
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n ε = 0.05 ε = 0.025 ε = 0.01 ε = 0.001

2 380 1524 9534 953570

3 5720 45770 715177 7.15 · 108

4 97128 1.55 · 106 6.07 · 107 6.07 · 1011

5 1.82 · 106 5.83 · 107 5.69 · 109 5.74 · 1014

6 3.71 · 107 2.37 · 109 5.79 · 1011 6.03 · 1017

7 8.12 · 108 1.04 · 1011 6.33 · 1013 6.93 · 1020

8 1.89 · 1010 4.84 · 1012 6.75 · 1015 8.66 · 1023

9 4.65 · 1011 2.39 · 1014 7.43 · 1017 1.17 · 1027

10 1.20 · 1013 1.35 · 1016 8.54 · 1019 1.70 · 1030

11 3.25 · 1014 8.24 · 1017 1.02 · 1022 2.63 · 1033

Table 2. Simple random search. Minimum number of algorithm steps N for reaching an ε-

vicinity of the D-optimal design with a level of certainty 1 − γ = 0.95 for X = [−1, 1],

m = n.

n ε = 0.05 ε = 0.025 ε = 0.01 ε = 0.001

2 4.04 4.01 4.00 4.00

3 9.02 8.96 9.00 8.99

4 18.44 18.38 18.45 18.45

5 36.12 36.21 36.24 36.56

6 69.11 68.90 69.01 67.07

7 130.92 130.00 129.71 114.17

8 241.38 242.00 220.59 184.26

9 442.86 445.90 357.21 283.98

10 810.81 888.16 561.84 423.94

11 1477.27 1831.11 864.41 610.21

Table 3. Efficiency of sampling from the generalized ∆
2-distribution vs simple random search

in terms of the respective ratios of minimum number of algorithm steps, 1 − γ = 0.95, X =

[−1, 1], m = n
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distribution and taking the argument of the maximum value of ∆
2
4,3(Q), leads to the

results showed in Table 4: we should choose two points at the interval boundaries and

two points in the middle. When n = 5 ≡ 2(mod m), though, numerical approximation

yields a non-unique solution (Table 5): the fifth “extra” point might be allocated at

either end of the interval.

The simulation algorithm for the generalized ∆
2-distribution is designed to handle

efficiently every set of orthonormalized functions ϕ1, . . . , ϕm. For instance, if we

consider a non-traditional system by orthonormalizing 1, x, and ex in [0, 1], we can

still get plausible results (Table 6).

N x1 x2 x3 x4 Max

500 0.006376 0.471703 0.540401 0.991899 219/4

1000 0.004603 0.490417 0.521373 0.997730 217/4

2000 0.004025 0.493003 0.518318 0.999384 243/4

5000 0.003306 0.496601 0.508966 0.999937 243/4

10000 0.000772 0.502950 0.505861 0.999992 243/4

Table 4. Maximization of f4,3(Q) in X = [0, 1]: quadratic regression.

N x1 x2 x3 x4 x5 Max

500 0.028800 0.058415 0.482240 0.528539 0.973710 333/10

1000 0.009243 0.509697 0.527930 0.971588 0.987821 406/10

2000 0.008737 0.479380 0.482553 0.970622 0.992075 407/10

5000 0.004319 0.025813 0.494049 0.501784 0.998808 418/10

10000 0.002403 0.492002 0.512687 0.984694 0.989464 418/10

Table 5. Maximization of f5,3(Q) in X = [0, 1]: quadratic regression.

N x1 x2 x3 x4 Max

500 0.006889 0.415713 0.448710 0.983057 0.06

1000 0.003014 0.524322 0.534542 0.991139 0.07

2000 0.003322 0.424577 0.505026 0.999384 0.08

5000 0.008751 0.471999 0.515507 0.998711 0.08

10000 0.000231 0.491175 0.498388 0.988331 0.09

Table 6. Maximization of f4,3(Q) in X = [0, 1]: ϕ1(x) = 1, ϕ2(x) =
√

3(2x − 1), ϕ3(x) =
√

2
53e2+292e−25

(7ex − 6(e + 1)x − 10e + 4).
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Let us now consider a special two-dimensional case. Suppose X = [0, 1]2, n = 7,

m = 6, and ϕ1, . . . , ϕ6 are polynomials of not higher than quadratic order, i.e.

ϕ1(x, y) = 1, ϕ2(x, y) =
√

3 (2x − 1), ϕ3(x, y) =
√

3 (2y − 1),

ϕ4(x, y) =
√

5 (6x2 − 6x + 1), ϕ5(x, y) =
√

5 (6y2 − 6y + 1),

ϕ6(x, y) = 12xy − 6x − 6y + 3.

A preliminary notion about the allocation of the optimal design points might be

extracted from Podkorytov (1975). In [10] he proved that for m = n, a convex re-

gion X , and a quadratic set of polynomials, the maximum of (2.1) is reached by se-

lecting not more than one internal point for X , i.e. all the other points lie on the its

border. Figure 1 illustrates this theoretical result numerically by sampling from the

∆
2- (Ermakov–Zolotukhin) distribution for X = [−1, 1]2, m = n = 6, ϕ1, . . . , ϕ6

– orthonormalized in L2(X) Legendre polynomials of not higher than quadratic de-

gree. For 500 simulations the approximation of the exact D-optimal design (the trian-

gles in Figure 1) yields 6 points that lie on the boundaries of the optimization region

X = [−1, 1]2. When we estimate the mode of the generalized ∆
2-distribution based

on sample of size 1000, we detect a similar effect, the only “suspicious”, i.e. possibly

internal, point being (−0.01,−0.71). We performed the same procedure by simulating

5000, 10000, 100000, and 200000 ∆
2-distributed vectors. As the results did not differ

qualitatively, we present in Figure 1 the allocation of the D-optimal design just in the

case N = 5000. Now the solution contains a distinct internal point (−0.11, 0.17). The

other 5 points lie on the boundary of X = [−1, 1]2 and seem to be concentrated at the

vertices of the square. There are no theoretical results supporting the latter observa-

tion, but for sure Podkorytov’s finding (not more than one internal point) is empirically

supported.

The case m = n pertains to the simulation (see [3]) of the (standard) continuous

∆
2-distribution. When n > m we address its generalized version, and we can study a

close special case: n = 7, m = 6. It turns out that a similar allocation of the optimum

points is detected after simulating 2000 or more ∆
2-distributed vectors and taking the

maximum argument. Indeed, Figure 2 shows that for N ≥ 2000, we have not more

than one internal point of the approximate D-optimal design.

In this case, however, it is quite clear that the problem has a non-unique solution.

This phenomenon occurs when the objective function takes several values that are

close to its global maximum. As a result, by sampling from the generalized ∆
2-

distribution, we get a set of D-optimal designs corresponding to the maximum of

∆
2
n,m(Q) for the different sample sizes. It is important to classify the ties in this set.

In this way, when we find one D-optimal design, we can transform it to the one in the

set, which is most suitable for the specific research problem we work on.
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Figure 1. Numerical D-optimization of f6,6(Q) in X = [−1, 1]2: quadratic regression.
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Figure 2. Maximization of f7,6(Q) in X = [0, 1]2: quadratic regression. Number of general-

ized ∆
2 simulations: 500, 1000, 2000, 5000, 10000, 20000, 100000.
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5. Discussion

In the problem of D-optimal design approximation simulating generalized ∆
2-vectors

and assessing the mode of the resulting sample is justified. The structure of the gener-

alized ∆
2-distribution is such that the determinant in (2.2) is equal to zero on a surface

of dimension s − 1, where s = dim X . The latter is a property of the Vandermonde

determinant and its multi-dimensional generalization. As a result, as s increases, the

maximum in (2.2) will be higher.

In terms of sampling from the generalized ∆
2-distribution, the efficiency of simula-

tion decreases significantly when n is substantially greater than m. If this is the case,

however, continuous designs serve as very good estimates of the exact ones, and we

can take advantage of the Kiefer–Wolfowitz theory.

6. Conclusion

The approach to global optimization suggested in this paper does not interfere with

standard grid methods in the class of problems they are usually applied to. However,

we have deliberately shown maximum estimation results pertaining to sampling from

the generalized ∆
2-distribution. Focusing specifically on the problem of D-optimal

design construction, we would like to point out that the non-uniqueness of its solution

requires special attention. In accordance with that, we shall keep in the computation

procedure not one, but rather a set of argument values, corresponding to the record

values of ∆
2
n,m. Difficulties related to the solution’s non-uniqueness come out for

almost all n > m and especially when the region of interest X has high dimension.

That is how we could interpret the substantial differences in the configuration of the

D-optimal design points in Figure 2.

Certainly, the method of numerical maximum estimation shown in this article may

be used in combination with other techniques like, for instance, differential evolution

(see, for example, [11]). This is especially important while solving problems with

multiple optima. Differential evolution provides a number of analytical and purely

visual means for efficient searching strategies.
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