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1 Introduction

Pseudo-stable and quasi-stable population models were developed by Coale
[3], Feichtinger [6], Dinkel [5] and others. Building on an article by Bennett
and Horiuchi [2], Preston and Coale [12], Arthur and Vaupel [1], and Kim [10]
further extended these models to develop general relationships for arbitrary
population surfaces over age and time. In the spirit of these demographers,
we present and prove in this article some formulas that capture the impact
of mortality improvement on population growth. Goldstein and Schlag [7]
also investigate this question but from a different perspective.

It is sometimes forgotten that in addition to babies and immigrants, peo-
ple whose lives are saved also augment populations. Over the past century,
most of the momentous increase in the world’s population has been fueled by
increased survival. Birth rates have tended to fall, often sharply, but death
rates have decreased even faster. As a result, the population of the world
has multiplied. In the future, global birth rates may fall below two children
per woman, as they have already done in Europe and parts of the Far East.
Population declines caused by such low fertility will be somewhat offset by
mortality improvements, to the extent such improvements continue and are
substantial. Even without net in-migration, a country’s “replacement level
of fertility” may be less than 2.0 if lifespans continue to lengthen.

Consider a population closed to migration with a continuous population
surface N(z,y) over age x and time y. See Keiding [9] and Arthur and Vaupel
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[1] for a discussion of this fundamental but elusive quantity, which is often
referred to as age-specific population size. Let the intensity of population
growth be denoted by

= N(z.y), (1)

where the acute accent, here and elsewhere in this article, denotes the relative
derivative with respect to time. Let the intensity of population growth for
the population as a whole be denoted by

_on _ o ple, y)N(z, y)de
) = e N e 2

where w is the highest age attained. Letting

I(y) = | Nay)de, (3)
be the total population, note that

AT (y)/dy
T(y) @)

The quantity p(y), which is often called the population growth rate, is of
prime interest to us.

Let the intensity of mortality (also known as the hazard of death or force
of mortality) be given by

ply) =T(y) =

dN(x + a,y + a)/da

(5)

M(Iay) = -

N(z,y)
and let the intensity of improvement in mortality be denoted by
, dp(w,y)/dy
M, y) = —————~—. 6
(#3) p(w,y) )

Our focus is on how fi(z,y) affects p(y).
As shown by Preston and Coale [12],

N(x,y) = B(y)s(z,y)R(z,y), (7)



where B(y) denotes the number of births at time y, s(x,y) is the period
survival function,
s(,y) = ¢ o et )

and

R(z,y) = ¢ o slete, )
As emphasised by Arthur and Vaupel [1],

N(z,y) = B(y — z)s.(z,y), (10)

where B(y — z) denotes the number of births at time y — z and s.(z,y) is
the cohort survival function

Sc(l', y) =e fow “(a=y_1’+tl)da. (11>
It follows from (7) and (10) that

By — x) se(w, y)

B(y)  s(z,y)’
so R(z,y) can be considered to be a cohort-period adjustment that captures
the dissimilarity between actual cohort and synthetic period values.

To understand how population growth is related to changes in the number
of births, to improvements in mortality, and to the cohort-period adjustment,
it makes sense to start with a general result that is useful for a variety of
different kinds of decomposition. Consider some total or sum V' (y):

V(y) = [v(e.y)da (13)

R(z,y) = (12)

or

Viy) = v(z,y). (14)

X

Suppose

v(z,y) = uy(z, y)us(x, y)...u(z, y). (15)



Then

V(y) = ;E [Tli(.’ﬂ,y)], (16)
where
B lista, ) = LU (17

B [is(a,y)] = =200, 0)

= ) 18
> 0(z,y) (18)
To prove this result, note that
O(2,y) =t (2,y) + o2, y) + ... + Uu(2,y) (19)
and
y O(x,y)v(x,y)dx
V(y) = LA dn (20)

Jo(z,y)dz
The general result of formula (16) can be used in equation (3) after sub-
stituting (7) to decompose population growth into three components:

p(y) = B(y) + 3(y) + R(y), (21)

where B(y) is the intensity of change in births, $(y) is the average intensity
of change in survival,

w ds(z,y {dyN(x’ y)dx

= _ 90 s(myy)
W = T NG s

(22)

and E(y) is the average intensity of change in the cohort-period adjustment

Ty 5 N

Jo" N(z,y)dz
It should be noted, however, that the second term on the right-hand
side of (21) reflects both current changes in mortality and historical factors

that have determined the current population structure. To eliminate the

(23)
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influence of past changes in fertility and mortality (and perhaps migration),
the following result, due to Vaupel [14], is useful:

Couvy, (v, 9)
E’U}QU _EUI1U :17, 24
() =~ Eur0) = =5 5 (24)
where
ws ()
=) = . 25
p=plr) =~ @ (25)
Note that expected values are given by
Jo v(@)wi(x)dx
E, (v) = 2
)= B (26)
and the covariance is given by
Con (0. ) 5 1@ RN @ [ oy @)z fi plawn @iz o
o wi(z)dx J§ wi(z)dz Jo wi(z)dz
Formula (24) is readily proved by substitution and simplification.
Results (21) and (24) imply
ply) = Bly) + é(y) + R*(y), (28)
where
Z , oy Ty
R*(y) = R(y) — Coun($(x,y), R! 29
( ) ( ) N( ( ) )B(y)eo(y) ( )

To prove this, let wy(z) = N(z,y) and wy(z) = B(y)s(z,y) and note that

Ey(ay) (3(z, ) = éo(y), (30)

because

eo(y) = /Ow s(z,y)dx. (31)

Formula (28) permits decomposition of the current population growth
rate into



(1) the current intensity of change in births,

(2) the current intensity of change in period life expectancy (which cap-
tures the impact of current mortality change), and

(3) a residual term that reflects the influence of historical fluctuations
that have resulted in a population size and structure that is different from
the stationary population size and structure implied by current mortality
and births.

Note that (7) implies that

N(z,y)
B(y)s(z,y)
Regardless of whether a population is open or closed to migration, the value
of R(z,y) can thus be interpreted as the ratio of the actual population to the

stationary life-table population. Hence, if the actual population structure is
the same as the life-table structure, i.e.,

R(z,y) = (32)

N(z,y) = B(y)s(z,y), (33)

then
R(z,y) =1, for all x (34)

and
R*(y) = 0. (35)

Table 1 provides some illustrative examples of the decomposition in (28).
The population growth rate was estimated by

In [T(y+5)}

_ T(y—5
ply) ~ # (36)
The intensity of change in births was estimated by
) In [Blut3)
B(y) ~ M (37)
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Table 1: Decomposition of Population Growth Rate
Year p(y)% Bw)% éw)% R (y)%

1960  1.92 1.40 1.21 —0.69
World 1990 1.60 —-0.11  0.39 1.32

2040  0.55 0.07 0.20 0.28
Austria 1990  0.60 0.14 0.39 0.07
Belgium 1990  0.27 0.13 0.30 —0.16
Finland 1990 0.41 0.04 0.28 0.09
Germany 1990  0.48 -0.62  0.30 0.80
Italy 1990  0.12 —-1.02  0.30 0.84
United Kingdom 1990  0.33 —-0.25  0.26 0.33
USA 1990  0.99 —-0.49 024 1.24

Source: Data from Eurostat [4]; World and USA from United Nations [13].

In [eo(y+5)]
, eo(y—>5)
o R —— 38

Finally, R*(y) was simply estimated as the residual

R*(y) = 5(y) — B(y) — éo(y). (39)

In Keyfitz [8] and Vaupel [15] the impact on life expectancy of changes in
age-specific death rates is analyzed. Their results, when combined with (28),
shed light on how mortality change affects population growth. If the rate of
mortality improvement is constant over age,

fi(z,y) = fi(y), for all x, (40)
then Keyfitz [8] shows that

éo(y) = f(y)H (y), (41)

(42)



and can be interpreted as the entropy of the survival function. If mortality
follows a Gompertz trajectory,

,LL(.’E, y) = ayebx, (43)
then Vaupel [15] indicates that

éo(y) ~ i(y()y/)b (44)
and
oy + 1) — eyly) ~ U TOD) (45)

b

Note that (45) implies that a constant rate of mortality improvement will
continue to increase life expectancy by about the same absolute amount. On
the other hand, (44) implies that as life expectancy increases, the relative
rate (i.e., intensity) of improvement will fall.

Because Vaupel’s derivation of these approximations is in an unpublished
working paper (Vaupel [16]), we provide a derivation here. Approximation
(45) follows from (44) via the approximation

6y ~ oy +1) — eo(y)

~ . 46
y e (7) (46)
Approximation (44) can be derived from (41) by showing that
1
eo(y)H(y) = 7. (47)

Substituting (43) in (8) and then in (42) and then substituting the left hand
side of (43), (8) and (31) yields

o)1) = 5 [ [ e v)ste e —a, [“swpde] @
= [ ). (19)

If a, << e,, as it generally is in low-mortality populations, then the approx-
imation follows. The approximation gets better as mortality improvements
are made, because (44) implies that a, declines faster than e, rises.
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Consider now the relationship between the total fertility rate (7'F R) and
the intensity of change in the number of births. Let A be the average age of
childbearing. Then the net reproduction rate (NRR) is approximately given
by

NRR ~ r s(A) TFR, (50)

where 7 is the proportion of female births and s(A) is a girl’s chance of
surviving to the average age of childbearing (Coale [3]). Under current con-
ditions in developed countries, NRR ~ 0.48 TF' R, so that an NRR of about
one will be produced by a TFR of about 2.1. In a stable population (i.e.,
with fixed age-specific fertility and mortality rates), a well-known result from
Lotka [11] implies

NRR -1
— a1

Assume R* = 0. Let the TF R be 1.99, let life expectancy at birth be 80,
and let the pace of mortality improvement be 1.5% per year (which is close
to the average current level in some developed countries). Assume mortality
increases exponentially at a rate of 0.1. Then

B~ (51)

’

2(y) = B(y) + é,(y) = —0.0015 + 0.0019 = 0.0004. (52)

Although stylised, this result shows that population growth can be positive
even if the TF'R is below the so-called replacement level.
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