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An Optimization Model Based on Vitality

The models developed in Chap. 4 show that non-senescence can be
optimal. Size constitutes the central state variable in this framework.
Mortality falls with increasing size and reproductive potential rises.
The case of determinate growth, however, poses a challenge to this
framework. Determinate growers, such as humans, often reach their fi-
nal size at about the age of maturity. While size remains constant after
the onset of reproduction, mortality steadily rises. This is incompati-
ble with the strict size-dependence of mortality. A new model can be
developed to address the deficiencies of the size-based model. To cap-
ture changing mortality at a constant size, the quality of size will be
considered. The approach is rationalized in the following way. Even if
size remains unchanged, all cells progressively accumulate damage over
time and deteriorate. Vitality, defined as an individual’s size adjusted
for the functioning of body cells, can decline and therefore mortality
can increase despite a constant body size. This notion was introduced
in Sect. 4.4, where vitality was defined as the product of two functions,
size and functioning. Here, vitality captures the accumulated function-
ing of all body cells, i.e. if a cell has been damaged and only works at
80 % of the capacity of an undamaged cell, this cell will account for 0.8
units of total vitality.

Facing ubiquitous decay, life is sustained by processes of regener-
ation and rejuvenation. The continuous creation of new, undamaged
cells counterbalances deterioration. This balance determines whether
or not vitality declines. The level of rejuvenation and repair depends
on the trade-offs between reproduction on the one hand and growth and
maintenance on the other. The optimal schedule of resource allocation
determines the optimal trajectory of vitality. Increasing vitality raises
reproductive potential and lowers mortality. Reproduction results in
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offspring but entails slower growth or even decline in vitality. The tra-
jectory of vitality over age determines the age-trajectories of fertility,
mortality and growth. The following evolutionary-demographic model
sheds light on the fundamental questions of life-history theory based
on the single state variable, vitality.

Anderson [8] developed a model based on the variable vitality. An-
derson defines vitality as a randomly varying component of mortality
which leads to death if vitality ever reaches zero. The use of the state
variable vitality, as defined here, constitutes a new approach to life
history modeling.

5.1 The Vitality Model

Survival is a function of mortality. In accordance with the size-based
models it seems natural to model mortality as an inverse function of
vitality, denoted by ψ. A simple function for the force of mortality, μ,
is

μ(ψ) =
b

ψ
+ c , (5.1)

where b and c are constant parameters. The intrinsic parameter b cap-
tures all causes of death an individual can escape from by increasing its
vitality, while the extrinsic parameter c captures the always prevalent,
non-zero risk of death. Note that “extrinsic” and “intrinsic” refer to
vitality-dependent vs. vitality-independent mortality.

Reproduction and growth depend on the level of available energy. In
the size-based models, energy was simply proportional to size. However,
energy production is not equivalent to size but has been found to scale
allometrically with it [107]. A sound theoretical basis for a particular
relation between size and net energy available was given by West et al.
[210], their Equation (3). This formula captures the difference between
energy created by cell metabolism and energy required for it, based on
an allometric relation between size and energy production.

The model developed in this chapter uses Equation (3) from West
et al. [210] to determine the available resources of an individual at
its current level of vitality. The formula of West and colleagues [210] is
based on the variable size. The link between vitality and size is assumed
to be tight enough to justify the substitution of vitality for size in
this equation for this specific model. Net energy production, denoted
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by ε(ψ), depends on the difference between build-up and break-down
processes at current vitality,

ε(ψ) = k ψ0.75 − κψ , (5.2)

where k and κ are constant parameters. Anabolic, build-up processes
are directly linked to metabolic output, which is assumed to be propor-
tional to vitality to the power 0.75. Catabolic, break-down processes
are assumed to be proportional to vitality to the power one.

The exact value 0.75 for anabolic processes was thought to be a
so called life-history invariant [33]. The method of calculating these
life-history invariants has recently been called into question [49, 137].
The particular value of 0.75 might therefore not be invariant across
species. The qualitative results of my model, however, do not depend
on the particular value 0.75 but only require the existence of such an
allometric relation.

Energy production is maximal at vitality ψε

ψε =

(
3

4

k

κ

)4

. (5.3)

As in the size-based model, growth and maintenance are paid out
of the same budget. Part of the energy available must be used to offset
the declining functioning of cells. The change in vitality is given by
the difference between the fraction of resources allocated to growth
(newly built cells) and the unavoidable deterioration of functioning of
current cells at a constant rate δ. Damage is proportional to vitality
and integrates naturally into the structure of West et al.’s equation.
Consequently, vitality ψ changes over time according to

ψ̇ = π(ψ)ηg ε(ψ) − δ ψ , (5.4)

where π(ψ) denotes the fraction of energy allocated to growth, as in
the models in Chap. 4. In contrast to those models, π(ψ) can now have
a nonlinear effect on the change in state depending on the value of the
constant parameter ηg (g for growth). In the extreme case of no energy
allocation to growth and maintenance, vitality deteriorates exponen-
tially and, as in the size-based model, mortality rises exponentially.
The reasoning behind the incorporation of parameter ηg will be given
below.

The level of initial vitality is ψ(0) = 1 and initial time zero corre-
sponds to time at birth1. Vitality is treated as a dimensionless variable,

1 Note that the model in its current form does not account for stage-specific life-
histories.
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assuming that vitality is normalized by dividing through with a rea-
sonable base unit. If the state of an organism at birth corresponds to
some ψreal(0), this implies that vitality ψ(a) in this model is given by2

ψ(a) = ψreal(a)/ψreal(0) (5.5)

and therefore

ψ(0) =
ψreal(0)

ψreal(0)
= 1 . (5.6)

The level of π(ψ) that corresponds to maintenance of current vitality
can be derived from (5.4). Denoting the level of π(ψ) at ψ̇ = 0 by π0

and inserting (5.2) yields

π0 =

(
δ

k ψ−0.25 − κ

) 1
ηg

. (5.7)

Vitality cannot increase indefinitely. An upper limit to ψ, denoted
by Ψ , is reached at maximum investment π(ψ) = 1 and ψ̇ = 0,

Ψ ≡

(
k

κ + δ

)4

. (5.8)

Available energy must be nonnegative. This implies that

ψ ≤

(
k

κ

)4

(5.9)

must hold. This is always true since (5.9) implies that ψ cannot exceed
maximum attainable vitality Ψ , as given by (5.8).

In the initial size-based model (Sect. 4.3) reproductive effort and
reproductive output are related linearly. As explained in Sect. 4.3.2,
it turns out that this assumption restricts optimal solutions to energy
allocation exclusively to either growth or reproduction. To develop a
model that permits a broad scope of possible investment strategies, a
nonlinear influence of investment needs to be incorporated that still
includes the possibility of exclusive allocation. This is the technical
argument that motivates the introduction of parameter ηg in (5.4). The
biological motivation for introducing nonlinear effects is the following.

2 If functioning at birth is assumed to be perfect, then ψreal(0) is equal to the
number of cells (corresponding to the minimum size) at birth. In order to establish
the real vitality scale ψreal from the algorithm, vitality has to be multiplied by
ψreal(0).
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Growing a human arm requires considerable effort and is so difficult
that, if the arm is lost, no new arm can regrow. In contrast, growing a
branch of a tree can be done readily to increase size or replace broken
branches. The growth apparatus in humans and trees is inherently dif-
ferent. In the former case, it might be very costly and even impossible
to keep or rebuild the machinery that would allow the regrowth of a
lost arm. In the latter case, maintenance is cheap because existing ma-
chinery can be used to maintain the organism without much additional
cost.

Parameter ηg captures the nature of the growth and maintenance
apparatus of a species. When ηg exceeds one, the investment function
πηg in (5.4) is convex. The marginal benefits in outcome become larger
as π approaches one. Note that the convexity favors exclusive invest-
ment strategies. When ηg is below one, the investment function πηg is
concave. The marginal benefits in output become smaller as investment
approaches one. Note that concavity favors intermediate investment
strategies. The parameter ηg in (5.4) captures the returns to scale in
growth and maintenance investment. The parameter can also be inter-
preted as the efficiency of the growth system. Values of ηg below one
correspond to efficient, i.e. cheap, growth, and values of ηg above one
correspond to inefficient, i.e. costly, growth.

Figure 5.1 illustrates the influence of parameter ηg via investment
π on the change in vitality. Note that the change in vitality is always
larger for a given level of investment π when ηg is below one as opposed
to being above one. Likewise, any particular level of change in vitality
requires a smaller investment, given that ηg is below one rather than
above one. Note further that values of ηg below one imply a concave
shape, while values above one correspond to a convex shape of the
change in vitality with increasing investment.

In the modified size-based model (Sect. 4.4) an arbitrary attempt
was made to introduce nonlinearity with respect to reproductive effort.
In the vitality model the maternity function is specified as

m(ψ) = ϕ ( 1 − π(ψ) )ηr ε(ψ) . (5.10)

In accordance with the size-based models, fertility is proportional to
available energy, in this model ε(ψ), and reproductive effort, 1− π(ψ).
In contrast to the size-based model, nonlinearity in reproductive effort
is incorporated by parameter ηr (r for reproduction) which captures the
efficiency of reproduction, analogous to ηg. As in the size-based models,
the constant ϕ is a scaling parameter set to the value that ensures that
optimal lifetime reproduction is equal to one and, hence, rmax = 0.
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Fig. 5.1. The influence of ηg via investment π on the change in vitality
as specified by (5.4) (The dashed line exemplifies values of ηg below one, in
particular ηg = 0.5. The solid line exemplifies values of ηg above one, in
particular ηg = 2. In both cases ψ = 20, k = 3, κ = 0.8 and δ = 0.1.)

The manner in which nonlinearities enter the model is biologically
and technically motivated. The approach makes use of the well-known
concept used in economics of the Cobb Douglas production function.
Each input factor to the production function is raised to a power reflect-
ing how efficient each factor, in economics labor and capital, is in pro-
ducing output. Two new parameters (that influence the optimal trajec-
tory of investment) enter the model as exponents of investments. Power
functions have previously been used to introduce nonlinearities into life-
history models [26, 37, 39, 62, 175]; see Charlesworth [27, Sect. 5.3.4.]
for review). In particular, the importance of the shape of the investment
function for the optimal life history strategy has been recognized. In
their reproductive effort models, Gadgil and Bossert [62] and Schaffer
[175] found that concave investment functions favor iteroparous strate-
gies (repeated breeding, i.e. intermediate reproductive effort) while con-
vex investment functions favor semelparous strategies (a single breeding
event, in which reproduction is fatal, i.e. exclusive investment).

George E. P. Box said: “All models are wrong, but some are use-
ful.” [13] Models are wrong because they simplify the complexity of
life. But without this simplification, patterns can hardly be observed
and understood. A useful model captures the most important aspects
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of reality, reveals general patterns and provides a source for hypothe-
ses that could explain basic processes of life. Such a model, although
necessarily wrong, enhances our understanding of nature.

Adding efficiency to the size-based model increases complexity but it
also considerably broadens the model’s potential for predicting various
life-history strategies. The non-linearities capture cases in nature when
parallel investment in growth and reproduction is optimal. Therefore,
these extensions to the model can be justified as a useful complication
to a still simple model.

5.1.1 The Parameters

k, κ and δ

Parameter k captures the speed of growth of vitality (see (5.2) and
(5.4)). Faster growth implies a rapid fall in mortality (5.1) and re-
duces the time of development. Furthermore, higher values of k de-
crease maintenance costs (5.7) and increase maximum vitality (5.8).
Parameter κ is inversely related to maximum vitality. Elevating κ slows
growth, increases maintenance costs (5.7) and decreases maximum vi-
tality (5.8). Parameter δ determines the rate of decline in vitality (5.4).
Higher δ increases maintenance costs (5.7) and decreases maximum vi-
tality (5.8).

If all available energy is allocated to reproduction, then δ determines
the constant rate of increase in mortality (5.1). A decline in vitality im-
plies not only a reduction in survival but also in reproductive potential.
Therefore, larger values of δ will tend to increase the investment of re-
sources in growth in order to slow down the deterioration process.

Parameters k and κ determine the shape of the energy trajectory
over vitality (5.2). If κ < 3δ, then energy is an increasing function of
vitality because the maximum attainable vitality is smaller than the
level of vitality that maximizes energy, Ψ < ψε. Otherwise, if κ > 3δ,
then the trajectory of energy is hump-shaped with respect to vitality.
The influence of the relation between κ and δ on the energy trajectory
over vitality is visualized in Fig. 5.2. Note that an increase in vitality
beyond the threshold given by (5.3), which corresponds to the peak of
energy, can only be optimal if the corresponding reduction in mortality
offsets the loss in available resources, i.e. in growth and reproductive
potential.
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Fig. 5.2. Comparison of trajectories of energy over vitality for two parameter
combinations that lead to a maximum attainable vitality of Ψ = 123 but imply
different shapes (left: k = 3, κ = 0.6, δ = 0.3; right: k = 3, κ = 0.8, δ = 0.1)

The parameters k, κ, and δ set the speed of growth and decay and
can therefore be used to determine the time and size scale of the strat-
egy. Getting a handle on measurable quantities like time and size in
this model is one future project that naturally follows from my work
(see Chap. 6).

b and c

Parameters b and c determine the overall level of mortality (5.1). Pa-
rameter b captures the state-dependent, intrinsic component of mor-
tality, i.e. b determines how important it is to attain and maintain a
high level of vitality. Reasonable magnitudes of parameter b are given
by the fact that b/ψ(0) determines infant mortality. Furthermore, the
minimum level of state-dependent mortality depends on parameter b
and on maximum vitality Ψ and is given by b/Ψ . Parameter c captures
the state-independent, extrinsic mortality component. The overall level
of infant mortality is given by b/ψ(0) + c and the minimum mortality
that can be attained is given by b/Ψ + c.

The influence of extrinsic and intrinsic mortality in this model is
investigated below (see Sect. 5.5.3).

ηr and ηg

Parameter ηr captures the intrinsic costs of reproduction (5.10). It de-
termines the propensity to share resources between reproduction and
growth. Clearly, if an organism follows an exclusive strategy, i.e. either
reproduction or growth and repair, then π equals one or zero and an
exponent will have no influence. However, if energy is shared between
processes, then larger values of ηr reduce the reproductive output that
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could have been achieved with the same level of investment at lower
values of ηr. Values below one favor parallel investment in growth and
reproduction.

Parameter ηg captures the intrinsic costs of growth and determines
the maintenance costs of a certain level of vitality (5.7). A large value
of ηg implies higher maintenance costs at each level of vitality. There-
fore, low values of ηg favor non-senescence strategies. During periods
of parallel growth and reproduction, higher ηg implies a reduced speed
of growth.

Both parameters ηr and ηg capture the efficiency of energy use and
determine how advantageous it is to specialize in growth and reproduc-
tion, i.e. how costly it is to run a growth and reproduction system in
parallel. The costs of reproduction and maintenance are expected to
crucially determine the optimal energy allocation between reproduc-
tion and growth. In this chapter I will investigate whether or not this
expectation is fulfilled.

5.2 The Vitality Model as a Control Problem

The model developed in the previous section is an autonomous con-
trol problem with an infinite time horizon. In the following sections
the problem is formulated and subsequently a solution is approached
including a discussion of the range of possible optimal solutions.

5.2.1 Problem Formulation

The objective function to be maximized is given by

max
π

∫ ∞

0
e−φ (1 − π)ηr ε(ψ) da (5.11)

where
ε(ψ) = k ψ0.75 − κψ (5.12)

is associated with the level of energy available, as defined earlier. The
cumulative hazard of death, φ, is defined as the logarithm of survival
l(a) at age a

φ(a) = − ln (l(a)) . (5.13)

The only control variable in this problem is the proportion of in-
vestment π(a) ε [0, 1] towards growth and survival versus reproduction.
The state variables of this problem are vitality ψ(a) εR+ and the cu-
mulative hazard of death φ(a) εR+.
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The change in vitality with age is given by

ψ̇ = f(ψ, π) ≡ πηg ε(ψ) − δ ψ , (5.14)

and the change in the cumulative hazard of death is given by

φ̇ = μ(ψ) , (5.15)

obeying the initial conditions3

ψ(0) = 1 (5.16)

and
φ(0) = 0 . (5.17)

The Hamiltonian function4 associated with this problem is given by

H = e−φ (1 − π)ηr ε(ψ) + λψ ψ̇ + λφ φ̇ , (5.18)

i.e.

H = e−φ (1 − π)ηr ε(ψ) + λψ (πηg ε(ψ) − δ ψ) + λφ μ(ψ) , (5.19)

with the transversality conditions for the two co-state variables5

λψ(∞) = λφ(∞) = 0 . (5.20)

Note that the Hamiltonian function, denoted simply as H, is a function
of the control, state and costate variables but does not explicitly depend
on time t, i.e. H = H(π(t), ψ(t), φ(t), λψ (t), λφ(t)) .

3 Note that the model does not account for optimization of size at birth. This is an
interesting topic that could be explored with an extended version of this model.
Including variable size at birth which can be reasonably interpreted as vitality
at birth implies several issues that will be discussed in a future joint paper by
Kenneth Wachter and me.

4 see Sec. 4.3.2
5 Note that the subscripts ‘ψ’ and ‘φ’ to λ should not be confused with denoting

partial derivatives.
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5.2.2 Solution

The Maximum Principle requires that an optimal control path has to
maximize the Hamiltonian function H. If H is differentiable w.r.t. π
the optimal π∗ (star indicates “optimal”) can be found by

dH

dπ
= −ηr e−φ (1 − π)ηr−1 ε(ψ) + ηg λψ πηg−1 ε(ψ) = 0 . (5.21)

Rearranging this expression yields

(1 − π)ηr−1

πηg−1
=

ηg

ηr
eφ λψ . (5.22)

A maximum further requires the second derivative of H to be negative,
and therefore condition

Hππ = ηr (ηr − 1)e−φ (1 − π)ηr−2 ε(ψ) (5.23)

+ ηg (ηg − 1)λψ πηg−2 ε(ψ) < 0

must hold, which after rearranging becomes6

(ηr − 1)
(1 − π)ηr−2

πηg−2
< −(ηg − 1)

ηg

ηr
eφ λψ . (5.24)

If both conditions (5.22) and (5.24) are true, expression (5.22) can
be substituted for in (5.24), yielding

(ηr − 1)
(1 − π)ηr−2

πηg−2
< −(ηg − 1)

(1 − π)ηr−1

πηg−1
, (5.25)

and after rearranging

(ηr − 1)
π

1 − π
< −(ηg − 1) . (5.26)

It should be emphasized that conditions (5.22) and (5.24) are not nec-
essary for an optimal solution to exist. But if they are satisfied, then
the sufficiency condition derived by Mangasarian [117] is satisfied. The
Hamiltonian function is concave in π and an interior solution is optimal.

A Hamiltonian function that is linear (as in Sect. 4.3.2) or convex
in π implies that a potential maximum can only be achieved at the
boundaries of the feasible set of π. Thus this maximum cannot be

6 I am not dividing by η−1 terms, since they could become negative depending on
the parameter values in which case the inequality would turn around.
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found by differentiating the Hamiltonian function as done in 5.21. The
case of a convex Hamiltonian will be discussed later in this chapter.7

Condition (5.26) helps determine the range of parameters ηr and ηg

for which it is safe to say that problem (5.11) has an optimal solution:

• It is immediately apparent that condition (5.26) is true for values
of ηr < 1 & ηg < 1, ηr = 1 & ηg < 1, and ηr < 1 & ηg = 1. This
range of the parameter space corresponds to a concave Hamiltonian
function.

• If ηr = 1 & ηg = 1, the condition is violated. Instead, the Hamil-
tonian is linear in π and, as discussed in Sect. 4.3.2, the optimal
solution is singular.

• For values ηr > 1 & ηg < 1 and ηr < 1 & ηg > 1 the Hamiltonian
can be concave as well as convex, depending on the value of π and
on the relative magnitude of ηr and ηg. I will further investigate this
very interesting case later in this chapter.

• If both ηr > 1 & ηg > 1 the concavity condition is violated,
the Hamiltonian is convex. Do optimal solution exists for problem
(5.11)? And if not, is there a way to modify the model in order to
get optimal solutions for the case of ηr > 1 & ηg > 1? As for the
previous case I will tackle those questions later in this chapter.

Maximizing the Hamiltonian function is not the only condition the
Maximum Principle requires to be fulfilled. As discussed in Sec. 4.3.2 in
Chap. 4, the co-state variables have to meet the following conditions:

λ̇ψ = −
dH

dψ
(5.27)

and

λ̇φ = −
dH

dφ
. (5.28)

Solving the differential equations (see App. A.1) yields the following
results:

The shadow price of vitality at age a is given by the associated
cumulated changes in fertility and mortality over all remaining ages
discounted by the corresponding cumulative changes in growth.

λψ(a) =

∫ ∞

a

(
e−φ (1 − π)ηr εψ + λφ μψ

)
(5.29)

× e
∫ x

a
πηg εψ − δ ds dx .

7 The existence of optimal solutions for my problem will be discussed in more detail
in a forthcoming paper by Kenneth Wachter and me.
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The shadow price of the cumulative hazard of death at age a is the
negative value of remaining reproduction at age a, i.e. the penalty for
having one unit higher cumulative hazard:

λφ(a) = −

∫ ∞

a
e−φ (1 − π)ηr ε(ψ) dx . (5.30)

Equation (5.30) can be substituted in (5.29) to yield the final ex-
pression for λψ(a) , being

λψ(a) =
∫∞
a e

∫ x

a
πηg εψ − δ ds (5.31)

×
(
e−φ (1 − π)ηr εψ + b

ψ2

∫∞
x e−φ (1 − π)ηr ε(ψ) dτ

)
dx .

The shadow price of vitality is given by the benefits of increasing re-
production due to higher vitality as well as the gains in remaining
reproduction due to lower mortality, both weighted by the change in
growth. As long as an increase in vitality leads to faster growth, this
weight is above one (revaluating), if the increase in vitality leads to
slower growth, then the weight is below one (devaluating).

5.2.3 The Role of the Second State Variable

A condition for optimal investment is given in (5.22). This condition
requires that λψ(a), given in (5.31), is multiplied by exp (φ(a)). It be-
comes apparent that an optimal solution depends only on the current
value8 λc

ψ ≡ exp(φ(a)) λψ(a) which is not discounted by death up to
age a, in other words the cumulative hazard of death from birth to
age a is erased. Consequently, expression (5.22) and thus an optimal
investment path after age a is independent of the state variable φ(a);
the hazard of death accumulated between age zero and age a has no
effect.

Why is that so? Why does the second state variable not influence the
optimal solution? The answer can be found reformulating the control
problem. Maximizing the objective function in (5.11) from age zero
to infinity requires maximizing the objective from any time point T
onwards. Thus, the objective can be written as

max
π

( ∫ T

0
e−φ(x) m(x) dx + max

π

∫ ∞

T
e−φ(x) m(x) dx

)
, (5.32)

8 The concept of current values, i.e. values at time t rather than their equivalent
at time zero is well described in [90, pp. 164–174]
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where m(x) denotes the maternity function at age x. Maximization
before age T is conditional on the maximization after T . But the maxi-
mization after T is conditional only on the value of ψ(T ). In particular
the cumulative hazard of death between age zero and T does not in-
fluence the optimal strategy after age T . Instead, the factor exp−φ(T )
can be drawn outside the integral, i.e.

max
π

∫ ∞

T
e−φ m(x) dx = e−φ(T ) max

π

∫ ∞

T
e−φ(x−T ) m(x) dx ,

(5.33)
revealing its nature as a mere scaling factor. Effectively, the cumulative
hazard starts off at φ = 0 for any time point the control problem is
supposed to be solved from. It has no effect on the first state variable
since the change in vitality is entirely driven by investment π and by
vitality itself. The fact that the change in cumulative hazard φ depends
on mortality which in turn depends on vitality further emphasizes the
point that vitality is the only actual state variable that matters.

Thus, the control problem formulated in this chapter is essentially
a single state, single control, autonomous, infinite horizon optimal con-
trol problem. As discussed earlier in Chap. 4 this implies that any
optimal state path has to be monotone. Since life starts by growth,
only initially increasing vitality trajectories are sensible. This means
mortality cannot increase; senescence is impossible. Only growth fol-
lowed by either a period of parallel growth and reproduction and then
maintenance or development followed by maintenance directly are the
possible strategies. Given the idea of “inevitable senescence” it is re-
markable how challenging it is to actually develop a model that can
lead to senescence as an optimal life history strategy.

In the size chapter I was able to modify my model by adding a
second state variable to come up with solutions that yielded senescence.
How could I change my vitality model to broaden the scope of possible
solutions, including the pattern of human senescence? As mentioned
above there are several parameter combinations for ηr and ηg for which
the Hamiltonian function is convex. Maybe the “weird” cases of ηr > 1
& ηg < 1, ηr < 1 & ηg > 1 and ηr > 1 & ηg > 1 provide a rich ground
for exploring exotic strategies? Before I make the leap to modifying my
model let me step back for a moment and have another look at the
results.

5.2.4 Hamilton and Reproductive Value - Revisited

First note that the shadow price of the cumulative hazard of death at
age a given in (5.30) corresponds to the negative of remaining repro-
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duction at that age, which is equivalent to the numerator in Hamil-
ton’s indicator for the force of selection on age-specific mortality. As
discussed at length in Chap. 2, this quantity inevitably declines with
age. But in my control problem it does not automatically mean that
mortality becomes less important, and that mortality would ultimately
increase with age. My results just showed that when the Hamiltonian
function is concave, then vitality has to increase and thus mortality has
to decline, despite an inevitable falling shadow price of the cumulative
hazard of death.

Hamilton emphasized how important it was to use ‘remaining repro-
duction’ and not ‘reproductive value’ for quantifying selection pressure.
Interestingly, reproductive value can be recovered if I modify my model
formulation, though leaving it essentially unchanged: as just shown the
cumulative hazard of death at age a has no influence on the optimal
solution at age a. Looking closer at the problem formulation, the defi-
nition of the cumulative hazard φ(a) as the second state variable seems
somewhat arbitrary. Indeed, I could have equally well let survival l(a)
serve as the second state variable. This would have given me a equation
of motion, different to the one in (5.15), namely l̇(a) = −μ(a) l(a), but
again the condition for optimal π would have been independent of the
second state. Doing the corresponding modifications and calculations
leads to a shadow price of survival that is equal to

λl(a) =
1

l(a)

∫ ∞

a
l(x) (1 − π)ηr ε(ψ) dx . (5.34)

This expression corresponds to the reproductive value at age a. Con-
trary to the shadow price of the cumulative hazard of death which
inevitably declines with age, the shadow price of survival can also be
constant or increase with age.

Both the quantities – remaining reproduction and reproductive
value – that were of central importance to Hamilton’s discussion of
the evolution of senescence emerge as part of my life history optimal
control problem. Furthermore, the quantities have been associated with
opposite answers to the essential question of whether senescence is in-
evitable or not. Now it turns out that both quantities have their in-
terpretation as shadow prices for either survival or cumulative hazard.
They are weights in the Hamiltonian function. But neither of them
actually influences the optimal control path (see (5.22)). The optimal
control path only depends on the current value of the shadow price of
vitality and the magnitude of the η parameters.

This is an important finding because it is tempting to predict the
shape of mortality and fertility from the fitness sensitivities directly.
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My result underlines the fact that one should not do so. Explaining the
change in a trait (and ultimately the evolution of age-trajectories of
mortality and fertility) requires multiplying the sensitivity in fitness by
the variance-covariance matrix [105], as discussed in Chap. 3. Lande’s
so called G-matrix essentially contains all the trade offs among the
fitness relevant traits.

People studying the evolution of senescence try to understand
whether optimization approaches that rest on trade-offs or approaches
based on fitness sensitivities (which is what Hamilton’s indicators are
and reproductive value is the fitness sensitivity with respect to sur-
vival) are a better way of explaining the evolution of senescence (see
Chap. 3). I find that in my optimization framework fitness sensitivities
appear as weights in the optimization formulas. Thus, both approaches
are intertwined. The justification and importance for fitness sensitiv-
ities in shaping age-trajectories of mortality and fertility is in giving
appropriate weights to the trade-offs that are balanced by evolution.
Giving weights to trade-offs is exactly the same function that sensi-
tivities take on in determining short term evolutionary change, when
fitness sensitivities are multiplied by the appropriate G-matrix. For
both approaches the central role of trade offs is conspicuous. Nailing
down the trade offs - however - is one of the hardest nuts to crack for
life history biologists, independently of which approach is taken.

5.3 The Constrained Vitality Model

Let me now get to the ‘weird’ ranges of parameters ηr and ηg. For
values of ηr and ηg that lead to a convex Hamiltonian function no
simple answer can be given as to whether an optimal solution exists or
not. Mangasarian’s theorem [117] is sufficient for an optimal solution
but not necessary. An example will help to understand why convexity
is a problem.

Let me focus on the case of ηr > 1& ηg > 1. If both ηr and ηg

exceed one, then the Hamiltonian is convex in π. Therefore the highest
value of H is found at the boundaries of the feasible set for values of
π. Thus the only two possible values of π that could maximize H are
either π = 1 or π = 0.

If π = 1 no reproduction is realized at all, so the Hamiltonian equals
zero. If π = 0, then all resources are spend on reproduction, and vitality
declines. For π = 0 the Hamiltonian function takes on some positive
value, hence the Hamiltonian is larger for π = 0 than for π = 1, i.e.
H(π = 0) > H(π = 1). As π = 1 implies growth in vitality whereas
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π = 0 implies shrinkage in vitality, π would have to remain at the
level of zero forever because an optimal trajectory for this problem
has to be monotone. It can be proven, however, that H(0) > H(1)
will be violated at some point, at least for the special case of constant
mortality, μ = c (see App. A.2). This case illustrates the fact that the
model has no optimal solution if both η’s are larger than one9.

An interesting aspect of the proof, however, is the insight that at
some point the Hamiltonian will lead to higher values for π = 1 than for
π = 0. Thus the strategy switches from full reproduction to full growth.
One can show that the convex Hamiltonian produces zig-zagging strate-
gies. And it is this zig-zagging that holds the key to the explanation for
the non-existence of a solution10. To prevent this behavior one could
constrain the vitality model in a way that zig-zagging is not an option.
Let me explore this avenue further.

The mode of change of an organism can be constrained such that
it can be changed only once. Hence, periods of growth and shrinkage
cannot occur repeatedly but can only alternate once. Since life starts
with growth, initially the mode of change for any organism is to increase
in vitality. The organism is free to grow and increase in vitality until
eventually maintenance level is reached or the organism could switch
to shrinkage. Once the organism is on a decreasing vitality path, it will
eventually reach maintenance but cannot get back on an increasing
path. For the example discussed above this would imply that initially
π equals one, at the onset of reproduction π switches to zero and at the
age when λψ rises above one, π rises up to its maximum permissable
level, i.e. maintenance π = π0. In this way, the problem encountered
without the constraint disappears. There is an optimal solution inside
the range of feasible trajectories of π. It is clear that this strategy could
be beaten in the unconstrained model, but for the modified, constrained
version π0 is the best feasible strategy.11

Let me formalize the constrained model. I will introduce a second
control variable defined as the time point T ε [0,∞] of switch between
growth and shrinkage. Since life starts with growth, all ages younger
than T are associated with increasing vitality. Note that theoretically,
optimal strategies can imply pure shrinkage (T = 0; initially being in
shrinkage mode) as well as pure growth strategies (T = ∞; never switch

9 As discussed in more detail in a forthcoming paper by Kenneth Wachter and me.
10 Ditto.
11 It may well be that for some species it is physiologically impossible to switch

from a senescent back to a non-senescent trajectory, i.e. from increasing back to
decreasing mortality, and thus my constraint might not be unrealistic.
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to shrinkage). Thus, the change in vitality is given by

ψ̇ = max[f(ψ, π), 0] for a in [0, T ) , (5.35)

where f is the same as in the unconstrained model given in (5.14).
Equation (5.35) implies that any feasible strategy π associated with
negative changes in vitality in the unconstrained model is now mapped
on the zero-line for all ages before T . After T the change in vitality is
given by

ψ̇ = min[f(ψ, π), 0] for a in [T,∞] . (5.36)

Now the objective function can be written as

max
π, T

(∫ T

0
l(x)m(x) dx (5.37)

+ e−φ(T )

∫ ∞

T
e−(φ(x)−φ(T )) m(x) dx

)
,

using general notation for survival l(x) and reproduction m(x). Apply-
ing (5.33) this expression is equivalent to

max
π, T

(∫ T

0
l(x)m(x) dx (5.38)

+ e−φ(T ) max
π

∫ ∞

T
e−(φ(x)−φ(T )) m(x) dx

)
.

It turns out that the constrained model consists of two optimization
problems that are linked. The inner maximization problem in (5.38) is
given by

max
π

∫ ∞

T
e−(φ(x)−φ(T )) m(x) dx . (5.39)

Note that the mode of change in vitality for the inner problem is shrink-
age. The initial conditions for the inner problem are

ψS(T ) = ψG(T ) (5.40)

and
φS(T ) = φG(T ) . (5.41)

The upper case letters S and G indicate the different modes of change
for the inner and the outer problem. The outer problem (where vitality
can not decrease) sets initial conditions for the inner problem (where
vitality can not increase) but the inner problem can otherwise be solved
independently of the outer one.
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The change in vitality for the inner problem is given by (5.36) and
the transversality conditions are as before

λS
ψ(∞) = λS

φ(∞) = 0 . (5.42)

The Hamiltonian function is essentially the same as in the uncon-
strained model, and the solutions for λψ, λφ and ψ remain the same,
just with new initial vitality level ψ(T ). An optimal solution for this
problem again has to be monotone, therefore vitality can only decline
until zero or some level that is maintained.

The outer maximization problem depends on the maximum value of
the objective of the inner problem. The initial conditions of the outer
problem are

ψG(0) = 1 (5.43)

and
φG(0) = 0 (5.44)

while now the transversality conditions are unusual in the way that
they connect the outer problem to the inner problem,

λG
ψ (T ) = e−φ(T )λS

ψ(T ) (5.45)

and
λG

φ (T ) = e−φ(T )λS
φ(T ) . (5.46)

These conditions ensure that the problems are properly related.
The Hamiltonian function for the outer problem is again the same

as for the unconstrained model, taking into account that the change in
vitality is now given by (5.35). Effectively, the constraint on the change
in vitality is a constraint on the range of possible trajectories of π to the
subset πε[π0, 1]. Note that the second control variable T marks start
and end conditions for the two connected problems but does not enter
the associated Hamiltonian functions. Further note that if one applies
conditions (5.43), (5.45) and (5.46) in the solutions for ψ, λψ and λφ it
turns out that the solutions remain the same for both problems.

The Hamiltonian for the constrained model is

H = HG + e−φ(T ) HS (5.47)

where HG is different from zero in [0, T ) and HS is different from
zero in [T,∞]. Both HG and HS are essentially the same except for
min/max[f, 0] (see (5.35) and (5.36)) and the different initial values for
vitality. To find the optimal value for T it is not necessary, however, to
go through the procedure of maximizing H w.r.t. T . There is a simpler
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way: Basically, one has two optimization problems that can be solved
separately and be spliced together for any given value of ψ(T ). Solving
the two problems for any ψ(T ) the optimal ψ(T ) can subsequently be
found by simple maximization.

The big advantage of introducing the second control variable T is
that for the modified model an optimal solution for vitality has to be
monotone not for one whole but for two distinct time intervals corre-
sponding to two distinct yet related optimization problems. Between
age zero and age T vitality can increase and between age T and infinity
vitality may go down but must not increase. Obviously, all solutions to
the modified model are subsets to solutions of the initial, unconstrained
model. As such, optimal solutions for the initial model are optimal so-
lutions for the modified model. But for ranges of parameters that have
no optimal solution in the unconstrained model there might well be an
optimal solution in the constrained model.

One runs into the paradoxical situation that adding restrictions
opens up opportunities. Though the modified model is a constrained
version of the initial model it extends the range of the parameter space
for which optimal solutions exist, and in this way it also extends the
range of possible qualitative trajectories. In particular, the constrained
model has a solution for the case where both η parameter exceed one,
namely full growth at π = 1 followed by full reproduction at π = 0 ac-
companied by a decline in vitality and thus increasing mortality, eventu-
ally followed by maintenance at π = π0, when mortality plateaus. Thus,
the constrained model can explain senescent as well as non-senescent
life history strategies while the unconstrained model can only explain
non-senescence.

5.3.1 Expected Solutions

In the following I list the expected solutions for all subsets of the pa-
rameter space for combinations of ηr and ηg, depending on whether
those parameters are smaller, equal or larger than one:

• ηr < 1 & ηg < 1: If both η’s are smaller than one the Hamiltonian
is concave in π. An optimal solution exists and intermediate in-
vestment is expected. Parallel growth and reproduction followed by
maintenance should be optimal. The optimal strategy for the second
control should be to not throw the switch (T = ∞). I will call this
strategy Enhancement (one may also call it Negative Senescence as
in Vaupel et al. 2004).
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• ηr < 1 & ηg = 1 or ηr = 1 & ηg < 1 : If one of the η’s is equal
to one and the other is smaller than one, then the Hamiltonian is
concave in π. Therefore Enhancement should be optimal.

• ηr = 1 & ηg = 1: If both η’s are equal to one the Hamiltonian is
linear in π. As discussed in Chap. 4 the optimal solution involves
a period of full growth corresponding to π = 1 followed by mainte-
nance at π0. I will call this strategy Sustenance.

• ηr > 1 & ηg > 1: If both η’s are larger than one the Hamiltonian
is convex in π. As discussed above, my modified model yields opti-
mal solutions corresponding to full growth (π = 1) followed by full
reproduction (π = 0) followed by maintenance (π = π0). I call this
kind of strategy Senescence.

• ηr > 1 & ηg = 1 or ηr = 1 & ηg > 1: If one of the η’s is equal to
one but the other is larger than one the Hamiltonian is convex in π
and Senescence should be optimal.

• ηr > 1 & ηg < 1 or ηr < 1 & ηg > 1: If one η is larger than one
and the other is smaller than one, the balance between ηr and ηg

determines whether the Hamiltonian is concave or not. These exotic
cases need further investigation.

Exotic Strategies

In the beginning of this section I derived the condition that determines
whether the Hamiltonian function is concave or convex (see inequality
(5.26)). Strikingly, the Hamiltonian function H can be concave or con-
vex, if one η is larger and the other is smaller than one, depending on
the value of π. To see this more clearly one can equate both sides of
inequality (5.26) to find the point πc that separates the two regions of
π that are associated with concave vs convex H:

πc =
1 − ηg

ηr − ηg
, (5.48)

lower case c indicating “cut between convex and concave”. With a
minute of thought one can establish that 0 < πc < 1, i.e. the cut point
truly lies within the interval [0, 1].

Interestingly, depending on whether ηr or ηg is the parameter that
exceeds one, it is the interval to the left or to the right side of πc that
corresponds to concave H. This should have important implications for
the associated optimal strategies. It should matter whether it is growth
or reproduction that faces increasing vs. decreasing returns to scale.
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From inequality (5.26) one can show that the concave zone of H lies
to the left of πc when ηr exceeds one. An optimal π∗-strategy that does
not run into my constraint has to obey

π∗ < πc if ηr > 1 . (5.49)

Conversely, the concave zone of H lies to the right of πc if ηg exceeds
one. An optimal π∗-strategy that does not run into my constraint has
to obey

π∗ > πc if ηg > 1 . (5.50)

A helpful insight can be gained from (5.48): As ηr approaches one
the cut point πc moves towards one,

lim
ηr→1

πc = 1 . (5.51)

Equations (5.49) and (5.51) together imply that – as ηr approaches the
limit of 1 from above – the whole interval will become concave. The
strategy converges to Enhancement. This is intuitively right since one is
back to the well behaved case of ηr = 1& ηg < 1. For values of ηr < 1,
(5.50) and (5.51) imply convergence to the case of ηr = 1& ηg > 1,
where the whole interval corresponds to convex H, so the strategy
converges to Senescence.

Analogously, it holds that

lim
ηg→1

πc = 0 . (5.52)

If ηg approaches 1 from below, then the strategy converges to senes-
cence, since ηg < 1 means π < πc, so the region where H is concave
disappears as πc → 0. If ηg approaches 1 from above, then the strategy
converges to Enhancement, since ηg > 1 means π > πc, so the region
where H is concave covers the whole interval.

These dynamics can also be seen from

∂πc

∂ηr
= −

1 − ηg

(ηr − ηg)2

⎧⎨
⎩< 0 if ηg < 1

> 0 if ηg > 1
(5.53)

and

∂πc

∂ηg
=

1 − ηg

(ηr − ηg)2
−

1

ηr − ηg

⎧⎨
⎩< 0 if ηg < 1

> 0 if ηg > 1 .
(5.54)
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What can be deduced about the shape of possible strategies? It is
hard to predict the expected optimal solutions. Presumably, some part
of a strategy should correspond to extreme cases of π = 1, or π = 0
followed by maintenance π = π0 and the other half of the strategy could
be intermediate investment, i.e. either parallel growth and reproduction
or parallel shrinkage and reproduction. In the latter case, slower than
exponential senescence would be optimal.

For ηg > 1 the well-behaved area is right of πc (i.e. above πc), thus
larger values of π up to one correspond to concave H. Therefore, a
smooth transition from π = 1 to lower values is expected. This sug-
gests parallel growth and reproduction. Hence, the “good” part of the
strategy would be in the beginning of life. Therefore, the second part
of life might correspond to the extreme case where the constraint of
my constrained model comes into action.

For ηr > 1 the well-behaved area is left of πc (i.e. below πc), thus
smaller values of π down to zero correspond to concave H. Therefore,
a distinct jump of π from π = 1 to some lower value is expected. Since
the case of ηr > 1 mirrors the one of ηg > 1, I would deduce that now
the second part of the strategy is the “good” one. Thus, full growth
followed by slower than exponential senescence could be an optimal
strategy.

The discussion above suggests that there are several stages of life.
For my models, life always starts with a period of development in which
an organism grows and mortality falls but there is no fertility. Then
there are four possibilities: First, the organism could maintain itself at
a constant level of vitality, mortality and fertility – I call this “suste-
nance”. Second, the organism could start to reproduce but continue to
grow, with declining mortality – I call this “enhancement”. Third, the
organism could reproduce as much as possible, with mortality rising
exponentially – this I call “senescence”. Fourth, the organism could re-
duce the increase in mortality and decline in vitality by diverting some
resources from fertility to repair – I call this “subsenescence”. In my
vitality model, the first stage is always development and the last stage
is always maintenance. Thus, possible life history stages resulting from
my model are development, enhancement, senescence, subsenescence
and maintenance.12

12 Note that maintenance and Sustenance both pertain to cases of constant mortality
and fertility. I use Sustenance with capital letter to describe a life history strategy,
namely that of development followed by maintenance, whereas maintenance with
lower case letter simply refers to one phase of a life history. Analogously, I use
Enhancement and Senescence with capital letters to describe life history strategies
while the same terms in lower case letters refer to phases of a life history.
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5.4 Numerical Results

While it is possible to write down integral equations that can explicitly
be solved for the cases where ηr > 1& ηg > 1, finding solutions for
the remaining η parameter space is difficult to do analytically. To solve
for the age-trajectories of optimal investment, vitality, mortality and
fertility, I implemented an algorithm based on Bellman’s approach of
dynamic programming (see App. A.3).

Applying this algorithm13 I gain particular solutions for each part of
the η parameter space and can check, whether the general shape of my
numerical results fits the expected solutions based on my theoretical
considerations in Sect. 5.3.1.

5.4.1 The Five Varieties of Life History Strategies

Five different types of optimal strategies can be found to result from
this model. They are:

• Sustenance – development followed by maintenance,
• Enhancement – development followed by enhancement followed by

maintenance
• Senescence – development followed by senescence followed by main-

tenance
• Subsenescence – development followed by subsenescence followed by

maintenance
• Ensenescence – development followed by enhancement followed by

senescence followed by maintenance

Note that this variety of strategies includes senescent as well as non-
senescent life histories as predicted by my theoretical considerations
above. The following figures exemplify particular optimal life history
strategies for particular parameter values of ηr and ηg to show the scope
of possible solutions and to emphasize the major importance of those
two parameters.

Strategies Without Senescence

As expected, parameter values that are below one lead to Enhancement
(see Figs. 5.3, 5.4 and 5.5). Note that for ηr = 1 & ηg = 0.5 the onset of

13 Due to numerical approximation errors caused by step length in vitality and
investment, the algorithm sometimes leads to solutions that are pseudo mainte-
nance, i.e. very slow senescence, where π is almost π0. This pseudo maintenance
converges to true maintenance when step length for vitality and investment are
more and more reduced.
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reproduction is abrupt, investment “falls down a cliff” whereas for ηr =
0.5 & ηg = 0.5 as well as ηr = 0.5 & ηg = 1 the onset of reproduction
comes smoothly. Thus, if reproduction faces constant returns to scale
in investment, reproduction starts abruptly while decreasing returns
to scale imply a smooth transition (in agreement with my theoretical
considerations in Sect 5.3.1).

If both parameters equal one, then - as predicted - Sustenance is
optimal, as can be seen in Fig. 5.6.14
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Fig. 5.3. Example Enhancement: ηr = 0.5 and ηg = 0.5

Strategies with Senescence

Strategies with senescence emerge as the η parameters start to ex-
ceed one as exemplified in the following figures. Note the difference
between Fig. 5.7 and Fig. 5.8: a higher value of ηr leads to lower vita-

14 For this and all the following figures in this section, the thick line in the lower
left graph depicts the optimal investment strategy across age and the thin line
depicts the corresponding level of investment π0 required for maintenance.
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Fig. 5.4. Example Enhancement: ηr = 1 and ηg = 0.5
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Fig. 5.5. Example Enhancement: ηr = 0.5 and ηg = 1
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Fig. 5.6. Example Sustenance: ηr = 1 and ηg = 1

lity at maintenance and thus higher mortality. Interestingly, mortality
increases only a little bit (relative to initial mortality15 of 0.3) before
reaching a plateau. For both η’s equal to 3, Fig. 5.9 depicts the as-
sociated strategy (note that the time axis is double as long as in the
previous figures). If the time units corresponded to years this setting
of parameters captures a life history strategy of with humanesque fea-
tures. Mortality falls until the age of maturity at about 13. Thereafter,
mortality rises exponentially at a constant rate δ = 0.1. Reproduction
follows a hump-shaped curve. At the age of 60 reproduction drops to
close to zero, corresponding to its level at the plateau. Note that vir-
tually all lifetime reproduction is realized before this age and further
contributions of later age classes are negligible. My model does not lead
to true menopause – reproduction continues albeit at a very low level,
and mortality remains constant. In a human life history reproduction,
at least for females, should cease and mortality should keep on rising
exponentially. Clearly, a model as simple as mine that is solely based
on vitality can only capture a rough, humanesque pattern.

15 Note that in Figs. 5.7, 5.8, 5.10, 5.11 and 5.13 the increase in mortality is barely
visible because mortality is shown on a scale set by initial mortality, which is
at the magnitude of 0.3. It should be emphasized, however, that the force of
mortality is increasing substantially in all these figures relative to its level at
reproductive maturity.
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Fig. 5.7. Example Senescence: ηr = 1 ηg = 1.5
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Fig. 5.8. Example Senescence: ηr = 3 ηg = 1.5

Ensenescence

Figures 5.10, 5.11, 5.12 and 5.13 show results that exemplify parame-
ter combinations corresponding to areas where exotic strategies were
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Fig. 5.9. Example Senescence (humanesque case): ηr = 3 ηg = 3

expected. And indeed, the strategies are really interesting: The combi-
nation of ηr = 0.5 & ηg = 1.5 and ηr = 0.5 & ηg = 3 (Figs. 5.10 and
5.11) depict strategies that include parallel reproduction and growth.
An initial period of development (π = 1) is followed by a period of
parallel growth and reproduction (π > π0), leading into a period of
exponential senescence due to a drop in the strategy to π = 0 and
eventually reaching a level of vitality that will be maintained ever after
(π = π0). I call this strategy Ensenescence because it includes a period
of enhancement and a period of senescence. Figure 5.11 shows the effect
of increasing ηg, which is to widen the period of senescence and flatten
the dip.

Note that the dip in the strategy depicted in Figs. 5.10 and 5.11 is
not an artefact. I calculated many different η combinations for the case
of ηr < 1 and ηg > 1 and always found this peculiar strategy.

Senescence and Non-senescence Close Together

The range of parameters ηr > 1 and ηg < 1 reveals a surprise: For
ηr = 1.5 & ηg = 0.5 (Fig. 5.12) the optimal strategy is Enhancement.
Investment shows a cliff at the onset of reproduction as predicted from
ηr > 1 and the discussion of πc. This kind of enhancement differs from
the very early and gradual start of reproduction shown in Figs. 5.3–5.5
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Fascinatingly, there is yet another strategy to be found in this pa-
rameter region. Increasing ηr to 3 as shown in Fig. 5.13 moves the
non-senescent life history towards a senescent one. Parallel reproduc-
tion and growth is not favored anymore. Instead the optimal strategy is
development (π = 1) followed by slower than exponential senescence16

(0 < π < π0), followed by maintenance (π = π0). I call this strategy
Subsenescence.

If the optimal strategy is Enhancement the vitality trajectory is
monotone increasing (and my model constraint is not in action). If,
however, Subsenescence is optimal the vitality trajectory first increases
and then decreases (my model constraint applies)17. Thus, for increas-
ing returns to scale in reproduction but decreasing returns to growth
and maintenance, both senescent and non-senescent strategies can be
optimal.
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Fig. 5.10. Example Ensenescence: ηr = 0.5 ηg = 1.5

16 This is a true strategy and not an artifact, the strategy is robust with decreasing
step length.

17 The cliff when π drops from one to below π0 shows that the investment trajec-
tory jumps over the convex area of π’s which lies above πc for this range of η

parameters.
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Fig. 5.11. Example Ensenescence: ηr = 0.5 ηg = 3
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Fig. 5.12. Example Enhancement: ηr = 1.5 ηg = 0.5

Strategies Across η Parameters

The matrix of strategies in Fig. 5.14 shows how strategies change across
the range of ηr and ηg. Each graph displays the optimal investment
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Fig. 5.13. Example Subsenescence: ηr = 3 ηg = 0.5

strategy π∗ across age. In each graph, initially π∗ equals one and drops
below one at the age of maturity18.

Consider for instance the first column, with ηg fixed at 0.5. As ηr in-
creases from 0.5 to 1.5, the onset of reproduction becomes more abrupt.
When ηr is 3.0 the optimal strategy is Subsenescence rather than En-
hancement: there is no longer a period of parallel reproduction and
growth.

Another interesting example concerns the upper right corner of Fig.
5.14. The strategy in the corner is Ensenescence. The name “Ensenes-
cence” combines two strategies – Enhancement and Senescence, and
it is those two strategies that Ensenescence converges to as either of
the η parameters changes. My computational results (not presented
here) show how a reduction in ηg from 1.5 to 1 drives the strategy
towards Enhancement. As ηg decreases the valley of the dip becomes
more and more pronounced, eventually flattening out and the period of
senescence becomes shorter and eventually disappears. When instead
ηr increases from 0.5 to 1, Ensenescence converges to Senescence. The

18 Note that the thin line that depicts the required investment for maintenance
originating from the lower left corner of each graph starts off at higher and higher
values as ηg increases along each row. The reason are higher costs of maintenance
due to larger values of ηg (compare (5.7)).
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dip becomes more and more shallow, eventually disappearing and the
period of senescence lengthens19.

EnhancementEnhancement Ensenescence

SustenanceEnhancement Senescence

SenescenceEnhancement Senescence

SenescenceSubsenescence Senescence

Fig. 5.14. Overview of optimal investment strategies across η parameters

19 I believe that the increase in π just before the onset of senescence is due to the
fact that the organism invests more in growth and survival to ensure survival to
the beneficial phase of full reproduction.
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5.4.2 When Senescence Is Optimal and when It Is Not

The previous section concentrated on qualitative age-patterns of mor-
tality. Several of the mortality and fertility trajectories increase over
some part of reproductive life but decrease or remain constant over
other parts of reproductive life. How should one decide whether those
life histories are senescent or non-senescent? How could one describe
the ‘degree of senescence’ of a life history strategy? This section offers
a measure of the degree of senescence and subsequently sheds light on
the characteristics that determine whether senescent or non-senescent
life histories are optimal.

The Degree of Senescence

My suggestion for a definition of ‘senescence’ in Chap. 1 applies to
particular age-groups. What criteria should be used to label a complete
life-history strategy senescent or non-senescent? In the following, one
way of approaching such a classification is suggested.

Whether a particular life history is classified as senescent or non-
senescent can be determined by the proportion of lifetime reproduc-
tion that is realized at ages when mortality rises, i.e. when π < π0.
This senescence indicator, S, measures the degree of senescence for a
particular life history strategy. S is given by

S =

∑∞
x=0 Jx lx mx∑∞

x=0 lx mx
, (5.55)

where Jx = 1 if investment in growth is below maintenance level
(π(ψ(x)) < π0(ψ(x))) and Jx = 0 if investment is greater than or equal
to the amount required for maintenance of vitality. If S = 1, the strat-
egy is fully senescent and if S = 0, the strategy is fully non-senescent.
All values in between describe mixed strategies.

The Crucial Parameters

The crucial parameters that are responsible for the qualitative shape of
an optimal life history strategy are the η parameters and the mortality
parameters.

Figure 5.15 shows how different levels of mortality can influence the
degree of senescence in a particular life history strategy depending on
the range of η parameters. Each combination of η’s corresponds to one
graph. Each graph displays the degree of senescence, i.e. values of S
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Fig. 5.15. Degree of senescence S, in%, across η and mortality parameters;
Color code: darker = more senescent; numbers refer to percent life time re-
production realized at ages when mortality increases
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across extrinsic20 mortality c along the x-axis and intrinsic mortality b
along the y-axis. Two general results can be derived from this figure:

• The upper left triangle of Fig. 5.15 is white; those ranges of param-
eters are associated with pure non-senescence, i.e. S = 0. Towards
the lower right corner the areas become more and more shady and
dark. Thus, higher levels of the η parameters generally correspond
to higher degrees of senescence.21

• Inside each of the 12 graphs, lighter areas can be found towards
the left and further down. Hence, higher levels of mortality – be
it extrinsic (on the x-axis) or intrinsic (on the y-axis) – go hand
in hand with higher degrees of senescence, in other words a larger
fraction of lifetime reproductive success is realized during ages when
mortality increases.

The influence of the η and mortality parameters on age and vitality
at maturity can be seen in Figure 5.16, which follows the same logic
as the previous figure. Clear gradients in shading from light to dark
become apparent: from left to right, top to bottom and – inside each
graph – right to left. Three general observations can be made:

• Higher levels of overall mortality are generally associated with
smaller vitality at maturity, higher extrinsic mortality c in partic-
ular has this effect. Note, however, that higher intrinsic mortality
b affects vitality at maturity in a nonlinear fashion: intermediate b
leads to higher vitality at maturity, i.e. continued growth pays off
via better survival at maturity. Too high a level of b, however, coun-
terbalances this advantage because of increasing overall mortality –
earlier maturation at a smaller level of vitality is favored.

• Higher levels of the η parameters are generally associated with larger
vitality and thus a later age at maturity.

• For non-senescent strategies (white areas), vitality at maturity
barely exceeding 50 % of the maximum vitality possible, i.e. de-
velopment does not proceed beyond the point where the increase
in vitality starts to slow down (The age-trajectory of vitality is s-
shaped for π = 1). For senescent strategies vitality at maturity is
generally higher than for non-senescent strategies, reaching about
75% and more percent of maximum vitality. Thus there is a distinct
shift in vitality at maturity relative to maximum attainable vitality

20 In this monograph I use the term “extrinsic” meaning “state-independent” and
“intrinsic” meaning “state-dependent”.

21 A forth column for ηg = 3 would reveal the same pattern, mainly being dark; it
is not displayed here.
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Fig. 5.16. Vitality at maturity across η and mortality parameters; Color
code: darker = larger vitality at maturity
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Ψ between senescent and non-senescent strategies(as can be seen
from the distinct shift between light and dark areas).

In short, higher levels of the η parameters correspond to a higher
degree of senescence as well as greater vitality at maturity. Higher levels
of mortality lead to higher degrees of senescence but reduce vitality at
maturity. Non-senescent strategies are associated with relatively22 low
vitality and thus early age at maturity, while senescent strategies are
associated with relatively large vitality and thus late age at maturity.

A Peculiar Little White Square

Figure 5.15 reveals a peculiarity: the lower right little square of the
lowest left graph is white, there is no senescence. Given the patterns
elsewhere in the figure one would expect a value of S above 80. While all
strategies for ηr = 3 and ηg = 0.5 are Subsenescence, the highest value
of c = 0.1 at the lowest value of b = 0.1 corresponds to Enhancement.
Why?

First note that all except one (namely Ensenescence) of my strate-
gies exhibit monotone state trajectories after reproductive maturity.
Thus, for those strategies the relative level of vitality at maturity to
vitality at maintenance can predict whether vitality increases or de-
creases across adult ages. If vitality at maturity is larger than vitality
at maintenance, the organism must have been shrinking after maturity
to reach that lower level, thus there must have been senescence. If vi-
tality at maturity is smaller than vitality at maintenance, the organism
must have been growing after maturity to reach that higher level, thus
there must have been non-senescence.

If one secondly recalls that non-senescence implies small and senes-
cence implies large vitality at maturity, then it seems that vitality at
maturity and vitality at maintenance hold the key to explain the pe-
culiar little white square.

Influence of η Parameters

The influence of the η parameters on vitality at maturity and at main-
tenance is shown in more detail in Figs. 5.17 and 5.18 23:

22 “Relative” here means relative to maximum vitality.
23 Both figures are calculated keeping all other parameters unchanged at b = 0.3, c =

0.01, k = 3, κ = 0.8, δ = 0.1 which correspond to a maximum attainable vitality
of 123. Remember that vitality is a dimensionless variable so the specific value of
123 only means that maximum vitality is 123 times greater than vitality at age
zero.
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• Optimal vitality at maturity increases as either ηr or ηg increases,
i.e. the steeper the returns to scale in either reproduction or growth
and maintenance (stronger convexity), the later the age at maturity
and the higher the acquired reproductive potential. Figure 5.17 vi-
sualizes this finding, both by reading the figure across the four lines
from thinnest to thickest and by looking at each line from left to
right.

• The ultimate level of vitality that will be maintained decreases as
either η increases, i.e. the more convex the returns to scale in ei-
ther reproduction or growth and maintenance, the later the age at
maintenance and the lower the reproductive potential ultimately
maintained. Figure 5.18 visualizes this finding, again both by read-
ing the figure across the four lines from thinnest to thickest and by
looking at each line from left to right.

Thus, for low values of the η’s maturity happens early at a low level of
vitality while a much higher level of vitality eventually is maintained.
For high values of the η’s, maturity is postponed, hence vitality at
maturity is large, but the level that is eventually maintained is small.
Consequently, there is a region of η parameters where vitality at matu-
rity is smaller than vitality at maintenance, and there is a region of η
parameters where vitality at maturity is larger than vitality at mainte-
nance. This implies that there is a cut point where vitality at maturity
equals vitality at maintenance. Figure 5.19 makes this verbal argument
clearer by displaying the results from Fig. 5.17 and 5.18 together. The
cut points for lines of equal thickness correspond to the values of ηr

and ηg that lead to strategies where vitality at maturity equals vitality
at maintenance24.

The influence of the mortality parameter c on vitality at maturity
and vitality at maintenance is shown Figure 5.20. Clearly, both vitality
at maturity and vitality at maintenance decline as extrinsic mortality
c increases, but since vitality at maturity declines faster than vitality
at maintenance, there is a level of c where maturity and maintenance
cross. At this cut point, Sustenance is the optimal strategy. For values
of c smaller than the cut point, vitality at maturity exceeds vitality at
maintenance, which implies a falling trajectory of vitality. Subsenes-
cence is optimal. For values of c larger than the cut point, vitality at
maturity falls below vitality at maintenance, which implies an increas-
ing trajectory of vitality. Enhancement is optimal. Note that the curves

24 Analogous figures not displayed here can be calculated for the case when ηg runs
across the x-axis while different levels of ηr are given by lines of different thickness.
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Fig. 5.17. Vitality at maturity across four distinct values of ηr plotted for
the same four values of ηg; line thickness being proportional to the value of ηg

Fig. 5.18. Vitality at maintenance across four distinct values of ηr plotted
for the same four values of ηg; line thickness being proportional to the value
of ηg
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Fig. 5.19. Vitality at maturity and vitality at maintenance across four dis-
tinct values of ηr plotted for the same four values of ηg; line thickness being
proportional to the value of ηg

for different values of b converge for large values of c, as the level of c
dominates total mortality, i.e. when b is small compared to c 25.

In sum, the peculiar white little square is not so peculiar anymore.
The explanation is straightforward: c can shift a strategy from Subse-
nescence to Enhancement by shifting vitality at maturity from above
to below vitality at maintenance. At the cut point, where vitality at
maturity is also the level of vitality that is maintained, Sustenance
is optimal. Thus, a change in the extrinsic mortality parameter c can
change a strategy from senescent to non-senescent, at least for the part
of the η parameter space where ηr > 1 & ηg < 1.26 The transition
at the boundary between senescence and non-senescence is smooth,
when caused by a change in c, contrary to the transition caused by
changes in the η parameters. At the boundary between senescence and
non-senescence that is set by the η parameters, the shift in vitality at
maturity is distinct (compare Fig. 5.16).

25 For values of c larger than those depicted in Fig. 5.15, non-senescence would have
emerged in the graphs for values of ηr > 1 & ηg < 1. It is only because the range
of c is not wide enough that this pattern did not become more apparent in this
picture.

26 From the analytic section in the beginning of this chapter it is clear that this
range is the only one where mortality could shift the strategy from senescent to
non-senescent
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Fig. 5.20. Vitality at maturity and vitality at maintenance are plotted across
extrinsic mortality c for values of parameter b = 0.1 and b = 1.1. Since the
curves for b = 2.1 turned out to be very similar to those for b = 1.1, the case
b = 2.1 is not shown. The pair of thick lines correspond to b = 1.1, the pair of
thin lines correspond to b = 0.1. The initially upper curve of each pair depicts
vitality at maturity, and the initially lower curve of each pair depicts vitality
at maintenance.

5.5 Discussion

Whether a strategy follows a senescent or a non-senescent path is cru-
cially dependent on the η parameters.

5.5.1 Senescence vs. Non-senescence

Non-senescent strategies are favored when the η parameters are below
or equal to one. Values below one imply that returns to investment are
decreasing, i.e. concave. An alternative verbal interpretation of decreas-
ing returns to scale would be “cheap” or “efficient” investment, since
a substantial amount of output can be realized with a small fraction
of input. Thus, organisms with growth, maintenance and reproductive
systems that can be used efficiently with only a fraction of total re-
sources should follow non-senescent life history strategies.

Senescent strategies are favored when none of the two η parame-
ters is below one and at least one of the two η parameters is above
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one. Values above one imply that returns to investment are increasing,
i.e. convex. An alternative verbal interpretation of increasing returns
to investment would be “costly” or “inefficient” investment, since a
significant amount of output can only be realized if all resources are
concentrated on one process exclusively. Thus, organisms with growth,
maintenance and reproductive systems that work best if used succes-
sively should tend to adopt senescent life history strategies.

Mixed strategies that include aspects of both senescent and non-
senescent life histories can be found if one η- parameter is above and the
other below one, i.e. when returns to investment are decreasing (con-
cave, cheap, efficient) in one and increasing (convex, costly, inefficient)
in the other process - either reproduction or growth and maintenance.

If growth and maintenance are efficient, then strategies can be ei-
ther non-senescent (mortality never increases) or partially senescent
(mortality increases slower than exponentially for some time after re-
productive maturity) depending on the extrinsic hazard of death.

If reproduction is efficient, then it is optimal to grow and repro-
duce simultaneously for some time after reproductive maturity. Fol-
lowing this non-senescent phase of life, it is favorable to concentrate
all resources on reproduction and let mortality increase exponentially
(eventually levelling).

5.5.2 The η Parameters in Nature

How could one identify a species’ η- parameter range? Species that show
concave returns to scale in both reproduction and growth are species
that can easily share resources between those processes and that do
not gain much by specializing in either one of them. Organisms that
are capable of vegetative propagation, where growth can be considered
an investment in reproduction are candidates for this category. It is
important to note, however, that species with the ability for this asex-
ual mode of reproduction also have the ability to reproduce sexually. I
believe that the values of ηr, i.e. the returns to investment in reproduc-
tion, are significantly different from each other for asexual vs. sexual
reproductive mode. If asexual reproduction is associated with concave
investment and sexual reproduction with convex investment, then the
former case is associated with non-senescence and the latter case with
senescence. An example is Hydra oligactis that sustains its state unless
it starts to reproduce sexually [220]. Understanding the different re-
turns to scale for asexual and sexual reproduction and its implications
for senescence vs. non-senescence of a species is one interesting avenue
for future research.
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Non-senescence is part of a species’s life history if at least one of
the η parameters is below one. Life histories with at least one η pa-
rameter below one should involve a period of simultaneous growth and
reproduction. All indeterminately growing species, as for example most
trees and many fish fall into this category. Whether those species show
exponential senescence later in life or not depends on whether growth
and maintenance or reproduction is efficient.

Convexity or concavity in reproduction can be distinguished as fol-
lows: if organisms face convexity in reproduction, i.e. ηr > 1, then the
onset of reproduction should be sudden and pronounced. If on the other
hand ηr < 1, then the transition into adult ages happens smoothly. An
analogous prediction for growth and maintenance can not be derived
from my model.

An indication for concave (cheap and efficient) reproduction might
also be given by number and size of offspring. Many small offspring
(each single offspring only contributing an iota to life time reproduc-
tion) could indicate concave reproduction and few large offspring (each
offspring requiring ‘heavy’ investment and contributing substantially
to life time reproduction) could indicate convex reproduction.

Convexity with respect to reproduction could also mean that it is
initially costly to build the required machinery that is necessary to
reproduce at all. Lavish reproductive structures like huge fancy flowers,
long stalks in bamboo, or feeding structures inside and outside the
mothers body in animals could be an indication.

Convexity in growth and maintenance could mean that the machin-
ery for growth and maintenance can only keep going efficiently if all
energy is used for that purpose.

An efficient, cheap way of maintenance is “throw away and grow
new”. Disposing of damaged tissue does not require a lot of energy,
indeed it should not cost much at all. If lost tissue can easily be replaced
at reasonable costs without disturbing an organism’s functioning and
integrity it may be a cheaper strategy than repairing the damage that
occurred. Repair of existing structure is costly because it requires error
recognition, knowledge of the undamaged state that is about to be
restored and the appropriate machinery to do so. Loosing body parts
or tissue (like leaves in a plant) might not need much information or
energy at all but happen more or less automatically. Replacement of
parts and tissue (in case of the leaves) might only need the template for
making that part or tissue but can do without any knowledge about
the damaged one. The signal for producing a new leaf, for instance,
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might solely require the signal of too little overall energy production
by the remaining leaves.

Therefore organisms that are made of simple, repeated structure
that can easily be discarded and regenerated when damaged, are can-
didates for concave returns to investment in maintenance and growth.27

A thorough understanding of the η− parameters in nature is an impor-
tant avenue for future research.

5.5.3 The Mortality Paradox

In this section I further consider the case when reproduction is costly
and growth and maintenance are cheap (ηr > 1 and ηg < 1). I found
that an increase in parameter c, which captures state-independent mor-
tality, can shift a strategy from Subsenescence to Enhancement. It ap-
pears that non-senescence is favored more strongly, the greater the ex-
trinsic hazard. This is striking. Exactly the opposite has generally been
stated – that a high risk of extrinsic death should favor senescence [212].
But my model predicts that this hypothesis is not true for species with
low costs of maintenance and high costs of reproduction. What could
explain this unexpected and seemingly paradoxical result? I addressed
this above in terms of vitality at maturity vs. at maintenance. Here I
take a different perspective.

It is a well-supported [169, 186] and intuitively appealing fact that
a high extrinsic hazard of death favors early reproductive maturity. A
short juvenile period reduces the time available for development and
hence the time to attain a certain vitality. Vitality, however, deter-
mines the level of energy available and therefore the potential to re-
produce. If individuals have to mature early because of a very risky

27 Another example for repeated, easily replaced parts are red blood cells. Each cell
wears out over its average lifetime of 120 days in humans, but new undamaged red
blood cells are constantly provided by the bone marrow. Thus, there is senescence
at the level of the red blood cells, but there could be sustenance at the next
higher level of organization – the blood – if the age- and damage-structure in the
population of red blood cells is constant, at least over a long period of a human’s
life. But at the whole organism level, the human being senesces. This further
leads to the idea of looking at senescence vs. non-senescence at different levels
of organization of an organism. Different levels may have different η parameters.
The individual red blood cells might face increasing returns to scale, but the
blood itself may have decreasing returns to scale while the whole body is subject
to convex investment. Also, the value of the η parameters might change with age,
being concave early in live and transitioning to convex later in live. For now this
remains speculation and is far beyond the scope of this chapter. But it points to
exciting research questions for future research.
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environment, their reproductive potential might be small. The short
life to be expected gives only few opportunities to reproduce. Thus, ev-
ery additional reproductive event increases total lifetime reproduction
by a large relative share compared to what has been realized before.
Therefore, depending on the costs of reproduction, a small potential
should be maintained (Sustenance) and, if possible, further increased
(Enhancement) when maintenance costs are low (ηg < 1).

If, on the other hand, life is safe the individual can afford to spend
a long time building up a high level of vitality, i.e. a large reproductive
potential. Instead of paying the price of maintaining a high level of
vitality, it may be evolutionarily advantageous to harvest this poten-
tial at the cost of a loss in functioning. Subsenescence is the strategy
that particularly suits this circumstances. It is Subsenescence and not
Senescence that is the optimal strategy at low levels of extrinsic mor-
tality when maintenance is cheap but reproduction is expensive. And
this is why: The propensity to share resources between reproduction
and growth is small due to costly reproduction. Therefore exclusive in-
vestment is desirable. Low maintenance costs, on the other hand, favor
the preservation of vitality rather than decay, which implies sharing of
resources. As long as mortality is low the individual can afford to ma-
ture late, attaining a high reproductive potential. However, maintaining
this level of vitality would be strongly penalized in terms of reduced
reproduction. Instead, the individual harvests the large potential and
mortality increases after reproductive maturity. But when vitality has
fallen to a level that can be preserved without too much penalty, any
further deterioration is suboptimal. The individual maintains its state
and mortality is constant.

Williams [212] conjectures that low levels of extrinsic mortality
should be associated with slow-senescent strategies and high levels of
extrinsic mortality should be associated with fast-senescent strategies.
His hypothesis is in accordance with the results from previous reproduc-
tive effort models (for a review see Charlesworth [27, Section 5.3.4.]).
Higher extrinsic risk tends to increase reproductive effort, which im-
plies higher levels of mortality. I have shown that my results predict
under some circumstances the opposite effect of an increase in parame-
ter c. Moreover, my results imply that non-senescent strategies can be
optimal. A theory based on optimization of trade-offs can account for
constant or declining age-patterns of mortality while a theory based on
mutation accumulation cannot explain these patterns. In Sects. 6.3.1,
6.4.1, and 6.4.3, I will discuss the concept of extrinsic mortality and
return to Williams’s hypothesis.
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5.5.4 Plateaus

All my life history strategies show maintenance from a certain vital-
ity onwards, i.e. plateaus in mortality and fertility are part of all life
history strategies. Plateaus have been observed in large populations of
Medflies, Drosophila, nematode worms, beetles, and humans ([21], [47],
[189], [201]), and understanding the cause of this pattern has caught
the attention of many researchers (for example [32], [151], [201], [208],
[209]).

In my model plateaus naturally arise as part of non-senescent life
history strategies, since vitality cannot increase indefinitely and thus
at some level will have to be maintained. The plateau that follows a
period of exponentially increasing mortality results from the constraint
I impose that vitality can not follow a zig-zag path. Therefore, even
though my model can lead to mortality plateaus one has to be careful
in interpreting this technical result. From a biological perspective there
may be organisms that cannot halt further deterioration after they have
deteriorated substantially. In such species, individuals may continue to
suffer senescence with age; observed plateaus maybe due to population
heterogeneity [201, 202, 204, 206, 207]. On the other hand, it may
indeed be the case that mortality plateaus for some species are due to
a strategy of sustenance at older ages. Research is needed.

5.6 Summary

The simple model developed in this chapter captures the main features
of life: mortality, reproduction, development, growth and maintenance.
The results show that the range of optimal life histories is wide. Senes-
cent as well as non-senescent life history strategies can be optimal.

Whether an optimal life history follows a non-senescent strategy or
a senescent strategy is crucially determined by the returns to scale to
growth and maintenance as well as to reproduction. Efficient mainte-
nance and growth systems favor maintenance strategies after growth is
completed while efficient reproductive systems favor strategies of par-
allel growth and reproduction.

Senescent and non-senescent strategies show distinct differences in
the level of vitality and age at maturity: Non-senescence is associated
with early maturity at relatively low vitality and senescent strategies
are associated with late maturity at a level of vitality that is close to
its maximum attainable level. Since vitality at maturity can reasonably
be interpreted as size at maturity, my vitality-based model leads to a



122 5 An Optimization Model Based on Vitality

hypothesis that also followed from my size-based model: species that
mature early at a relatively small size with the potential of growth and
increase in reproductive potential afterwards are likely to follow a non-
senescent strategy, whereas species who mature more closely to their
maximum attainable size are more likely to show senescence.

An exception is the special case of costly reproduction and cheap
maintenance and growth. This is the only case where the level of extrin-
sic mortality can shift a strategy from a senescent to a non-senescent
one. Here, the difference in vitality at maturity between two otherwise
similar organism, one of which exhibits non-senescence and the other
senescence, can be small.

In general, however, it can be stated that the the qualitative shape
of a life history is determined by the returns to scale in growth and
maintenance and reproduction. Senescence, i.e. exponentially increas-
ing mortality during adult ages, is the prevalent optimal strategy only if
both reproduction and maintenance are costly. If maintenance is cheap,
then exponentially increasing mortality is not favored. In this case,
Senescence is never optimal but instead Subsenescence can be optimal.
If maintenance is costly but reproduction is cheap then exponentially
increasing mortality is part of an optimal life history strategy. Ense-
nescence is optimal.

The degree of senescence and the age of and vitality at maturity
are determined by the η parameters and the mortality parameters:
Higher values of either of the η parameters (i.e. investment becomes
increasingly costly and less efficient) are associated with a higher degree
of senescence and larger vitality at maturity. Generally, low overall
mortality favors low degrees of senescence. Higher values of extrinsic
mortality are associated with a higher degree of senescence and smaller
vitality at maturity. Higher values of intrinsic mortality, on the other
hand can favor larger vitality at maturity as long as overall mortality
does not rise to a level where again early maturation, i.e. small vitality
is more favorable.

In sum, the crucial determinants of the degree of senescence, i.e. of
the fraction of lifetime reproduction realized at ages when mortality in-
creases, are the η parameters as well as the mortality parameters. The
crucial determinants of whether a species follows a senescent or a non-
senescent life history strategy are the returns to investment. Last but
not least this chapter contributes to the discussion about the impor-
tance of fitness sensitivities to the evolution of age-patterns of mortality
and fertility – these sensitivities are weights on the trade-offs that are
balanced by evolution.


