
A

Vitality Model - Appendix

A.1 Solving Differential Equations

Solving for λψ

The Maximum Principle requires that

λ̇ψ = −
dH

dψ
, (A.1)

hence

λ̇ψ = −e−φ (1 − π)ηr εψ − λψ (πηg εψ − δ) − λφ μψ . (A.2)

Solving the differential equation leads to

λψ(a) =

(
−

∫ a

0
gψ e

∫ x
0

fψ(s) ds dx + A

)
e−
∫ a
0

fψ(s) ds (A.3)

with
gψ ≡ e−φ (1 − π)ηr εψ + λφ μψ (A.4)

capturing the change in fertility and in mortality with respect to a
change in vitality, and with

fψ ≡ πηg εψ − δ (A.5)

capturing the change in growth with respect to a change in vitality.
Note that the change in energy with respect to vitality εψ is given by

εψ = 0.75 k ψ−0.25 − κ , (A.6)

being the derivative of (5.12) with respect to vitality.
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Applying the transversality condition (5.20) in (A.3) one can solve
for the constant A and find

λψ(a) =

∫ ∞

a
gψ e

∫ x
a

fψ(s) ds dx , (A.7)

i.e.

λψ(a) =

∫ ∞

a

(
e−φ (1 − π)ηr εψ + λφ μψ

)
(A.8)

× e
∫ x

a
πηg εψ − δ ds dx .

The shadow price of vitality at age a is given by the associated
cumulated changes in fertility and mortality over all remaining ages
discounted by the corresponding cumulative changes in growth.

Solving for λφ

The Maximum Principle further requires that

λ̇φ = −
dH

dφ
, (A.9)

hence
λ̇φ = e−φ (1 − π)ηr ε(ψ) (A.10)

and thus

λφ =

∫ a

0
e−φ (1 − π)ηr ε(ψ) dx + C . (A.11)

Again applying the transversality conditions (5.20) helps to solve for
the constant C:

λφ(a) = −

∫ ∞

a
e−φ (1 − π)ηr ε(ψ) dx . (A.12)

The shadow price of the cumulative hazard of death at age a is the
negative value of remaining reproduction at age a, i.e. the penalty for
having one unit higher cumulative hazard.

The expression in (A.12) can be substituted in (A.8) to yield the
expression for λψ(a):

λψ(a) =
∫∞
a e

∫ x
a

πηg εψ − δ ds (A.13)

×
(
e−φ (1 − π)ηr εψ

+ b
ψ2

∫∞
x e−φ (1 − π)ηr ε(ψ) dτ

)
dx .
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The shadow price of vitality is given by the benefits of increasing re-
production due to higher vitality as well as the gains in remaining
reproduction due to lower mortality, both weighted by the change in
growth. As long as an increase in vitality leads to faster growth, this
weight is above one (revaluating), if the increase in vitality leads to
slower growth, then the weight is below one (devaluating).

Solving for Vitality

The differential equation in (5.14) can be solved substituting z4 = ψ.
After solving and re-substituting ψ, the equation for vitality is given
by

ψ(a) =

[
k

4

∫ a

0
πηg e−

κ
4

∫ a

s
πηg dτ − δ

4
(a− s) ds (A.14)

+ ψ(0)
1
4 e−

κ
4

∫ a
0

πηg dτ − δ
4

a

]4

where ψ(0) corresponds to vitality at age zero.
Note that for π = 0 expression (A.14) simplifies to

ψ(a) = ψ(0) e−δ a , (A.15)

and for π = 1 to

ψ(a) =

[
k

κ + δ
− e−0.25 (κ + δ) a

(
k

κ + δ
− ψ(0)0.25

)]4
. (A.16)

A.2 Proof of Non-Existence of an Optimal Solution for a

Special Case

Given that both ηr and ηg exceed one it can be proven that for the
special case of constant mortality (i.e. b = 0) no optimal solution exists.

Proof From (5.19) it follows that

H(π = 0) = λψ (ε(ψ) − δ ψ) + λμ(ψ) (A.17)

and
H(π = 1) = e−φ ε(ψ) − λψ δ ψ + λμ(ψ) . (A.18)

Inserting those equations into the inequality H(0) > H(1) and rear-
ranging terms leads to
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eφ λψ < 1 . (A.19)

The current value of the shadow price of vitality has to be smaller
than one forever. Note that it is the current value of the shadow price
of vitality, λc

ψ ≡ eφ λψ, that matters for the optimal solution (see

(5.22)).
For the special case of μ(ψ) = c, i.e. b = 0, it can be shown that at

some age a condition (A.19) will be violated: Since π = 0, (5.31) can
be written as

λψ(a) =

∫ ∞

a
e−c x εψ e− δ (x−a) dx . (A.20)

For constant mortality, condition (A.19) becomes ec a λ < 1. Thus,
multiplying (A.20) by ec a yields

λc
ψ(a) =

∫ ∞

a
e−c (x− a) εψ e− δ (x− a) dx . (A.21)

Taking into account that for π = 0 vitality is given by (A.15) and energy
changes with respect to vitality according to (A.6), (A.21) becomes

λc
ψ(a) =

∫ ∞

a
εψ e−(c + δ) (x−a) dx (A.22)

= 0.75ψ(a)−0.25 k

c + 0.75 δ
−

κ

c + δ
.

Does (A.19) hold? Inserting (A.22) and rearranging terms yields

ψ(a) ≥

(
0.75 k (c + δ)

(κ + c + δ) (c + 0.75 δ)

)4

. (A.23)

Since zero investment in growth (π = 0) causes vitality ψ(a) to ap-
proach zero as age a approaches infinity while the right-hand side
of (A.23) is a positive constant, condition (A.23) and thus condition
(A.19) will definitely be violated at a certain low level of vitality.

A.3 The Algorithm

To solve the dynamic optimization problem I applied a dynamic pro-
gramming approach by developing an algorithm following a backward
procedure and assuming stepwise constant vitality [12]. Crucial to Bell-
man’s approach is that the optimal decision does not depend on the
past, but is based solely on the current state. The state determines
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possible current and future payoffs. An essential requirement for this
backward optimization to work is the knowledge of an ultimate state
with known payoffs, the ultimate future expectation. The procedure
starts at this ultimate state and then works backwards along the state
trajectory. If the mode of change can switch back and forth between
growth and shrinkage, then such an ultimate state cannot be identified
and the problem becomes intractable with Bellman’s approach. My
model constraint implies that the switch can only occur once. Since life
necessarily starts off with growth, the switch is initially in up mode
and can optionally change into down mode.

The state trajectory is assumed to be stepwise constant. The time
it takes to change from vitality ψ to vitality ψ ± Δ (Δ > 0, step size)
is given by the step time

τ(ψ, π) =
Δ

ψ̇
, (A.24)

where ψ̇ is defined in Equation 5.4. Note that if vitality falls, then
τ(ψ, π) = −Δ/ψ̇ and if vitality is maintained then τ(ψ, π) = ∞.

At each level of vitality the algorithm maximizes remaining repro-
duction, given by

R(ψ) =

∫ τ

0
e−μ(ψ) a m(ψ, π) da + e−μ(ψ) τ(ψ,π) R(ψnext). (A.25)

Since vitality is constant over the time interval τ , the integral in Equa-
tion A.25 can be solved, yielding

R(ψ) =
m(ψ, π)

μ(ψ)

[
1 − e−μ(ψ)τ(ψ,π)

]
+ e−μ(ψ) τ(ψ,π) R(ψnext). (A.26)

Remaining reproduction is given by current reproduction weighted by
the chance of dying in that interval and remaining reproduction at the
subsequent level of vitality weighted by the probability of surviving the
time interval.

The algorithm to determine the optimal investment trajectory π∗(ψ)
(the star indicates “optimal”) has two parts, one for each mode. For
this application, the ultimate state corresponds to a vitality of ψ = 0
and therefore to a mortality that is infinite and remaining reproduction
of zero. Consequently, the first part of the algorithm begins in down
mode at the end of possible state trajectories, i.e. at the last level of
vitality ψ > 0 when the switch is in down mode. Since initial vitality
equals one, it is convenient to choose ψ = 1. Then, the initial step is to
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find π∗
d(1) and the corresponding R∗

d(1) (the d indicates “down mode”)
using Equation A.26:

π∗
d(1)) = max

π ε [0, π0]
Rd(1) (A.27)

= max
π ε [0, π0]

m(1, π)

μ(1)

[
1 − e−μ(1)τ(1,π)

]
+ 0

= max
π ε [0, π0]

(1 − π)ηr (k − κ)

b + c

×
[
1 − e−(b + c)Δ / (πηg (k−κ)− δ)

]
.

Note that my constraint implies that optimal investment π will lie
between zero and π0.

The procedure is repeated working backwards for all levels of vitality
up to the maximum attainable vitality ψ = Ψ , determined by Equation
5.8. For each level of vitality the optimal investment is found by

π∗
d(ψ) = max

πε[0, π0]

m(ψ, π)

μ(ψ)

[
1 − e−μ(ψ)τ(ψ,π)

]
(A.28)

+ e−μ(ψ) τ(ψ,π) R∗
d(ψ − Δ).

This part of the algorithm gives an optimal decision for each level of
vitality in down mode.

Maximum attainable vitality Ψ gives the ultimate state for the sec-
ond part of the algorithm. If the switch is in up mode and vitality
is at its maximum attainable level Ψ , then the decision is whether to
either stay in up mode and maintain maximum vitality or to switch
into down mode and follow the already calculated optimal investment
in down mode:

π∗
u(Ψ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

π0(Ψ) if R∗
u(Ψ) = m(Ψ,π0)

μ(Ψ) > R∗
d(Ψ)

π∗
d(Ψ) otherwise.

(A.29)

Note that if mortality μ and fertility m are constant, then remaining
reproduction is given by m/μ.

Then vitality is followed backwards, down to the smallest level of
vitality ψ = 1. At each level of vitality the optimal investment is found
by
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π∗
u(ψ) = max

πε[π0, 1]
Ru(ψ) (A.30)

= max
πε[π0, 1]

m(ψ, π)

μ(ψ)
(1 − e−μ(ψ)τ(ψ,π))

+ e−μ(ψ) τ(ψ,π) R∗
u(ψ + Δ)

if R∗
u(ψ) > R∗

d(ψ) and otherwise π∗
u(ψ) = π∗

d(ψ). The second part of
the algorithm gives an optimal strategy for each level of vitality in up
mode.

The optimal strategy over the life course can be found by connecting
the results from part one and two of the algorithm in the following way:
Results are saved in the form of a vector⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

remaining reproduction

mode of change

vitality

investment

time

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

R∗(ψ)

G, S or M

ψ

π∗(ψ)

τ∗(ψ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A.31)

Note that the variable “mode of change” takes on the value G for
growth if vitality increases, S for shrinkage if vitality decreases and
M for maintenance if vitality remains constant. For each level of vi-
tality, the optimal vector is saved in a list. The optimal solution can
be found from this list by connecting the vectors in the right order.
The only logical succession of vectors regarding the mode of change are
(G, . . . , G,M), (G, . . . , G, S, . . . , S,M) and (G, . . . , G, S, . . . , S). Triv-
ially, vectors need be be nested according to subsequent levels of vital-
ity.

Finally, the constant parameter ϕ can be used to adjust R∗ to be
equal to one. This implies that density effects produce population sta-
tionarity by reducing life-time fertility [24, 132].




