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Summary. This study provides a summary of recently proposed alternatives period
measures of “longevity” and assesses whether empirical differences between these
measures are consistent with predictions from analytic studies. Particular attention
is given to the tempo effect. Three of the five period measures are virtually equal
to one another in a simulated population in which mortality follows a Gompertz
model with a constant rate of improvement. Similar results are observed among
females in Denmark, England and Wales and Sweden in the last quarter century.
However, these three measures differ substantially from the conventional period life
expectancy when mortality changes over time. These findings are consistent with
theoretical analysis by Bongaarts and Feeney (2002, in this volume p. 11 and p. 29)
which demonstrated that this deviation is caused by a tempo effect whose size varies
with the rate of change in mortality.

1 Introduction

The most widely used measure of period mortality is life expectancy at
birth calculated with a conventional life table. Alternative period measures
of “longevity” exist, but have found very limited application. The purpose of
this note is to provide a brief summary of recently proposed alternatives and
to assess whether empirical differences between these measures are consistent
with predictions from analytic studies. Particular attention will be given to
the tempo effect as a cause of differences between measures. Comparisons rely
on simulations in which the force of mortality follows a Gompertz model with
a constant rate of improvement over time. Empirical estimates are also pro-
vided for three countries with long historical data series. A brief concluding
comment summarizes the main reasons why certain measures differ and why
others are nearly the same.
� c©2005 Max-Planck-Gesellschaft, reprinted with permission
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2 Definitions of period longevity measures

2.1 Life expectancy

e0(t) =
∫ ∞

0

exp
{
−

∫ x

0

μ(a, t) da
}
dx (1)

where μ(a, t) is the force of mortality at age a and time t. Standard demo-
graphic text books (e.g. Preston et al. 2001) discuss the calculation of this
conventional measure. Estimates of e0 are available for most countries of the
world (United Nations, 2003)

2.2 Cross-sectional average length of life (Brouard 1986, Guillot,
2003)

CAL(t) =
∫ ∞

0

pc(a, t− a) da (2)

where pc(a, t − a) equals the proportion of survivors at age a and time t for
the cohort born at time t−a. CAL(t) sums proportions of cohort survivors at
time t and it therefore equals the size of the population at time t in a closed
population in which births have occurred at a constant rate of 1 per year in
the past.

2.3 Tempo adjusted life expectancy (Bongaarts and Feeney in this
volume p. 11; Vaupel in this volume p. 93)

e∗0(t) =
∫ ∞

0

exp
{
−

∫ x

0

μ(a, t)
1 − r(t)

da

}
dx (3)

This is a variant of the conventional period life expectancy, but the tempo
effect in the force of mortality is removed by dividing this rate by 1−r(t). The
variable r(t), which is assumed to be the same for all ages, denotes the incre-
ments to life (or the delay in deaths) due to mortality improvements at time
t. Vaupel (in this volume p. 93) refers to e∗0(t) as the “true life expectancy.”
Bongaarts and Feeney (in this volume p. 11) estimate r(t) as

r(t) =
dCAL(t)

dt
(4)

This estimate holds in populations in which the function pc(a, t− a) shifts to
higher and lower ages over time while maintaining its shape as longevity rises
or falls. Bongaarts and Feeney (in this volume p. 11) examine this so-called
“shifting assumption” and demonstrate that it provides a good approximation
of observed patterns of adult mortality in recent decades in three high income
countries.
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2.4 Lagged cohort life expectancy (Bongaarts and Feeney in this
volume p. 29; Goldstein in this volume; Rodriguez in this volume)

LCLE (t) = ec
0(c) = ec

0(t− ec
0(c)) (5)

LCLE at time t is estimated as the life expectancy of the cohort born at time
c with the lag between t and c equal to the life expectancy of the cohort:
c = t− ec

0(c). LCLE equals the life expectancy of the cohort that reaches its
mean age at death at time t.

This measure is similar to one proposed and used by Ryder (1980) to study
fertility trends. In Ryder’s analysis of tempo effects in fertility he compared
the quantum and tempo observed at time t with the quantum and tempo
of the cohort born M years ago where M equals the mean age at birth for
the cohort. In the mortality process there are no cohort quantum effects, but
period and cohort tempo may be compared with (5).

2.5 Average weighted cohort life expectancy (Schoen and
Canudas-Romo, 2005)

ACLE (t) =
∫ ∞

0

w(a, t)ec
0(t− a) da (6)

where w(a, t) are the weights for the life expectancy of cohorts born at time
t− a.

Schoen and Canudas-Romo (2004) estimate these weights as

w(a, t) =
pc(a, t− a)

CAL(t)
(7)

Thus, ACLE (t) equals the weighted average of the life expectancies of the
cohorts present at time t, with each cohort weighted by its probability of
survival to time t.

The following empirical analysis will be limited to these five measures
although others have been proposed (see for example Bongaarts and Feeney
in this volume p. 11) and variants of these five might be constructed (e.g.,
alternative weights for ACLE (t)).

3 Results

To compare these five period indicators simulations are used in which mor-
tality follows a Gompertz model with a constant rate of improvement over
time. Following the basic model of Vaupel (1986) as extended by Schoen et
al. (2004), the force of mortality at time t and age a is given by
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μ(x) = αeβxe−ρt (8)

where α and β are the Gompertz level and slope parameters, and ρ equals the
rate of mortality improvement. These parameters are held constant through-
out a simulation.

Each simulation calculates the five longevity measures for a 50-year period
using α = 0.00001887 and β = 0.1. With these parameter values e0(t) equals
80.0 years at time t = 0. The trend in e0(t) during the 50 year simulation
depends on the rate of mortality improvement. With ρ = 0, e0(t) remains
constant, with ρ = 0.01 it rises linearly to 85 years and with ρ = 0.02 it rises
linearly to 90 years. The simulation results are presented in Table 1. Figure 1
plots values for ρ = 0.02.

In the absence of mortality change ( ρ = 0 ) all five period measures are
constant and equal to one another (first panel of Table 1). With declining
mortality ( ρ > 0 ) differences arise, but three of the measures are nearly
equal to one another throughout the simulation period:

CAL(t) ≈ e∗0(t) ≈ LCLE (t) (9)

However, e0(t) is higher than these three measures and ACLE (t) is much
higher still.

The simulations in Table 1 were repeated for different values for α, β with
similar results. Lower values of α raised all estimates for all measures by the
same amount, but kept the difference between them unchanged. Variations
in β also made a difference but results will not be presented here because
empirical estimates differ little from 0.1. The effect of changes in values of
β as well as ρ can be estimated with an equation obtained by Bongaarts
and Feeney (2002). They prove that the difference e0(t) − e∗0(t) (called the
tempo effect) can be estimated as − ln(1 − de∗0(t)/ dt)/β = − ln(1 − ρ/β)/β)
if mortality follows a Gompertz pattern with a constant rate of change in the
force of mortality. According to this equation the difference between e0(t) and
e∗0(t) equals 1.05 years when ρ = 0.01 and 2.23 years when ρ = 0.02 (assuming
β = 0.1). These analytic estimates agree closely with the simulation results
in Table 1.

Figures 2a, b, c plot estimates of four of the five period measures of
longevity for females in Denmark, England and Wales, and Sweden from 1925-
2000. Each measure is calculated with μ(a, t) = 0 for a < 30 to insure that the
shifting assumption holds approximately. ACLE (t) is not included because its
estimation requires projections of future mortality for more than a century.
The results are consistent with the simulations: conventional life expectancy
is higher than the other measures and CAL(t) ≈ e∗0(t) ≈ LCLE (t) in recent
decades.
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Table 1. Values of five period longevity measures in Gompertz model with declining
mortality.

Time. t e0(t) CAL(t) e∗0(t) LCLE (t) ACLE (t)
ρ = 0

0 80 80 80 80 80
25 80 80 80 80 80
50 80 80 80 80 80

ρ = 0.01
0 80 78.96 78.96 78.97 83.23
25 82.5 81.46 81.45 81.46 85.87
50 85 83.95 83.95 83.96 88.5

ρ = 0.02
0 80 77.8 77.79 77.84 87.25
25 85 82.79 82.78 82.81 92.88
50 89.99 87.78 87.77 87.79 98.5

75

80

85

90

95

100

0 10 20 30 40 50
Time (years)

L
o
n
g
e
v
it
y

(y
e
a
rs

)

Tempo effect

ACLE(t )

e0(t )

CAL(t)≈ e0* (t ) ≈ LCLE(t )

Fig. 1. Trends in five period longevity measures in a Gompertz model with declining
mortality (α = 0.000018866, β = 0.1, ρ = 0.02).

4 Discussion

A detailed discussion of the alternative longevity measures and their strength
and weaknesses is beyond the scope of this descriptive note, and only brief
comments on the most noteworthy findings will be provided.

First, in the simulations, three of the period longevity indicators CAL(t),
e∗0(t) and LCLE (t) are virtually identical to one another. This finding is con-
sistent with the analytic results by Bongaarts and Feeney (in this volume
p. 11) who prove that CAL(t) = e∗0(t) in populations in which the shifting
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Fig. 2a. Trends in alternative period measures of longevity for females in
Denmark, 1925-2000. No mortality under age 30.
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Fig. 2b. Trends in alternative period measures of longevity for females in
England and Wales, 1925-2000. No mortality under age 30.

assumption holds. As noted, pc(a, t − a) is assumed to shift to higher and
lower ages over time as longevity rises or falls. In the simulations based on the
Gompertz model presented in Table 1, this shifting assumption is very closely
approximated except at ages near zero. The error is small because the force
of mortality around age zero is very small for a Gompertz with the parameter
values used here. The finding that lagged cohort life expectancy LCLE (t) is
virtually identical to CAL(t) is expected from Goldstein (in this volume) and
Rodriguez (in this volume) who prove that LCLE (t) = CAL(t) if the shifting
assumption holds and if the shift is linear (i.e. annual changes in CAL(t) are
constant). This result is also consistent with the analysis of cohort and period
tempo of fertility by Ryder (1980).
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Fig. 2c. Trends in alternative period measures of longevity for females in
Sweden, 1925-2000. No mortality under age 30.

Second, the conventional life expectancy at birth e0(t) is substantially
higher than three other period measures CAL(t), e∗0(t) and LCLE (t). The
difference between e0(t) and e∗0(t) is constant throughout the simulation but
varies with the rate of improvement in mortality: it equals 2.2 years with
ρ = 0.02, 1.05 years with ρ = 0.01 and 0 when ρ = 0. These findings are
consistent with the mortality tempo effect described by Bongaarts and Feeney
(2002, in this volume p. 11 and p. 29).

Third, the weighted average cohort life expectancy ACLE (t) is much
higher than the other four indicators. This difference is not surprising since
the weights applied to the life expectancies of cohorts alive at time t are high-
est for the youngest (i.e. most recent) cohorts. As a consequence, this measure
is heavily influenced by the mortality that young cohorts will experience in
the future. This is confirmed by Schoen and Romo (2004) who conclude that
ACLE is roughly the arithmetic mean of the period life expectancy at time t
and the cohort life expectancy of the cohort born in year t.

The empirical results for females in Denmark, Sweden, and England in Fig-
ure 2 are similar to the simulation findings for recent decades i.e., since approx-
imately the 1970s. However, in earlier decades, differences between CAL(t),
e∗0(t) and LCLE (t), while still small, are no longer negligible. The probable
reason for the modest divergence between CAL(t) and e∗0(t) before ca. 1970
is that the shifting assumption is then less accurate. The reason for the ap-
pearance of a small but significant divergence between CAL(t) and LCLE (t)
in the earlier period is presumably that the assumption of linear change in
CAL(t) is more accurate later than earlier in the last century.
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5 Conclusion

Three of the five period measures of longevity are virtually equal to one an-
other in a population in which mortality follows a Gompertz model with a
constant rate of improvement. Similar results are observed among females in
Denmark, England and Wales and Sweden in last quarter century. This equal-
ity is as expected from earlier analytic work by Bongaarts and Feeney (2002,
in this volume p. 11 and p. 29), Goldstein (in this volume) and Rodriguez (in
this volume). The finding that these three measures differ substantially from
the conventional period life expectancy when mortality changes over time is
consistent with theoretical analysis by Bongaarts and Feeney (2002,in this
volume p. 11 and p. 29). They demonstrate that the deviation of e0(t) from
the other period longevity measures is caused by a tempo effect whose size
varies with the rate of change in mortality.
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