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Summary. The life expectancy implied by current age-specific mortality rates is
calculated with life table methods that are among the oldest and most fundamental
tools of demography. We demonstrate that these conventional estimates of period
life expectancy are affected by an undesirable “tempo effect.” The tempo effect
is positive when the mean age at death is rising and negative when the mean is
declining. Estimates of the effect for females in three countries with high and rising
life expectancy range from 1.6 yr in the U.S. and Sweden to 2.4 yr in France for the
period 1980-1995.

When a group of persons is observed from birth to death, mean lifetime
may be calculated simply and directly as mean age at death. This statistic is
problematic, however, for studying trends in mean lifetime. Mean lifetime for
Swedish females born in 1850, for example, reflects mortality conditions from
the mid-19th to the mid-20th centuries, a period of historically unprecedented
increases in human survival. The study of these changes requires a different
approach.

Period life expectancy at birth calculated by life table methods has been
the standard solution to this problem since the mid-19th century (Preston,
Heuveline and Guillot, 2001). This chapter argues that it is an imperfect
solution, because life expectancy at birth calculated in this way is distorted
whenever it is changing.

Conventional life expectancy depends solely on the force of mortality func-
tion for time t. We propose an alternative measure that depends both on the
force of mortality function and on the rate of change in the standardized mean
age at death. Our alternative is based on the assumption that the observed
force of mortality function at any given time has the same shape as the force
of mortality function inherent in the standardized population age distribu-
tion at time t, which reflects the history of mortality in the population. We
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demonstrate that this assumption is realistic in contemporary societies with
high life expectancy and also that the proposed measure is consistent with
well-established measures used in other demographic contexts.

1 Methods

1.1 Cohort mean lifetime

The distribution of lifetimes for a group of persons born during any given
time period (a “birth cohort”) may be described in three different ways. The
survival function,

l(a) , a ≥ 0 , (1a)

gives the proportion of individuals who survive to exact age a. It is nonin-
creasing, with l(0) = 1.0 and l(ω) = 0 for some advanced age ω. The death
density function,

d(a) ≡ −∂l(a)
∂a

, (1b)

gives the distribution of deaths by age. The force of mortality function,

μ(a) =
d(a)
l(a)

=
−∂l(a)/∂a

l(a)
(1c)

gives the risk of dying at each age. These functions are formally equivalent in
the sense that any two may be derived from the third. The force of mortality
function μ(a) may be derived from d(a) or l(a) by using Eq. (1c), for example,
and l(a) may be derived from μ(a) or d(a) by using

l(a) =
∫ ω

a

d(x) dx = exp
[
−

∫ a

0

μ(x) dx
]
. (1d)

Fig. 1 plots l(a), d(a), and μ(a) for the cohort of females born in Sweden in
1850. The survival function declines to zero at around age 100 yr. The density
function is broadly bimodal with peaks at age 0 and ≈ 80 yr. The force of
mortality exhibits a U-shaped pattern with a minimum at about age 10. Note
the use of the log scale to accommodate the large differences in magnitude at
different ages. These patterns are broadly typical, although levels of mortality
vary widely between populations and over time.

Mean lifetime for a birth cohort, M , may be calculated from l(a) as
∫ ∞

0

l(a) d(a) , (2a)

from d(a) as
∫ ∞

0

ad(a) da , (2b)
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or from μ(a) as

∫ ∞

0

{
exp

[
−

∫ a

0

μ(x) dx
]}

da (2c)

These formulas give identical results. For the 1850 cohort of Swedish females,
for example, we calculate M = 48.1yr from each.

1.2 Period mean lifetime

Let

l(a, t) ≡ lt−a(a) , (3a)
d(a, t) ≡ dt−a(a) , and (3b)
μ(a, t) ≡ μt−a(a) , (3c)

where the subscripts at right indicate time of birth. Thus l(a, t) denotes the
proportion of persons born at time t − a who are surviving at time t; d(a, t)
denotes the density of deaths for this cohort at age a and time t; and μ(a, t)
denotes the corresponding force of mortality. Note that l(a, t) and d(a, t) differ
from the survival and density functions for synthetic cohorts obtained from
conventional period life tables, and that their calculation requires data on
either past births and migrations or on past deaths.

We refer to l(a, t) as the standardized population age distribution at time
t and to d(a, t) as the standardized age distribution of deaths at time t. The
standardized population age distribution and age distribution of deaths are the
same as their unstandardized counterparts in any population that experiences
constant numbers of births over time.

By analogy with Eq. (2), mean lifetime at time t may be calculated as

M1(t) =
∫ ∞

0

l(a, t) da , as (4a)

M2(t) =

∫ ∞
0
ad(a, t) da∫ ∞

0
d(a, t) da

, or as (4b)

M1(t) =
∫ ∞

0

exp
[
−

∫ a

0

μ(x, t) dx
]
da . (4c)

Each of these formulas has been used in demography to calculate period mean
age for some demographic event. Mean age at first marriage is often calculated
as a variant ofM1(t) that allows for persons not marrying. This is the singulate
mean age at marriage introduced by Hajnal (1953), with l(a, t) taken as the
proportion of single persons at age a at time t (see, for example, ref. United
Nations (1990)). Mean age at childbearing is generally calculated as M2(t),
with agespecific or age-order-specific birth rates substituted for d(a, t) (see,
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Fig. 1. Mortality experience of the cohort of Swedish females born in 1850, as
summarized by the survival function, l(a) (A), the death density function d(a) (B),
and the force of mortality function μ(a) (C).

for example, ref. Council of Europe (2001)). Life expectancy at birth, denoted
e0(t), is conventionally calculated as M3(t).

We refer to M2(t) as the standardized mean age at death. The unstandard-
ized mean age at death is unacceptable as a measure of mean lifetime, because
it may be heavily distorted by the population age distribution. This objec-
tion does not apply to the standardized mean age at death, which might be a
widely used measure of period mean lifetime if it were more easily calculated.

If l(a, t) is constant with respect to t, the three means defined by Eq.
(4) are identical. When length of life changes, the three means diverge. The
following sections develop relationships among them.
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2 Results

2.1 Relation between M1 and M2

To establish a simple relationship between M1(t) and M2(t), let

ds(a, t) =
−∂l(a, t)

∂a
and μs(a, t)

ds(a, t)
l(a, t)

. (5a,b)

The age schedules ds(a, t) and μs(a, t) are inherent in the standardized popu-
lation age distribution at time t. They may be interpreted as the age distribu-
tion of deaths and the force of mortality function in the stationary population
whose age distribution is given by l(a, t), with l(0, t) = 1 for all t. This inter-
pretation is, of course, valid only if the mortality history of the population is
such that l(a, t) is a nonincreasing function of a (dl(a, t)/da ≤ 0).

Assume now that for t in the time interval [0,Δ], there exists a function
p(t) independent of age, such that

μ(a, t) = p(t)μs(a, t) or, equivalently, (6a)
d(a, t) = p(t)ds(a, t) , (6b)

and that the function p(t) is a real valued integrable function bounded below
by 0. We refer to this as the proportionality assumption.

The proportionality assumption implies that the age schedules of μ(a, t)
and d(a, t) are the same in shape (but not necessarily level) as the age sched-
ules of μs(a, t) and ds(a, t). As will be shown below, this assumption provides a
good approximation for patterns of adult mortality in contemporary countries
with high life expectancy.

From Eqs. (4a) and (5a),

M1 =
∫ ∞

0

l(a, t) da =

∫ ∞
0
ads(a, t) da∫ ∞

0
ds(a, t) da

(7a)

and from Eq. (4b) and (6b),

M2 =

∫ ∞
0
ap(t)ds(a, t) da∫ ∞

0
p(t)ds(a, t) da

(7a)

On cancellation of the proportionality factor p(t), Eq. (7b) becomes Eq. (7a),
thus proving that M1(t) = M2(t).

2.2 Other implications of the proportionality assumption

It is shown in Appendix A that if the proportionality assumption holds, then

p(t) = 1 − ∂M1(t)
∂t

. (8a)
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Fig. 2. Average force of mortality for 1980-1995, observed as μ(a, t), estimated from
l(a, t) as μs(a, t), and estimated as the product μs(a, 1980 − 1995)p(t) for France
(A), Sweden (B), and the U.S. (C). Also shown is the average death density function
for 1980-1995, observed as d(a, t), estimated from l(a, t) as ds(a, t), and estimated
as the product ds(a, 1980− 1995)p(t) for France (D), Sweden (E), and the U.S. (F).

Substituting this in Eq. (6) and noting that M1(t) = M2(t) yields

μ(a, t) =
[
1 − ∂M2(t)

∂t

]
μs(a, t) , (8b)

d(a, t) =
[
1 − ∂M2(t)

∂t

]
ds(a, t) . (8c)

This shows that μ(a, t) and d(a, t) are functions of the rate of change in
the standardized mean age at death M2(t), because μs(a, t) and ds(a, t) are
determined by mortality conditions up to time t. When this mean age is rising,
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μ(a, t) < μs(a, t) and d(a, t) < ds(a, t), but when it is declining, μ(a, t) >
μs(a, t) and d(a, t) > ds(a, t).

As shown in Appendix B, the proportionality assumption also implies that
the age schedule l(a, t) shifts uniformly to older (younger) ages as the mean
age at death rises (falls). Uniform shifting between time 0 and time T means
that there is a function F (t) = M1(t) −M1(0), giving the magnitude of the
shift between time 0 and time t, such that, for all 0 ≤ t ≤ T ,

l(a, t) = l(a− F (t), 0) ∀a ≥ F (t) , (9)

and l(a, t) = 1 for a ≤ F (t). Downward as well as upward shifts are possible,
provided that l(a, t) = 1 for a less than some number > 0.

It follows from Eq. (5) that uniform shifts in l(a, t) imply uniform shifts
in μs(a, t) and ds(a, t) with the same shift function F (t), with μs(a, t) =
ds(a, t) = 0 when l(a, t) = 1. The proportionality assumption is therefore
equivalent to the shifting assumption made by Bongaarts and Feeney (2002).

Changes over time in the schedules μ(a, t) and d(a, t) are of two types.
First, as the mean age at death rises or falls, μ(a, t) and d(a, t) shift to higher
or lower ages with l(a, t), μs(a, t), and ds(a, t). Second, μ(a, t) and d(a, t)
are deflated or inflated relative to μs(a, t) and ds(a, t) by the proportionality
factor p(t).

2.3 Mortality change in France, Sweden, and the U.S.

We will now show that observed mortality patterns conform closely to the
proportionality assumption (Eq. (6)) if child and young adult mortality is
ignored. All quantities in this section, in Figs. 2-6, and in Table 1 are calculated
from observed values of μ(a, t) for ages > 30, but μ(a, t) is set to zero for ages
< 30 years for all t. Our estimates of life expectancy at birth are therefore
equal to 30 plus the life expectancy at age 30. For populations with high life
expectancy, nearly all deaths (97-98%) occur at ages > 30 yr, and actual life
expectancy at birth is therefore close to 30 plus the life expectancy at age 30.

Table 1. Alternative estimates of the period mean age at death (assuming no
mortality under age 30).

Mean age at death, females, 1980 − 1995
M3(t) Tempo effect

M1(t) M2(t) (= e0(t)) M4(t) M3(t) −M4(t)
France 79.0 79.2 81.4 79.0 2.4
Sweden 79.5 79.5 81.1 79.4 1.6
U.S. 78.3 78.3 79.9 78.3 1.6

Fig. 2 A-C shows the age schedules, μ(a, t), μs(a, t), and p(t)μs(a, t), all
calculated as averages of annual values for 1980-1995, for France, Sweden, and



18 John Bongaarts and Griffith Feeney

the U.S. Fig. 2 D-F shows the age schedules d(a, t), ds(a, t), and p(t)ds(a, t)
calculated in the same way with p(t) estimated with Eq. (8a). The near coin-
cidence of μ(a, t) and p(t)μs(a, t) and of d(a, t) and p(t)ds(a, t) shows that the
proportionality assumption is a good approximation for all three countries.
Note that the logarithmic scale used in Fig. 2 A-C means that perfect pro-
portionality corresponds to constant differences between the plotted values of
μ(a, t) and μs(a, t).

Fig. 3. Observed period force of mortality μ(a, t) in 1980 and 1995 for France (A),
Sweden (B), and the U.S. (C). Also shown is the observed period death density
function d(a, t) in 1980 and 1995 for France (D), Sweden (E), and the U.S. (F).

Fig. 3 A-C shows μ(a, t) for 1980 and 1995 for the same three countries.
Fig. 3 D-F shows corresponding values for d(a, t). The pattern of change in
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these schedules is consistent with the pattern of shifting and inflation/deflation
noted above.

Fig. 4 plots the age schedule l(a, t) for 1980 and 1995 for the three coun-
tries. The shape of l(a, t) changes very little, but there is a shift to higher ages
as life expectancy rises. The magnitude of the shift was 3.4 yr for France, 2.4
yr for Sweden, and 2.1 yr for the U.S.

The first three columns of Table 1 present averages of annual estimates of
M1(t), M2(t), and M3(t) for the years 1980-1995. The values for M1(t) and
M2(t) are nearly identical, as expected, but the M3(t) values are substantially
higher. The reason for the higher value of M3(t) is discussed below.

2.4 Tempo effects in demographic analysis

Tempo effects were first discovered and analyzed in the study of fertility. If
women shift the ages at which they bear children upward without changing
their completed fertility, annual numbers of births will be less than they would
have been, because the same number of births will be spread out over a longer
time period. Similarly, if women begin to have children at younger ages, annual
numbers of births will be larger than they would have been, because the same
number of births occurs over a shorter time period. These changes in annual
number of births induced by changes in the timing of childbearing are tempo
effects.

Fertility tempo effects have been extensively documented. The postwar
“baby boom” in the U.S., for example, was due in part to a decline in the
mean age at childbearing during the late 1940s and the 1950s (Hajnal, 1947,
Ryder, 1964, 1980, Bongaarts and Feeney, 1998).

Tempo effects complicate the study of levels and trends of fertility, because
they produce changes in period fertility rates that depend on the rate at which
the mean age at childbearing changes, independently of changes in completed
fertility of cohorts. Ryder (1956) introduced the term “timing distortion” to
refer to tempo effects, because they are undesirable in most analyses of fertility
levels and trends.

Tempo effects influence demographic processes other than fertility. A
tempo effect can be defined in general as an inflation or deflation of the pe-
riod incidence of a demographic event (births, marriages, and deaths) resulting
from a rise or fall in the mean age at which the event occurs.

Tempo effects influence demographic processes other than fertility. A
tempo effect can be defined in general as an inflation or deflation of the pe-
riod incidence of a demographic event (births, marriages, and deaths) resulting
from a rise or fall in the mean age at which the event occurs.

2.5 Tempo effects in mortality

A simple example will demonstrate how mortality tempo effects operate. Con-
sider a stationary population with a life expectancy at birth of 70 yr. Suppose
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Fig. 4. Observed period survival function l(a, t) in 1980 and 1995 for France (A),
Sweden (B), and the U.S. (C).

the exact age of death of each individual is predetermined until the invention
of a “life extension” pill that adds 3 mo to the life of any person who consumes
it.

If everyone in the population takes this pill on January 1 of year T , there
will be no deaths during the first 3 mo of the year. The number of deaths in
year T will fall by 25%, and the mean age at death will rise from 70 to 70.25
yr. Because the pill’s effect is the same at all ages, the level of the force of
mortality function is also reduced by 25%, and the age to which each value of
the function is attached increases by 0.25 yr. This fall in values of the force of
mortality function, together with the shift to older ages, causes life expectancy
at birth as conventionally calculated to rise to ≈ 73 yr for year T .
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Fig. 5. Hypothetical illustration of effect of increase in mean age at death by 0.25
yr (from 70.0 to 70.25) during year T on conventional life expectancy. Before and
after T , M1(t) = M2(t) = M3(t). During T , a tempo distortion of −25% in the
number of deaths results in an upward distortion of ≈ 2.5 yr in M3(t).

In the next year, the number of deaths and the force of mortality function
rise to the level observed before year T , but with values shifted forward to
older ages by 0.25 yr. Life expectancy at birth as conventionally calculated,
having risen from 70 yr prior to year T to ≈ 73 yr during year T , falls back
to 70.25 yr (Fig. 5). We contend that this temporary rise in life expectancy
at birth as conventionally calculated is a tempo distortion, because it is at
variance with the known trend in the mean length of life. Distortion of this
kind occurs whenever the standardized mean age at death changes.

2.6 Removing tempo effects

The tempo effect deflates (inflates) d(a, t) and μ(a, t) when the standardized
mean age at death rises (falls). Formulas (8b,c) show this deflation or inflation
is estimated by the multiplicative factor 1−∂M2(t)/∂t when the proportional-
ity assumption holds. The tempo effect may therefore be removed by dividing
d(a, t) and μ(a, t) by 1 − ∂M2(t)/∂t. Because M1(t) = M2(t), division by
1 − ∂M1(t)/∂t gives the same result. The latter approach is preferred, be-
cause it gives more stable results when applied to observed mortality rates.
We define

μ∗(a, t) =
μ(a, t)

1 − ∂M1(t)/∂t
and (10a)

d∗(a, t) =
d(a, t)

1 − ∂M1(t)/∂t
(10b)
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and refer to the expressions on the left as the tempo-adjusted death density
and force of mortality. It follows from Eq. (8) that μ∗(a, t) = μs(a, t) and
d∗(a, t) = ds(a, t) when the proportionality assumption holds.

Fig. 6. Trends from 1980 to 1995 for alternative estimates of mean age at death
M1, M2, M3, and M4 for France (A), Sweden (B), and the U.S. (C). The difference
M3 − M4 equals the tempo effect.

To calculate life expectancy at birth corrected for the tempo effect, the
defining formula (4c) is used with μ∗(a, t) substituted for μ(a, t), giving
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M4(t) =
∫ ∞

0

exp
{
−

∫ a

0

[
μ(x, t)

1 − ∂M1(t)/∂t

]
dx

}
da

=
∫ ∞

0

exp
{
−

∫ a

0

μs(a, t) dx
}
da =

∫ ∞

0

l(a, t) da = M1(t) , (11)

where M4(t) denotes life expectancy at birth without the tempo effect. Re-
moving the tempo effect from M3(t) gives the same result as M1(t) or M2(t).
The undistorted life expectancy at birth can be estimated as M1(t), M2(t),
or M4(t).

Table 1 shows average annual values of M4(t) as well as M1(t), M2(t),
and M3(t) for females in France, Sweden, and the U.S. for the period 1980-
1995. The corresponding annual trends are plotted in Fig. 6. These results
confirm that M1(t), M2(t), and M4(t) are nearly identical, but M3(t), the
life expectancy at birth calculated by conventional life table methods, is sub-
stantially higher than the other three means. The tempo effect, M3(t) minus
M4(t), averages 2.4 yr for France and 1.6 yr for Sweden and the U.S.

This analysis of tempo effects is based on trends in adult mortality only. We
ignore any tempo effects in mortality under age 30, because they are probably
small and difficult to quantify. In the absence of tempo effects under age 30,
the tempo effect in life expectancy at birth is only 2% or 3% smaller than the
tempo effect above age 30 measured here. This is because the probability of
survival from birth to age 30 is typically 0.98-0.97 in contemporary societies
with high life expectancy.

3 Conclusion

Life expectancy at birth as conventionally calculated is distorted whenever it is
changing. We have provided formulas to adjust for this distortion. The formu-
las are applicable to populations with high life expectancy. The adjustments
for France, Sweden, and the U.S. in recent decades reduce conventionally cal-
culated life expectancy at birth by 1.6 to 2.4 yr. These results confirm and
extend those given in Bongaarts and Feeney (2002).

The essential argument is as follows. Empirical observation indicates that
the proportionality assumption is closely approximated when life expectancy
at birth is high and child and young adult mortality are ignored. When the
proportionality assumption holds, increases (decreases) in length of life are
realized by a uniform translation of the standardized population age distri-
bution and the force of mortality function inherent in this age distribution
to higher (lower) ages. Neither the shape nor the level of the standardized
age distribution or the inherent force of mortality function changes; only their
location on the age scale changes.

The force of mortality function is likewise translated to higher (or lower)
ages without any change in shape, but its level changes with the rate of change
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in the standardized mean age at death, as shown by Eq. (8b). When the stan-
dardized mean age at death rises (falls), the force of mortality function falls
and shifts to the right (rises and shifts to the left). This fall (rise) in the force
of mortality represents the tempo effect and produces an undesirable rise (fall)
in life expectancy at birth as conventionally calculated. In our hypothetical
example (Fig. 5), increasing the standardized mean age at death from 70 to
70.25 yr over 1 yr results in a temporary decline of 25% in the force of mortal-
ity function and a temporary rise of nearly 3 yr in conventionally calculated
life expectancy at birth. The tempo effect in life expectancy in this case is
≈ 10 times the net change in mean lifetime.

In interpreting these findings, it is important to distinguish between cur-
rent observed death rates and current mortality conditions Ryder(1956). We
do not question the conventional life table calculation of period life expectancy
from observed age-specific death rates. We argue rather that tempo effects dis-
tort both the observed death rates and the corresponding life expectancy, so
that their values give a misleading indication of current mortality conditions.

Our empirical focus has been on human survival, but life table methods are
widely applied to survival data of all kinds. Examples include age at marriage
(the interval between birth and marriage), birth interval analysis (intervals
between successive births), length of schooling (interval between entering and
leaving school), and postoperative survival (interval between operation and
death). It is therefore likely that tempo effects are pertinent to many other
kinds of statistical survival analyses.
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Appendix A

We have to prove that the proportionality assumption (Eq. (6)) implies Eq.
(8a) of the text. Bennett and Horiuchi(1981), Preston and Coale(1982), and
Arthur and Vaupel (1984) show that

μ(a, t) = μs(a, t) − r(a, t) (A1)

where

r(a, t) =
−∂l(a, t)/∂t

l(a, t)
(A2)
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is the age-specific growth rate for age a at time t for the population whose age
distribution at time is t given by l(a, t). Note that Eq. (A1) may be written
as

μ(a, t) = −
[
∂l(a, t)/∂a
l(a, t)

+
∂l(a, t)/∂t
l(a, t)

]
, (A3)

which is an equation used in modeling cell population dynamics (McKendrick,
1926; Von Foerster, 1959; Trucco, 1965a,b). Equating the expressions for
μ(a, t) given by the proportionality assumption (Eq. (6a)) and Eq. (A1) and
rearranging terms gives

r(a, t) = [1 − p(t)]μs(a, t) . (A4)

Substitution of Eqs. (A2) and (5b) in Eq. (A4) yields

∂l(a, t)
∂t

= [1 − p(t)]
−∂l(a, t)

∂a
. (A5)

From the definition (Eq. (4a)) of M1(t), then,

∂M1(t)
∂t

=
∂

∂t

∫ ∞

0

l(a, t) da =
∫ ∞

0

∂l(a, t)
∂t

da

= [1 − p(t)]
∫ ∞

0

−∂l(a, t)
∂a

da . (A6)

Because the last integral on the right equals one, we have established formula
8a of the text.

Integrating the density function d(a, t) over age results in a period mor-
tality measure that may be called the total mortality rate TMR(t). (This
measure is equivalent to the total fertility rate widely used in the analysis of
fertility levels and trends.)

TMR(t) =
∫ ∞

0

d(a, t) da . (A7)

Substitution of Eq. (8a) gives

TMR(t) =
∫ ∞

0

p(t)ds(a, t) da = p(t) . (A8)

Appendix B

We have to prove that the proportionality assumption implies uniformly shift-
ing age distributions, i.e., Eq. (9), provided there is no mortality at younger
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ages. The first step is to find a characterization of uniformly shifting age dis-
tributions that applies to a point in time. The directional derivative provides
such a characterization. The directional derivative of the function l(a, t) at
the point (a, t) in the direction (b, u) is the rate of change at time t of the
function l(a+ bt, t+ ut), which may be expressed as

1√
b2 + u2

[
b
∂l(a, t)
∂a

+ u
∂l(a, t)
∂t

]
. (A9)

Now let f(a, t) be such that the directional derivative of l(a, t) at the point
(a, t) in the direction (f(a, t), 1) equals zero. Uniform translation corresponds
to the condition that f(a, t) be constant with respect to age, f(a, t) f(t) for
all t, and therefore to the condition

f(t)
∂l(a, t)
∂a

+
∂l(a, t)
∂t

= 0 . (A10)

If this identity holds, the directional derivative of l(a, t) at the point (a, t) in
the direction (f(t), 1) is zero.

If the proportionality assumption holds, text formula (8b) holds (as just
shown in Appendix A), and this together with Eq. (A1) implies, equating the
expressions for μ(a, t) and rearranging terms,

∂M1(t)
∂t

μs(a, t) − r(a, t) = 0 . (A11)

Multiplying both sides by −l(a, t) gives

∂M1(t)
∂t

∂l(a, t)
∂a

+
∂l(a, t)
∂t

= 0 , (A12)

which shows that the directional derivative of l(a, t) at (a, t) in the direction
(f(t), t) equals 0 for all ages a, with f(t) = ∂M1(t)/∂t.

To show that this implies uniform shifting of the age distribution, it is
necessary only to note that f(t) is the rate of change of the contour line in the
age-time plane defined by the points (x + t, t) for which l(x + t, t) = l(a, 0).
The function F (t) of the uniform shifting formula (Eq. (9)) therefore equals
the integral of f(·) from 0 to t.




