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Summary. In this chapter I review the concept of tempo effects in demography,
focusing on the tempo adjustments proposed by Bongaarts and Feeney and drawing
on the work of Ryder and Zeng and Land. I show that the period-shift model that
underlies the proposed adjustments can be motivated from an accelerated failure
time cohort perspective. I propose alternative measures of tempo under changing
fertility and mortality that share a synthetic cohort interpretation with the adjusted
measure of quantum. I stress similarities between the results for fertility and mor-
tality, particularly in terms of mean age of childbearing and mean age at death,
but also note some important distinctions. I conclude that the fertility adjustments
can help distinguish quantum and tempo effects, but argue that in the case of mor-
tality the Bongaarts-Feeney measure of tempo-adjusted life expectancy differs from
conventional estimates because if reflects past mortality.

1 Introduction

How long do we live? According to the U.S. National Center for Health Statis-
tics, “in 2002 the overall expectation of life at birth was 77.3 years”(Arias,
2004). The center makes clear that this measure represents “what would hap-
pen to a hypothetical (or synthetic) cohort if it experienced throughout its
entire life the mortality conditions of a particular period in time”, in this case
2002. In real life a child born in the U.S. in 2002 would probably live longer
than 77.3 years on average, because we expect mortality to improve in the
future.

Bongaarts and Feeney (2002, in this volume p. 11 and p. 29) have chal-
lenged the conventional wisdom, and created quite a stir in the demographic
community, by postulating the existence of mortality “tempo effects” that bias
standard measures of longevity, such as the period life expectancy, whenever
mortality is changing. The measures are believed to be biased upwards when
� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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expectation of life is increasing, so we don’t live as long as we think. Bon-
gaarts and Feeney (in this volume p. 11) note that “[e]stimates of the effect
for females in three countries with high and rising life expectancy range from
1.6 yr in the U.S. and Sweden to 2.4 yr in France for the period 1980-1995”.

The concept of tempo distortion originated in the field of fertility analysis,
where one can draw a clear distinction between quantum and tempo, and
refers to the fact that a reduction in period rates could be caused by delays
in childbearing without any changes in completed cohort family size. Many
demographers have found the extension of these ideas to mortality baffling
because a reduction in period mortality rates can only mean that people will
die later. With mortality the quantum is fixed, only tempo can change, and
no one would mistake one for the other.

It is, of course, possible for cohort and period summaries of age-specific
mortality rates to differ. But Bongaarts and Feeney (in this volume p. 11)
make the stronger claim that “tempo effects distort both the observed death
rates and the corresponding life expectancy”. It is also quite likely that mortal-
ity rates are distorted by unobserved heterogeneity, particularly at old ages,
but Vaupel (2002) reports that Bongaarts believes that “tempo effects can
distort mortality in homogeneous populations”.

Like others I have gone over the underlying mathematical argument and
have found no fault. But I come up with a different interpretation of the
Bongaarts-Feeney results. I show that working strictly within their framework,
one can produce an estimate of expectation of life when mortality is declining
that is higher, not lower, than the conventional estimate. This differs, of course,
from the Bongaarts-Feeney adjustment, and I hope the argument will clarify
exactly why this is the case. As Wachter (in this volume) has noted “every
measure measures something”, and we are just measuring different things.
Specifically, I will argue that their measure combines the observed force of
mortality with features of the age distribution that reflect past rather than
current mortality.

Because so much of the work builds upon earlier results on fertility I start
with a brief review of Ryder’s (1964) famous translation formula. My main
goal is to clarify its intent and the conditions under which it is valid. I then
review the Bongaarts-Feeney (1998) tempo-adjusted total fertility rate and a
synthetic-cohort interpretation due to Zeng and Land (2001, 2002). I show
that the period-shift fertility model used by Bongaarts and Feeney can be
motivated in terms of a cohort-delay model where the passage of time slows
down. I then obtain a measure of mean age of childbearing under changing
tempo that complements the Bongaarts-Feeney tempo-adjusted total fertility
rate, yet differs from their tempo estimate.

Having laid the groundwork in the field of fertility, where these ideas are
less controversial, I move to the field of mortality. I mention briefly why Ry-
der (1964) didn’t pursue a translation formula for mortality, as well as how one
might go about it knowing what we know today. I then turn to the Bongaarts-
Feeney framework showing how their period-shift mortality model results from
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a slowing down of time in an accelerated-failure-time framework. I then dis-
cuss, and I hope explicate, the various measures of longevity that have been
proposed, noting how some of these indices depend on the past via the age
structure. I also derive a synthetic cohort measure of life expectancy under
changing mortality that provides an exact analog of the measure of fertil-
ity tempo derived earlier, yet differs substantially from the Bongaarts-Feeney
tempo-adjusted measure of life expectancy.

While most of the chapter emphasizes parallels between the analysis of
fertility and mortality, in the discussion I return to some of the fundamental
differences noted at the outset. In the case of fertility we have recurrent events
where a distinction between quantum and tempo is meaningful and, more
importantly, adjustments can be useful in determining the extent to which
period changes reflect quantum or tempo effects. In the case of mortality
trends have an unambiguous interpretation as tempo effects. The fact that
the proposed adjusted measures differ from conventional life expectancy is not
due to a bias or distortion, but simply to the fact that they measure different
things. Specifically, conventional life expectancy depends only on the force of
mortality, whereas the adjusted measures are affected by age composition and
thus past mortality.

2 Fertility

Let us consider a surface of age-period fertility rates where f(a, t) is the fer-
tility rate at age a and time t. This rate pertains both to period t, and to the
cohort born at time t− a.

2.1 Translating fertility

Ryder (1964) was interested in the relative strengths and weaknesses of cohort
and period summaries of these rates. Useful summaries for the cohort born at
time t include the average number of children per woman, TFRc(t), a measure
of the quantum of fertility, and the mean age of childbearing μc(t), a measure
of the tempo of fertility, defined as

TFRc(t) =
∫
f(a, t+a)da and μc(t) =

∫
af(a, t+a)da/TFRc(t). (1)

Together these indices tell us whether women have more or fewer children,
and whether they have them earlier or later in life.

The aggregates can also be computed for periods, and are usually inter-
preted in terms of a synthetic cohort that goes through life bearing children
at the current observed rates. The synthetic cohort representing period t has
TFRp(t) children at an average age of μp(t) where

TFRp(t) =
∫
f(a, t) da and μp(t) =

∫
af(a, t) da/TFRp(t). (2)
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Ryder’s chief concern was that period summaries provide a distorted view of
the behavior of cohorts when fertility is changing, and he was able to formalize
this view in a remarkable result.

Ryder (1964) assumes that f(a, t) may be expanded in a Taylor series
separately for each age. The most useful result is obtained by expanding rates
for the cohort which is now at its mean age of childbearing and ignoring
terms beyond the first derivative. If the cohort of interest has mean age of
childbearing μ, and was thus born at t− μ, we have

f(a, t− μ+ a) ≈ f(a, t) + (a− μ)f ′(a, t). (3)

Under this approximation Ryder obtained the following relationship between
cohort and period TFRs:

TFRc(t− μ) =
TFRp(t)
1 − rc

, (4)

where rc is the time derivative or rate of change of cohort mean age of child-
bearing at time t− μ.

This remarkable formula shows that if cohorts postpone childbearing then,
to a first order of approximation, the period TFR will fall below the cohort
TFR (for the cohort at its mean childbearing age) by an amount that de-
pends on how fast the mean age of childbearing is increasing. If mean age of
childbearing is decreasing then the period TFR will rise above the correspond-
ing cohort TFR. This in fact happened during the baby boom, when period
TFRs rose to levels that exceeded the completed fertility of all active cohorts
(Ryder, 1964; Schoen, 2004).

It is important to note that Ryder’s result relies solely on a first-order
Taylor series approximation to the rates at each age. Contrary to popular
belief, there is no assumption that the shape of the period or cohort schedules
is constant, or that the cohort and period TFRs are constant. To see this
point note that one can generate rates f(a, t) that satisfy the assumption of
linearity by interpolating between any two arbitrary age schedules f(a, 0) and
f(a, τ).

Ryder (1964) also considered a translation procedure for mean age of
childbearing, introducing a second type of formula with stronger assump-
tions (which may account for some of the confusion). We will not pursue this
development further because it is not central to the argument that follows,
except to note Ryder’s conclusion that “the period mean is a distorted version
of the cohort mean” when quantum is changing, “just as the period sum is a
distorted version of the cohort sum” when tempo is changing.

2.2 Tempo-adjusted fertility

Bongaarts and Feeney (1998) proposed a tempo-adjusted total fertility rate,
usually denoted TFR∗, based on an expression that looks remarkably like
Ryder’s translation formula:
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TFR∗(t) =
TFRp(t)
1 − rp(t)

. (5)

There are, however, two subtle but important differences. First, the rp(t) on
the right-hand-side is the rate of change in the period, not the cohort, mean
age of childbearing at time t. This is much easier to calculate from available
data. Second, TFR∗ is not a cohort rate, but rather a pure-period measure
representing tempo-corrected fertility, as we will see presently.

A third difference I should mention is that Bongaarts and Feeney recom-
mend applying their procedure separately by birth order, using rates that
divide births of a given order by all women. I ignore this breakdown to keep
the argument simple. (I also believe that parity-specific fertility is best an-
alyzed using hazard rates where births of order k are divided by women at
parity k−1, but that’s an argument best left for another time; see van Imhoff
and Keilman (2000) and the rejoinder by Bongaarts and Feeney (2000).)

We will derive the adjustment in Equation 5 considering a situation where
all cohorts start delaying fertility at the same time and rate without reducing
their completed family size. The situation where quantum is fixed is simpler–
and more relevant to the analysis of mortality—than where quantum is chang-
ing as well, although the Bongaarts-Feeney adjustment can be applied in both
cases. The assumption of a constant rate also simplifies things, in particular it
leads to explicit cohort results, although Equation 5 can also be applied when
the rate of change varies over time.

It will be useful to introduce a function F (a, t) representing the cumulative
fertility or average parity of women age a at time t (the cohort born at time
t − a). This schedule can be obtained as a cohort integral, by accumulating
fertility along a diagonal of the Lexis diagram:

F (a, t) =
∫ a

0

f(x, t− a+ x) dx. (6)

The age-period specific rates f(a, t) are the cohort derivatives of these rates,
and can be recovered by differentiating F (a, c+ a) with respect to a, i.e. with
respect to both age and time.

Let us also introduce a fertility schedule f0(a) with corresponding cumu-
lative schedule F0(a), total fertility rate TFR0 =

∫
f0(a) da and mean age of

childbearing μ0 =
∫
af0(a)da/TFR0. This baseline schedule will represent the

situation at time zero, so that F (a, 0) = F0(a). If fertility has been constant
for a long time we could view all rates prior to time zero as generated by the
baseline schedule, but this assumption is not necessary for the developments
that follow. All we need is the assumption that just before time zero women
were following the cumulative schedule F0(a).

Now suppose that at time zero all cohorts slow down their pace of child-
bearing at the same rate r. Let us give this statement a precise meaning.
The cohort that has reached average parity F0(a) at age a and time zero,
and would have been expected to reach parity F0(a + 1) a year later, will
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instead climb only as far as F0(a+ 1− r). This is similar to taking a pill that
prevents all births (and stops a woman’s biological clock) for a fraction r of
the year, but I prefer to work in continuous time. The same idea is used in
Coale’s (1971) classic nuptiality model, where he speeds up or slows down
the Swedish schedule of first marriages. The device of accelerating or slowing
down the passage of time is also used in survival analysis, as we will see in
Section 3.

It turns out that this slowing down of time is exactly equivalent to a period
shift in the cumulative fertility schedule, so that

F (a, t) = F0(a− rt), t ≥ 0. (7)

For example the cohort age a at time zero had parity F (a, 0) = F0(a) and
will now move to F (a+ 1, 1) = F0(a+ 1 − r).

If we now take cohort derivatives, differentiating with respect to both age
and time (which of course vary together for a cohort) we obtain

f(a, t) = f0(a− rt)(1 − r), t ≥ 0. (8)

This shows that when all cohorts slow down the pace of childbearing at the
same rate r the age-specific rates are instantly deflated by a factor 1 − r and
start shifting to older ages.

The simplest way to prove Equation 8 is to write the period-shift model
for a cohort that reaches age a at time t = c+ a > 0, which is

F (a, c+ a) = F0(a− r(c+ a)) = F0(a(1 − r) − rc), (9)

and then take derivatives with respect to a for fixed c to obtain

f(a, c+ a) = f0(a(1 − r) − rc)(1 − r) = f0(a− r(c+ a))(1 − r). (10)

Integrating the period schedule in Equation 8 over a for fixed t we obtain
the period TFR, and we can also obtain the period mean age of childbearing.
As long as the cumulative schedule continues to shift at a rate r,

TFRp(t) = TFR0(1 − r) and μp(t) = μ0 + rt. (11)

The period TFR declines at time zero by a factor 1−r as a result of the delay.
This could be misinterpreted as a change in the quantum of fertility when in
fact it is a pure tempo effect. The fact that the derivative of period mean age
of childbearing is r provides an ingenious way to recover the baseline TFR
simply dividing by 1− r, which leads to the Bongaarts-Feeney formula 5. The
key assumption required is that all cohorts delay fertility at the same time
and rate.

This leads to a direct interpretation of the tempo-adjusted TFR as a coun-
terfactual measure; paraphrasing Bongaarts and Feeney (1998), it provides an
estimate of what the period TFR would have been if cohorts had not de-
layed childbearing at time t. Note that this is indeed a pure period measure
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as claimed; it estimates TFR0, which does not correspond to the completed
family size of any real cohort unless fertility has been constant for the last
thirty five years or so. It can, however, be interpreted as the completed family
size of a synthetic cohort, as we will see below.

It is interesting to note that Bongaarts and Feeney adjust the quantum but
not the tempo of fertility, considering the mean age of childbearing unaffected
by tempo distortions. This can be seen to be the case in the present framework
because μp(0) = μ0, a result that obtains because the factor 1−r appears both
in the numerator and the denominator of the mean. Delays affect the mean
age of childbearing only after time zero. This point will be quite important
when we turn to an analysis of mortality.

2.3 A synthetic cohort interpretation

In the previous section we focused on period measures. Let us now consider
what happens to the cohort that starts childbearing at time zero, when the
passage of time slows down. Let a0 denote the lowest age of childbearing, so
the cohort in question was born at time −a0. From Equation 8, we see that
this cohort would follow the schedule

f†(a) = f0(a− r(a− a0))(1 − r) = f0(a(1 − r) + ra0)(1 − r). (12)

Integrating this expression over all ages a we find the total fertility rate for
this cohort to be

TFR† =
∫
f0(a(1 − r) + ra0)(1 − r) da = TFR0, (13)

where the results follows by changing variables from a to y = a(1 − r) + ra0

and noting that the Jacobian da/dy = 1/(1 − r) cancels out the multiplier
1 − r. This result is due to Zeng and Land (2001), who provide a simplified
derivation of the Bongaarts-Feeney adjustment.

Because TFR† = TFR∗, the Zeng-Land approach leads to an interesting
interpretation of the Bongaarts-Feeney measure in synthetic cohort terms, as
the number of children that a cohort would have under current conditions, if
by that we mean the current rates and the fact that they are shifting to older
ages at a constant rate r.

The corresponding mean age of childbearing for this cohort can easily be
obtained using the same change of variables technique, but appears to have
been overlooked in the literature:

μ† =
∫
af0(a(1 − r) + ra0)(1 − r) da/TFR0 =

μ0 − ra0

1 − r
. (14)

The notation could be streamlined considerably if we measured age from a0

as done by Zeng and Land (2001), in which case Equation 14 would simplify
to μ† = μ0/(1 − r) and we would have the remarkable result that under a
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period shift the quantum and tempo of fertility are affected exactly the same
way.

Bongaarts and Feeney (1998) argue that TFR∗ removes a tempo distortion
from TFR, and one could make the point that μ† removes a tempo distortion
from μ. I prefer the more neutral view that the two sets of indices measure dif-
ferent things: TFR (and μ) tell us how many children a synthetic cohort would
have (and when) if it followed a fixed period fertility schedule with constant
shape, quantum and tempo. In contrast, TFR∗ (and μ†) tell us how many
children the synthetic cohort would have (and when) if it followed a shifting
period schedule with constant shape and quantum but changing tempo.

Fig. 1. Period and cohort rates when childbearing is delayed.

Figure 1 illustrates these ideas with a Coale-Trussell (1974) fertility sched-
ule where 90% of women marry, age at marriage has mean 23 and standard
deviation 4, the level of natural fertility (M) is 1 and the control parameter
(m) is −1. Under this schedule the TFR is 4 children per woman and the
mean age of childbearing is 29.2. Suppose, however, that women start delay-
ing fertility at the rate of r = 0.2 years per year. As shown in Equation 8, the
period age-specific fertility rates would be instantly reduced by 20%, a neces-
sary consequence of the fact that women have slowed down childbearing. The
curve labelled “period” shows the deflated schedule, which has a TFR of 3.2
children per woman but the same mean age of childbearing as the original.
The curve labelled “cohort” shows the schedule followed by the cohort just
starting its reproductive career, assuming the shift continues indefinitely at
the same rate. This cohort would have 4.0 children per woman, on average at
age 33.5 given by Equation 14.

Figure 2 shows how a shift in a period schedule leads to a stretched cohort
schedule. Here we plot the cumulative schedule F0(a) in the example at 10
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Fig. 2. How a period shift in a parity schedule translates into a cohort delay.

year intervals. We also show in gray the parity schedule for the cohort start-
ing reproductive life when the shift starts, and we mark the points where it
“borrows” its cumulative fertility from the three central curves. Note that all
schedules lead to a completed family size of four, but the cohort takes longer
to climb that far.

To summarize, we have illustrated how a reduction in period fertility from
4.0 to 3.2 can result from delayed childbearing without changes in quantum.
Noting that mean age of childbearing increases 0.2 years per year we obtain
a TFR∗ of 4.0. We can interpret this number as a counterfactual estimate of
what the period TFR would have been if women had not delayed childbearing,
in which case the mean age of childbearing would still be 29.2. We can also
interpret it as the number of children that a synthetic cohort would have if
the delay continued indefinitely, in which case mean age of childbearing would
be 33.5. The last estimate pairs TFR∗ with μ†, the estimate of mean age of
childbearing under changing tempo proposed here.

2.4 Cohort and period shifts

The foregoing results generalize to multiple cohorts if we assume that the
cumulative period schedule F (a, t) continues to shift according to Equation 7.
For later cohorts this means not only that once childbearing starts it proceeds
at a slower pace than before, but also that the start of childbearing itself is
delayed. This implication of period-shift models will be of some significance
when we turn to mortality, and represents a departure from accelerated failure
time models.

Following exactly the same change of variables technique we used for the
Zeng-Land cohort, we can show that the cohort born at time t for t ≥ −a0

has
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TFRc(t) = TFR0 and μc(t) = μ† + rc(t+ a0) (15)

where rc is the rate of change of cohort mean age of childbearing, and is
related to the period derivative by

rc =
r

1 − r
. (16)

Equation 16 is due to Zeng and Land (2002), who noted that period changes
in tempo provide a distorted view of cohort changes in tempo. (They use
the notation r∗ for rc.) Note that the cohort considered earlier was born at
t = −a0, and that evaluating these expressions at that value leads to TFR†

and μ†.

Fig. 3. Shifting period and cohort fertility schedules.

An interesting implication of these results is that a shift in period fertility
schedules generates a parallel shift in cohort fertility schedules, with both
moving up the age axis but at slightly different rates r and rc. Figure 3
illustrates this idea using model Coale-Trussell schedules. The left panel shows
a period schedule that is shifting to older ages at the rate of r = 0.2 years per
year, and the right panel shows the corresponding cohort schedules shifting
at the rate of rc = 0.25 years per cohort.

Thus, under a simple linear shift model cohort and period quantum are
constant and differ by a factor 1−r at time zero and later. Cohort and period
tempo change over time. The period mean age of childbearing increases at
the rate of r years per year starting from μ0 at time zero. Cohort mean age
of childbearing varies between μ0 and μ† for the active cohorts at time zero,
and increases at the rate of rc years per cohort for cohorts that start their
reproductive careers after that. These results provide a way to translate cohort



Demographic translation and tempo effects 79

and period quantum and tempo, but the assumptions required are stronger
than for a simple counterfactual interpretation of TFR∗.

3 Mortality

Let us now turn our attention to mortality, focusing on a surface of age-
period specific rates μ(a, t) representing the force of mortality at age a and
time t for the cohort born at t− a. The rates along a diagonal can be used to
compute a cohort life table, but the data required are often not available and
the calculation can only be completed after the cohort has died.

More often the mortality rates for fixed t are used to compute a period
life table, which may be interpreted in terms of a synthetic cohort that goes
through life subject to the force of mortality prevailing at time t. Bongaarts
and Feeney’s concern is that period measures, including the period expectation
of life and the rates themselves, may be distorted by a tempo effect.

3.1 Mortality translation

Ryder (1964) noted that “the development of translation procedures has
proven more difficult for mortality functions than for fertility functions” be-
cause of the multiplicative relationships involved in an attrition process, al-
though he made some headway working with the logarithms of the rates.
Keilman (1994) later obtained useful translation formulas for the hazards of
non-repeatable events, but these do not lead to simple summary results such
as Equation 4.

Further progress can be made working with a survival surface where S(a, t)
represents the probability that someone born at time t− a will survive to age
a at time t,

S(a, t) = exp{−
∫ a

0

μ(x, t− a+ x) dx}. (17)

A nice feature of this surface is that integrating along a diagonal leads to
cohort life expectancy:

e
(c)
0 (t) =

∫ ∞

0

S(a, t+ a) da. (18)

Unfortunately, integrating over a for fixed t does not lead to period life ex-
pectancy unless mortality is constant. It does, however, lead to a meaningful
alternative period measure of longevity, the cross-sectional average length of
life (CAL) described by Guillot (2003):

CAL(t) =
∫ ∞

0

S(a, t) da. (19)
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The survival probabilities S(a, t) for fixed t may be interpreted as the age dis-
tribution of a population that has a constant stream of births and is subject
to the mortality risks μ(a, t). Bongaarts and Feeney (in this volume p. 11)
call this the standardized age distribution. CAL is a function of this age dis-
tribution and thus depends on past mortality, a point to which we will return
later.

In addition to life expectancy and CAL it will be useful to define α =∫
aS(a) da /

∫
S(a) da, the mean age in the stationary population implied

by a survival schedule S(a). A straightforward application of Ryder’s (1964)
translation formula, which would expand the survival probabilities for the
cohort now at its mean stationary age around the current age distribution
using a first-order Taylor series, yields

e
(c)
0 (t− α) =

CAL(t)
1 − rc

, (20)

where rc is the rate of change in the cohort mean stationary age. This shows
that, to a first order of approximation, CAL falls below cohort life expectancy
when mortality is declining, to an extent determined by the speed of the
decline, provided we line up cohorts and periods using mean stationary age.

Guillot (in this volume) applies Ryder’s ideas using a somewhat different
approach, but reaches essentially the same conclusions. He divides CAL(t) by
an index of distributional distortion to obtain an adjusted measure, which
can be interpreted as a weighted average of the life expectancies of all cohorts
alive at t. He then notes in an application to France that the result is close to
the life expectancy of the cohort born at time t−A(t), where A(t) is the mean
age of the stationary population at time t, between 30 and 37 years for France
in the twentieth century. Here we divide by 1 − rc instead of the distortion
index, and use cohort rather than period mean age. But we both conclude that
when mortality declines CAL falls below the life expectancy of the cohort near
its mean stationary age. (I later show under different assumptions that CAL
equals the life expectancy of the cohort now at its mean age at death.)

One could take this result to mean that CAL provides a distorted view
of cohort life expectancy, or is subject to a tempo effect when mortality is
declining, in much the same way that the period TFR distorts cohort fertility.
I prefer to view it as indicating that when mortality is declining the age
structure lags behind the cohort mortality schedule. In other words, it takes
a while for a population to forget its past.

I realize that applying a formula developed for the quantum of fertility to
the tempo of mortality seems unusual, if not plain wrong, but Ryder’s result
is quite general. Given any age-period surface, it relates a cohort integral
to a period integral and to the rate of change of the first cohort moment.
In fertility we applied it to age-specific rates, so the integrals are measures of
quantum and the first moment is tempo. In mortality we applied it to survival
probabilities (or age distributions), so the integrals are mean survivals and the
first moment is mean stationary age.
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3.2 The Bongaarts-Feeney model

The Bongaarts-Feeney model of mortality change is formally identical to the
fertility model, except that the period schedule that shifts over time is the
standardized age distribution S(a, t) rather than the parity schedule F (a, t).
In this section we motivate the model in terms of a slowing down of the passage
of time, just as we did for fertility. Later we discuss various period and cohort
measures of longevity under the model.

Let S0(a) denote a survival function and let d0(a) and μ0(a) denote the
corresponding density and hazard functions. This could be a conventional
period life table or a mathematical model. We will assume that at time zero
survival is governed by S0(a) in the sense that all cohorts are following this
schedule. This is equivalent to assuming that the population is stationary with
age distribution S0(a).

Suppose, however, that at time zero all cohorts postpone death at the same
rate r. Consider specifically the cohort that has reached age a at time zero,
of which a fraction S0(a) is still alive. We would expect a fraction S0(a +
1) to be alive a year later at age a + 1, but instead we observe that the
proportion surviving has increased to S0(a + 1 − r). It is precisely as if the
cohort had aged only 1−r years in one year. This type of model is known in the
statistical literature as an accelerated life model, see for example Kalbfleisch
and Prentice (2002). The situation is similar to taking a pill that prevents
death (and stops aging) for a fraction r of the year, but I prefer to view the
process as developing in continuous time.

Remarkably, this model is equivalent for all active cohorts to a period shift
in the standardized age distribution, where

S(a, t) =
{

1 if a < rt
S0(a− rt) if a ≥ rt

(21)

For example the survival probabilities for the cohort considered in the previous
paragraph are S(a, 0) = S0(a) and S(a+ 1, 1) = S0(a+ 1− r). If we compute
a cohort derivative, differentiating Equation 21 with respect to both age and
time, and changing sign, we obtain a density reflecting the age distribution of
deaths at each time

d(a, t) =
{

0 if a < rt
d0(a− rt)(1 − r) if a ≥ rt.

(22)

Note that d(a, t) is a probability density function only for a cohort, i.e. if we
consider d(a, c + a) for fixed c. The period profile is not a real density but a
collection of densities for various cohorts, and in this model it integrates to
1 − r, not one. Bongaarts and Feeney (in this volume p. 11) call the integral
of d(a, t) for fixed t the total mortality rate (TMR). Watcher (in this volume)
notes that it can be interpreted as a period count of deaths.

If we divide the deaths d(a, t) by the numbers exposed S(a, t) we obtain
the age-period specific force of mortality
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μ(a, t) =
{

0 if a < rt
μ0(a− rt)(1 − r) if a ≥ rt.

(23)

This is both a period and a cohort hazard, pertaining to time t and to the
cohort born at t − a. Note that when all cohorts start delaying death at the
same rate the hazard is instantly deflated by a factor 1− r and starts shifting
to older ages. This is clearly a tempo effect, as it is caused by a delay in death.
I don’t believe, however, that it is a distortion. The only way that cohorts can
delay death is by dying at lower rates, so I view the reduction in hazards
as real. The interesting question concerns the implications of this change for
longevity.

It will be useful to introduce for completeness two additional functions
defined by Bongaarts and Feeney (in this volume p. 11) in (their) Equations
5a and 5b. If we differentiate S(a, t) with respect to time only (as opposed to
time and age simultaneously) we obtain the death density

ds(a, t) = d0(a− rt), (24)

and dividing this by the survivors S(a, t) we obtain the hazard

μs(a, t) = μ0(a− rt). (25)

These are proper density and hazard functions for a ≥ rt and can best be
viewed as inherent features of the standardized age distribution S(a, t), so I
will call then the age-distribution density and hazard, respectively. Note that
under the period shift model the observed force of mortality μ(a, t) is pro-
portional to the age distribution hazard μs(a, t), with proportionality factor
1 − r. This is called the proportionality assumption in the Bongaarts-Feeney
framework.

I should also note that Bongaarts and Feeney consider a more general shift
model where the rate of delay is not a constant r but a function of time r(t).
I stick to the linear case because it is simpler and leads to explicit results for
cohorts.

3.3 Four measures of longevity

Bongaarts and Feeney (in this volume p. 11) consider four measures of
longevity, denoted M1 to M4. Three of them are equal under the period-shift
model of the previous section. The odd one out is period life expectancy.

The first measure is cohort average length of life (CAL)

M1(t) = CAL(t) =
∫ ∞

0

S(a, t) da. (26)

This measure is easily computed by integrating the standardized age distri-
bution. From Equation 21 we find that under the period shift model
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CAL(t) = CAL(0) + rt, (27)

where CAL(0) is both CAL and the conventional expectation of life in the
baseline schedule S0(a). CAL may be computed as an ordinary mean age
at death where deaths are obtained by applying the age-distribution hazard
μs(a, t) to the standardized age distribution S(a, t). Interestingly, CAL doesn’t
change when cohorts start postponing death, but it starts increasing at the
rate of r years per year as long as the shift (or slow down of time) continues.
This occurs because CAL is based solely on the age structure at time t, and
does not respond to changes in mortality until these are reflected in the age
structure.

The second measure is standardized mean age at death

M2(t) =
∫ ∞

0

ad(a, t) da /
∫ ∞

0

d(a, t) da, (28)

which is based on the standardized age distribution of deaths at time t. The
deaths in this index result from applying the current force of mortality μ(a, t)
to the standardized age distribution S(a, t), and may thus be viewed as a
measure that depends both on current mortality risks and the current age
distribution.

Under the period-shift model the force of mortality μ(a, t) and the age-
distribution hazard μs(a, t) are proportional, with proportionality factor 1−r.
Because this factor appears both in the numerator and denominator of the
mean it cancels out, so M2(t) = M1(t) as noted by Bongaarts and Feeney (in
this volume p. 11). If the proportionality assumption is not satisfied, however,
the two indices will differ.

The third measure is conventional period life expectancy

M3(t) = e
(p)
0 (t) =

∫ ∞

0

exp{−
∫ a

0

μ(x, t) dx} da. (29)

This index may also be viewed as an ordinary mean age at death where
deaths result from applying the force of mortality μ(a, t) to the stationary
population implied by that hazard, which is of course the period survival
function exp{− ∫ a

0
μ(x, t) da} (not to be confused with S(a, t)). This measure

depends on the current force of mortality only.
Under the period shift model the force of mortality μ(a, t) is proportional

to μs(a, t) and therefore the period survival function is a power of the stan-
dardized age structure, but there is no simple relationship between M3(t) and
either M1(t) or M2(t).

Note that when cohorts start postponing death the conventional expecta-
tion of life reacts instantly. Because it depends only on the force of mortality
μ(a, t), which has been deflated by a factor 1−r, conventional life expectancy
e0 will increase. This is again a tempo effect, but in my view is not a dis-
tortion. Conventional life expectancy is just a summary of age-period specific
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mortality, and responds appropriately by increasing when the rates decline.
In particular, the synthetic cohort interpretation of e0 as the mean lifetime
implied by the current rates continues to be correct.

The fourth measure is the Bongaarts-Feeney tempo-adjusted life ex-
pectancy. This index seeks to remove the tempo effect from the force of mor-
tality dividing by 1 − r and is therefore defined as

M4(t) =
∫ ∞

0

exp{−
∫ a

0

μ(x, t)/(1 − r) dx} da. (30)

Under the period-shift model μ(a, t) is proportional to μs(a, t) with propor-
tionality factor (1 − r) and therefore M4(t) = M1(t) = M2(t), as noted by
Bongaarts and Feeney (in this volume p. 11). In this case the adjusted measure
can be viewed as an ingenious way to estimate CAL or mean age at death from
the observed hazard. If the model does not hold, however, M4(t) is a different
measure that ostensibly depends only on the current force of mortality and the
rate of delay r, but in practice requires knowledge of the standardized age dis-
tribution for estimation. Watcher (in this volume) provides a characterization
of M4(t) that clarifies this issue.

To summarize, when cohorts start delaying death conventional life ex-
pectancy reacts instantly, whereas the other three measures react more slowly,
increasing only as the changes work their way into the age structure. The
fundamental issue is whether this is a bias or distortion in conventional life
expectancy. I argue that it is just a reflection of the fact that when mortal-
ity declines the age structure lags behind the force of mortality. To further
explore this issue we now look at the cohort implications of the period-shift
model.

3.4 Cohort survival

Consider again the cohort born at the time the period shift, or the slowing
down of the passage of time, starts. This cohort would have been expected to
follow the schedule S0(a) but instead will follow a stretched schedule, where
the probability of surviving to age a is

S†(a) = S0(a(1 − r)). (31)

This result follows directly from the period-shift model in Equation 21 and
shows that each calendar year the cohort ages only 1 − r years.

Figure 4 illustrates how a period shift leads to a cohort delay using a
Weibull distribution that is shifting towards higher ages at a rate of 0.2 years
per year, an artificially high rate chosen to make the illustration clear. I show
the schedule at the start of the process as well as 25, 50, 75 and 100 years later,
and superimpose the survival probabilities that would apply to a synthetic
cohort undergoing this regime, highlighting the ages where the cohort survival
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Fig. 4. How a period shift in survival translates into a cohort delay.

“borrows” its probability from the three central curves. The analogy to Figure
2 for fertility should be obvious.

We can compute the expectation of life under S†(a) using the same change
of variables technique that we used in the case of fertility:

e†0 =
∫ ∞

0

S0(a(1 − r)) da =
∫ ∞

0

S0(y)
dy

1 − r
=

e0
1 − r

. (32)

We find that if r > 0 the expectation of life under a shifting schedule exceeds
the value it would have if the schedule remained fixed. The area under the
original curve is e0, the shaded area under the stretched curve is e†0.

Note by way of illustration that life expectancy in the U.S. today is 77.3
under a fixed mortality schedule, but would be 85.8 if the schedule shifted 0.1
years per year, which is the observed gain in period life expectancy between
2001 and 2002. The value 85.8 is computed simply as 77.3/0.9.

Let us return to S†(a), the survival function that applies to our synthetic
cohort. Differentiating we find the density to be

d†(a) =
d

da
S†(a) =

d

da
S0(a(1 − r)) = d0(a(1 − r))(1 − r). (33)

The hazard, computed as the ratio of deaths to survival, is

μ†(a) = d†(a)/S†(a) = μ0(a(1 − r))(1 − r). (34)

Thus, if the mortality schedule shifts 0.1 years per year, a 60 year old would
be exposed to 90% of the risk that would have applied at age 54 under a static
schedule. These results are consistent with Equations 22 and 23 in the previous
section, and thus with equations 8b and 8c in Bongaarts and Feeney (in this
volume p. 11). (We showed before that their d

dtM2(t) = r.)
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We note again that as soon as time slows down the hazard is deflated
by a factor 1 − r, which is how the cohort manages to live longer. Consider
an example where the baseline survival S0(a) is Weibull with parameters p
and λ, so S0(a) = exp{−(λa)p}. In this case the stretched survival S†(a) is
also Weibull with parameters p and λ† = λ(1−r), so the shift and consequent
slowing down of the passage of time translate into a proportionate reduction in
the hazard at all ages. Kalbfleisch and Prentice (2002) show that the Weibull
is the only distribution where the accelerated life and proportional hazards
families coincide.

For an example more relevant to human mortality, at least in adult ages,
consider a Gompertz model with parameters α and β, where the baseline
hazard μ0(a) = exp{α+βa} increases exponentially with age. In this case the
stretched survival is also Gompertz but with parameters α† = α+ log(1 − r)
and β† = β(1 − r), a result that follows directly from the general expression
given above. In this case the change in the hazard is not proportional, but
relatively larger at older ages. For a country such as the U.S., where adult
mortality is roughly Gompertz, a shift of 0.1 years per year starting at age
30 would reduce the hazard by 10% at age 30, 30% at age 60 and 46% at age
90. As a result a 30 year old, who is expected to live another 48.4 years under
current conditions, would live on average about 53.8. (These calculations are
based on α = −9.696 and β = 0.0855, which implies α† = −9.545 and β† =
0.07694. Note that for a shift starting at age a0 rather than zero α† = α +
log(1 − r) + βra0. The value of e†0 = 53.8 can be obtained as 48.4/0.9 or by
numerical integration of the Gompertz hazard.)

These results can be extended to multiple cohorts, just as we did in the
case of fertility, by assuming that the standardized age distribution continues
to shift at a constant rate. Using essentially the same argument as in the
previous section, we can show that the cohort born at time t > 0 goes through
the survival schedule

S(a, t+ a) =
{

1 if a < tr/(1 − r)
S0(a− r(t+ a)) otherwise (35)

and thus has life expectancy

e
(c)
0 (t) = e†0 + rct, (36)

where e†0 is the life expectancy of the cohort born at time zero and rc, the
rate of change in cohort life expectancy, is

rc =
r

1 − r
. (37)

The cohort born at time zero experiences just a stretching of the survival
function S0(a), which yields a plausible model for all ages. Subsequent co-
horts, however, are assumed to experience no mortality until they reach age
rct, at which time they join a stretched and shifted schedule. This feature
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makes the model less realistic in multiple-cohort settings unless one restricts
its applicability, as Bongaarts and Feeney do, to the adult ages, say above 30,
in low mortality populations.

With these caveats, the foregoing results allow us to relate period CAL
or mean age at death to cohort life expectancy. As we noted in the previous
section, when mortality declines the age structure lags behind the force of
mortality and as a result

CAL(t) < e
(p)
0 (t) < e

(c)
0 (t). (38)

Under the period-shift model we can be a bit more precise. We can show that
the Bongaarts-Feeney measure M4, which is then the same as CAL, M1 and
M2, is the life expectancy of the cohort now at its mean age at death:

CAL(t+ e
(c)
0 (t)) = e

(c)
0 (t), (39)

a result easily verified by direct substitution, noting that the cohort born at
t has mean age at death (e0 + rt)/(1 − r). Alternatively, one can go back in
time and note that the cohort dying today was born at time (t− e†0)/(1 + rc)
and has life expectancy CAL(t).

Goldstein (in this volume) has also derived the translation formula (39) and
has used it to show that under a continuing linear shift the cohort born today
would have life expectancy given by equation (32); this provides increased
confidence in these results.

To summarize, conventional life expectancy e0 measures how long a new
born would live under current rates. This may not be a realistic estimate if
mortality is declining. Under a period-shift model we have shown that a new
born would in fact live longer, e†0 years. On the other hand period CAL, mean
age at death and the Bongaarts-Feeney adjusted measure M4 would all be
lower, corresponding to the mean age at death of the cohort now reaching its
life expectancy, provided the assumptions underlying the simpler linear shift
model are satisfied.

3.5 A proportional hazards model

We now consider an example where the assumption is not quite satisfied, and
therefore CAL, M2 and M4 differ. Specifically, consider a population with a
constant stream of births and no mortality before age 30. Suppose the force
of mortality follows a Gompertz function with α = −9.997 and β = 0.0855,
which as noted earlier fits very closely the U.S. 2002 life table. Suppose further
that mortality has been constant long enough for the population to become
stationary. In this case all four measures, CAL, mean age at death, e0 and the
Bongaarts-Feeney tempo-adjusted life expectancy M4 are 78.45.

Suppose now that at time zero the force of mortality declines 20% at
all ages. The conventional period life expectancy, being just a summary of



88 Germán Rodŕıguez

age-specific mortality, would increase instantly to 80.97 to reflect this im-
provement. One has to be careful no to conclude that all cohorts will live this
long, as the calculation applies only to the cohort age 30 at time zero, assum-
ing mortality remains constant thereafter. CAL, on the other hand, doesn’t
change at time zero but starts increasing immediately afterwards as the de-
cline in mortality is reflected on the standardized age distribution. Eventually
the population becomes stationary again and CAL reaches 80.97. Figure 5
shows the trajectory of CAL for this example.

Fig. 5. Measures of longevity after a one-time reduction in hazard.

Mean age at death doesn’t change instantly either. Although this index
depends on the observed force of mortality, which is 20% lower at time zero,
the reduction factor appears both in the numerator and denominator and
cancels out. It is only as the reduction works its way into the age structure
that mean age at death starts to increase, eventually reaching 80.97. Figure
5 shows that the trajectory of mean age at death is very similar to CAL. The
Bongaarts-Feeney tempo-adjusted measure depends on the force of mortality
and a correction factor based on r, which I estimated using the TMR. (Using a
numerical derivative of M2(t) gives very similar results except for the first two
years.) The key result is that M4 is very similar to the other two measures.
It takes them nearly sixty years to fully reflect the instantaneous change in
mortality that occurred at time zero.

The figure also shows cohort life expectancy, estimated assuming that mor-
tality was constant both before and after time zero at the specified level. We
plot a cohort’s life expectancy on the year when it reaches its mean age at
death. We note that the three measures of longevity track the increase in
cohort life expectancy, albeit only approximately.
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4 Discussion

This chapter has emphasized similarities between the analysis of fertility and
mortality. I have argued that Ryder’s translation formula can be applied quite
generally to demographic surfaces. When the surface represents age-specific
fertility rates the formula translates period and cohort quantum. When the
surface represents survival probabilities the formula translates period and co-
hort tempo, but using CAL rather than conventional life expectancy. The
common theme is that period and cohort demographic summaries can differ
in times of change. I believe that labelling these differences a bias or distor-
tion has been unfortunate. Period aggregates provide convenient summaries,
while cohort aggregates are often needed to fully understand the underlying
process.

I have also stressed the fact that the Bongaarts-Feeney framework is es-
sentially the same for fertility and mortality, postulating a period shift in a
cumulative schedule representing average parity or survival probabilities. The
shift can be motivated by assuming that all cohorts delay childbearing or
postpone death at the same rate, and is closely linked to accelerated failure
time models used in survival analysis. The shift results in a proportionate
reduction in fertility or mortality rates, which also move to older ages. The
model applies to multiple cohorts but requires assuming that later cohorts
experience not just a slowing down of time but also a delay in the onset of
exposure, an assumption that may be less realistic and, in the case of mortal-
ity, requires restricting application to adult ages in low mortality populations.
I have also proposed measures of tempo under changing fertility or mortal-
ity which complement the Zeng-Land interpretation of the Bongaarts-Feeney
adjustment by applying to the same synthetic cohort.

Having stressed similarities between fertility and mortality, it is perhaps
appropriate to remind ourselves of some fundamental differences. In the case
of fertility a reduction in age-period specific rates could represent changes in
the quantum or tempo of fertility: women could be having fewer children or
just having them later (or both). By assuming that delays occur at all ages
at the same rate the Bongaarts-Feeney framework can ingeniously separate
the two types of change. In our illustration we could have misinterpreted a
reduction in TFR from 4.0 to 3.2 as a change in completed family size, but
because it was accompanied by an annual increase of 0.2 years in mean age of
childbearing–which would lead to just such a reduction–we concluded that it
was a pure tempo effect. This does not mean, incidentally, that the reduction
in period rates is not real. The only way cohorts can still have 4.0 children
but over a longer time is by having them at a slower pace. The new measure
of tempo introduced here tells us how much longer it would take.

There are two reasons why mortality is different, even if the same period-
shift model applies. First, mortality is a pure tempo phenomenon; everyone
dies exactly one time and the only question is when. Consequently, a reduction
in the period force of mortality can only mean that cohorts are delaying death.
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There is no risk of misinterpretation, and therefore, one might argue, no need
for adjustment. Bongaarts and Feeney implicitly acknowledge this point when
they note that mean age at death, which they view as a direct analog of
mean age of childbearing, needs no adjustment. They do adjust the force of
mortality, of course, but I view this adjustment as merely a device to bring
the conventional calculation of life expectancy inline with CAL or mean age
at death. I see no bias or distortion in the observed force of mortality, just as
I see no bias in age-specific fertility, and the best proof of that is the fact that
cohort survival is determined entirely by μ(a, t), not by its tempo-adjusted
version. The question then is whether we should use standardized mean age
at death or conventional life expectancy as a measure of longevity.

That brings us directly to the second reason why mortality is different,
and it has to do with exposure. In fertility all women are exposed to have a
birth, whether they have had one before or not, which makes f(a, t) a true
event-exposure rate. Both the cohort and period TFR and mean age of child-
bearing are summaries of these rates and are not affected by exposure. In the
case of mortality only survivors are at risk of dying, which is why analytical
interest usually focuses on the force of mortality μ(a, t), which acts on sur-
vivors S(a, t) to produce deaths d(a, t). For a cohort the choice of measure
is immaterial because exposure is itself determined by the force of mortality
and as a result conventional life expectancy and mean age at death are iden-
tical. For a period the two measures can be quite different when mortality
is changing. Conventional life expectancy depends only on the period force
of mortality μ(a, t), whereas mean age at death depends also on S(a, t) and
thus on the population’s past mortality history. We have seen that under the
strong assumption of a linear-shift model, mean age at death coincides with
the life expectancy of the cohort now reaching its mean age at death.

The question we asked at the outset, ‘How long do we live?’, can thus
be seen to have different answers depending on our precise definition of ‘we’.
Conventional life expectancy applies to a hypothetical cohort that is exposed
to a constant set of rates. It has the great merit of also applying to everyone
else when mortality is constant. But when mortality is changing the construc-
tion is less useful; why ask how long someone would live subject to these
rates if they are changing? We know that they would probably live longer
than that, and we can estimate how much longer if we are willing to make
strong assumptions about future changes. In particular, a continuing linear
shift to older ages leads to e†0, the simple measure of life expectancy under
changing mortality proposed here. It is also the case that when mortality
is declining no cohort has yet lived that long, or even as long as e0 would
imply. The Bongaarts-Feeney measure tells us how long those dying today
have lived, standardizing for cohort size, when the proportionality assump-
tion holds. The fact that those dying today haven’t lived as long as today’s
newborns will probably live, under either fixed or changing rates, is not a bias
or distortion; it’s just a fact of life.
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The foregoing discussion has emphasized the practical interpretation of
various measures of longevity while implicitly accepting the conventional view
that mortality change is driven by the hazard function. But the Bongaarts-
Feeney approach is fundamentally different; it views mortality change as
driven by gains in longevity that shift the age distribution. This deflates the
hazard by a factor 1 − r and shifts it to older ages. Unfortunately, it is diffi-
cult to differentiate these frameworks empirically because the age patterns in
low-mortality countries are very close to a Gompertz model, where a propor-
tionate reduction in the hazard cannot be distinguished from a shift to older
ages. But if mortality were to stop declining we would soon know, because the
period-shift model predicts an increase in the hazard as the factor 1−r disap-
pears and our past catches up with us, whereas the conventional view is that
the hazard would stay constant. Faced with such choice, one may very well
prefer to see hazards continue to decline and live longer with the uncertainty.
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