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Summary. This chapter introduces and develops the idea of “ increments to life.”
Increments to life are roughly analogous to forces of mortality: they are quantities
specified for each age and time by a mathematical function of two variables that
may be used to describe, analyze and model changing length of life in populations.

The rationale is three-fold. First, I wanted a general mathematical representation
of Bongaart’s “life extension” pill (Bongaarts and Feeney in this volume p. 11)
allowing for continuous variation in age and time. This is accomplished in sections
3-5, to which sections 1-2 are preliminaries. It turned out to be a good deal more
difficult than I expected, partly on account of the mathematics, but mostly because
it requires thinking in very unaccustomed ways.

Second, I wanted a means of assessing the robustness of the Bongaarts-Feeney
mortality tempo adjustment formula (Bongaarts and Feeney in this volume p. 11)
against variations in increments to life by age. Section 6 shows how the increments
to life mathematics accomplishes this with an application to the Swedish data used
in Bongaarts and Feeney (in this volume p. 11). In this application, at least, the
Bongaarts-Feeney adjustment is robust.

Third, I hoped by formulating age-variable increments to life to avoid the slight
awkwardness of working with conditional rather than unconditional survival func-
tions. This third aim has not been accomplished, but this appears to be because it
was unreasonable to begin with. While it is possible to conceptualize length of life
as completely described by an age-varying increments to life function, this is not
consistent with the Bongaarts-Feeney mortality tempo adjustment.

What seems to be needed, rather, is a model that incorporates two fundamentally
different kinds of changes in mortality and length of life, one based on the familiar
force of mortality function, the other based on the increments to life function. Section
7 considers heuristically what such models might look like.

1 Time-discrete increments to life

Figure 1 shows cohort survival for two birth cohorts of Swedish females. In
the usual way of thinking, the survival curve for the later cohort has moved
� c©2006 Max-Planck-Gesellschaft, reprinted with permission
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up because risks of death have declined, but we might equally well think of
the curve for the later cohort as having moved to the right as a result of the
prolongation of life.

To quantify this idea, consider the earlier cohort, choose a particular age
(x = 50 years, say) and consider the horizontal distance between the two
survival curves at the corresponding survival proportion, lc(50, t1) = 0.6666
(Figure 1), t1 denoting the time of birth of the earlier cohort. To calculate this
distance we need to know the age to which this proportion of persons survive
in the later cohort. Interpolating on the values for the later cohort we find
this age to be 60.65 years, i.e., lc(60.65, t) = 0.6666 . The horizontal distance
between the two curves at the ordinate value lc(50, t1) = lc(60.65, t2) = 0.6666
is thus λt1,t2

c (50) = 10.65 years.
The difference between any two survival curves may be described as the

collection of all such horizontal distances. These “increments to life” are plot-
ted in Figure 2. The increment for any given age represents “how much longer”
persons in the second cohort live in a rather special and formal sense. The
persons in the second cohort who survive to age x + λt1,t2

c (x) live λt1,n
c (x)

years longer than the persons in the first cohort who survive to age x. Their
advantage is retrospective, however, not prospective. The increment to life for
older ages may be smaller, zero or negative.

The area under the increments to life curve is the difference between the
areas under the survival curves. Since the area under the survival curves gives
the expectation of life at birth for the two cohorts, we have the following
decomposition of the difference between the expectations of life at birth in
the two cohorts in terms of the increments to life values,

ec
0(t2) − ec

0(t1) = −
∫ ∞

0

λt1,t2
c (x) dlc(x, t1) (1)

where the integral is taken with respect to the first survivorship function.

2 Empirical results: Swedish females, 1751-2002

Increments to life by single years of age may be calculated for successive
pairs of annual birth cohorts for Swedish females using the data provided
in the Human Mortality Database (http://www.mortality.org). The database
provides period life tables by single years of age to age 110 years for Sweden
for (as of September 2004) 252 years, from 1751 through 2002. The qx values
from these tables may be used to compute cumulative cohort survival for the
birth cohorts of persons born at the beginning of each calendar year. Applying
the calculation of the preceding section to each successive pair of cohorts gives
increments to life by single years of age for successive pairs of cohorts. These
values may be arranged in a table in which rows correspond to single years of
age and columns to pairs of adjacent birth cohorts and therefore to calendar
years.
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Fig. 1. Survivorship for Swedish female cohorts of 1890 and 1900.

Figure 3 shows increments to life averaged over successive pairs of birth
cohorts for the period 1751-1760. It illustrates that increments to life may
be negative as well as positive, corresponding to a rise in mortality risks and
a decline in length of life. Figure 4 shows increments to life averaged over
successive pairs of birth cohorts for the period 1891-1900. Values are positive
here, and the age pattern quite different. The depression at young adult ages
is notable.

3 Time-continuous cohort-indexed increments to life

Let lc(x, t) denote the proportion of persons surviving to age x in the cohort of
persons born at time t. These values define a two-dimensional surface over the
age-time plane of the Lexis diagram. This surface may be described by its con-
tour lines, the lines on the age-time plane along which proportions surviving
are constant. If length of life is constant, these contour lines will be straight
lines parallel to the time axis. If length of life is increasing (decreasing), they
will move to higher (lower) ages. The assumption that the population age
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Fig. 2. Time discrete increments to life for Swedish female cohorts of 1890 and
1900.

distribution defined by lc(x, t) shifts to uniformly to higher ages (Bongaarts
and Feeney 2002:16) is equivalent to the assumption that the rate of change
of the contour lines with respect to age at any given time is invariant with
respect to age.

Let the rate of change with respect to age of the contour line passing
through the point (x, t) be λ(x, t). The directional derivative of the surface
defined by (λ(x, t), 1) in the direction lc(x, t) equals zero because the value of
lc(x, t) does not change on the contour line. We therefore have

∂lc(x, t)
∂x

λc(x, t) +
∂lc(x, t)
∂t

= 0 , (2)

where the constant factor in the definition of the directional derivative may
be ignored since the value is zero. Formula (2) is equivalent to

λc(x, t) = −
[
∂lc(x, t)/∂t
∂lc(x, t)/∂x

]
, (3)

which may be taken as the formal definition of the time-continuous cohort-
indexed increment to life λc(x, t) at age x and time . The partial derivative
in the denominator shows that empirical increments to life values will tend
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Fig. 3. Time-continuous cohort increments to life, Swedish females, average over
cohorts of 1751-1760.

to be unstable over age intervals over which few deaths occur, since for these
intervals ∂lc(x, t)/∂x will be close to zero.

Dividing both sides of (2) by lc(x, t) and rearranging terms gives

λc(x, t)μ(x, t) = r(x, t+ x) , (4)

where μ(x, t) denotes the force of mortality at age x and time t and r(x, t)
denotes the age-specific growth rate at age x and time t of the normalized
population lc(•, •). This shows that values of the increments to life function
vary inversely with the values of the force of mortality function for any given
age and time.

The definition of increments to life by formula (3) supposes that the values
lc(x, t) are given. If we assume instead that values λc(x, t) are given, formula
(2) defines a partial differential equation that may be solved for the values
lc(x, t) given the boundary condition lc(x, t) for x > 0.
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Fig. 4. Time-continuous cohort increments to life, Swedish females, average over
cohorts of 1891-1900.

4 Time-continuous period-indexed increments to life

Let lp(x, t) denote the proportion of persons born at time t − x who survive
to age x. From this definition and that of lc(x, t) it follows immediately that

lp(x, t) = lc(x, t− x) (5a)

and

lc(x, t) = lp(x, t+ x) (5b)

Compare Appendix 1 of Bongaarts and Feeney (1998), which states the same
relation using slightly different notation. The subscripts refer to the cohort
indexing of the preceding section and the period indexing of this section.
Note that both lp(x, t) and lc(x, t) are survival proportions for cohorts; the
difference is only in the time reference.
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The apparently trifling difference between the two representations turns
out to have non-trivial consequences. Proceeding as before, consider contour
lines of the surface defined by the values lp(x, t). In the period case these
contour lines may move backward as well as forward in time. Backward move-
ment will occur whenever a later cohort experiences much lower survivorship
than an earlier cohort.

Suppose for example that (a) for the cohort born at time , half of all
persons survive to age 50 years, corresponding to the point (50, t + 50) and
that (b) the cohort born at time t+1 experiences much higher infant mortality,
with the result that the age to which half of all persons in the cohort survive
is only 40 years, corresponding to the point (40, t+ 41). The time coordinate
of the point for the later cohort lies 9 years before the time coordinate of the
point for the earlier cohort.

The time-continuous increment to life may still be defined as the direction
for which the directional derivative equals zero, but this direction must now
be specified as a vector rather than as a scalar. The period version of formula
(2) is

∂lp(x, t)
∂x

λ1
p(x, t) +

∂lp(x, t)
∂t

λ2
p(x, t) = 0 , (6)

where the vector (λ1
p(x, t), λ

2
p(x, t)) gives the direction of the tangent to the

contour line at the point (x,t). For consistency with the cohort formulation we
may assume that λ2

p(x, t) assumes only the values +1 and −1, corresponding
to movement forward and backward in time.

5 Relation between cohort and period increments to life

Figure 5 shows a Lexis diagram in which the diagonal line beginning at time
t and ending at time t+ 1 +λc represents the tangent line to the contour line
that passes through the point (x, t) of the surface lp(x, t). The slope of this
line is by definition the period increment to life λp = λp(x, t).

The corresponding rate of change between the cohorts born at times t−x
and t − x + 1, represented by the dotted diagonal lines, is λc = λc(x, t − x).
From the similarity of the two right triangles,

λp(x, t− x) =
λc(x, t− x)

1 + λc(x, t− x)
, (7)

from which it follows that λp(x, t) → 1 as λc(x, t) → ∞ and λp(x, t) → −∞
as λp(x, t) → −1. Values of λc(x, t) less than correspond contour lines moving
backward in time.

Zeng Yi and Land (2002) prove a special case of (7) for a model in which
cohort fertility, period fertility, the shape of the age-schedule of fertility and
the rate of change in the mean age at childbearing are all constant over time.
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Fig. 5. Lexis diagram illustrating relation between cohort and period increment to
life.

To obtain a more general formula, observe that the partial derivatives in
(6) may be expressed as

∂lp(x, t)
∂x

=
∂lc(x, t− x)

∂x
− ∂lc(x, t− x)

∂t
(8a)

and

∂lp(x, t)
∂t

=
∂lc(x, t− x)

∂t
, (8b)

these expressions being obtained by differentiating (5a). Substituting the right
hand sides here in (6) and rearranging terms gives

λ1
p(x, t) =

−∂lc(x, t− x)/∂t
∂lc(x, t− x)/∂x− ∂lc(x, t− x)/∂t

(9a)

if λ2
p(x, t) = +1 and

λ1
p(x, t) =

∂lc(x, t− x)/∂t
∂lc(x, t− x)/∂x− ∂lc(x, t− x)/∂t

(9b)

if λ2
p(x, t) = −1. Dividing the numerator and denominator on the right hand

sides of (9) gives
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λ1
p(x, t− x) =

−λc(x, t− x)
1 + λc(x, t− x)

> −1 , (10a)

if λ2
p(x, t) = +1 and

λ1
p(x, t− x) =

λc(x, t− x)
1 + λc(x, t− x)

< −1 (10b)

if λ2
p(x, t) = −1.Formula (10a) is the same as formula (7), but the graphical

approach leaves it unclear how to cope with the case in which λ2
p(x, t) = −1

or, equivalently, λc(x, t) < −1.
The relationship between ,λc(x, t), λ1

p(x, t) and λ2
p(x, t) is shown in Figure

6. The curve to the right of the vertical at λc(x, t) = 1 shows the relation
between λc(x, t) and λ1

p(x, t) when λ2
p(x, t) = +1 and the curve to the left of

this vertical shows this relation when λ2
p(x, t) = −1.

The relation displayed in Figure 6 is curious indeed. Discussion of tempo
effects in the demographic literature has generally (always, so far as I am
aware) been limited to values of λc and λp fairly close to zero (roughly, say,
the unit square centered on the origin), and in this neighborhood the relation-
ship is unremarkable. The Lexis diagram in Figure 5 shows that λp cannot
exceed one, whereas λc may assume arbitrarily large values, so it is not sur-
prising to see in Figure 6 that λp → 1 as λc → ∞. To see λp → −∞ as
λc → −1 is rather less comfortable (though obviously, from (10a), this is
what happens), since this suggests that tempo effects in this case can have
arbitrarily large magnitude. In demographic terms (Lexis diagram in Figure
5), events in successive cohorts are shifting to younger ages in such a way as
to pile up events on the vertical line at time t.

The portion of Figure 6 to the left of the vertical (dotted line) at x = −1
is even more surprising. The idea that events occurring in successive cohorts
may be moved to earlier ages so rapidly that the period effect is to “thin
out” events and reduce period levels rather than to “bunching up” events
and increase period levels has not, so far as I am aware, ever been considered
in the demographic literature. Yet this is what happens when λc < 1. In
demographic terms (Lexis diagram in Figure 5), events in subsequent cohorts
are moved to earlier ages so rapidly that they occur earlier in time than events
to earlier cohorts. The asymptotic approach to λp to the left of the vertical
line (dotted) at x = −1 mirrors the asymptote on the other side, but with λc

decelerating toward −1. Of course the value of λc is constrained on the left
because events cannot be shifted to a time before the cohort’s birth!
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Fig. 6. Relation between cohort and period increments to life.

6 Robustness of the Bongaarts-Feeney tempo
adjustment formula

The Bongaarts-Feeney mortality tempo adjustment formula (Bongaarts and
Feeney 2002, in this volume p. 11) is based on the “constant shape assump-
tion,” which they show to be equivalent to the assumption that the normalized
age distributions lp(x, t) are translated uniformly up or down the age axis with
changing time. This is equivalent to the assumption that period increments to
life λp(x, t) are constant with respect to age for each time t, λp(x, t) = λ(t) for
all a. This suggests that tempo adjusted life expectancy at birth may be cal-
culated more generally by replacing λ(t) by λp(x, t) in the Bongaarts-Feeney
tempo adjustment formula (2003: formula 11, in which λ(t) = ∂M1(t)/∂t.

This adjustment may be applied to average of annual values of qx for
Swedish females for 1980-1995 with qx set equal to zero for x < 30 years,
the same Swedish data used in Bongaarts and Feeney (in this volume p. 11).
Values of λp(x, t) are obtained by first calculating λc(x, t) using formula (3)
and then applying formula (10) to obtain values of λp(x, t). The resulting
period increments to life by age λp(x, t) are plotted in Figure 7, which suggests
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that they are reasonably close to constant with respect to age from about age
35 onward.

Calculation of a tempo-adjusted e0 using these values gives 79.5 years, as
compared with an unadjusted value of e0 = 81.0 years, for a tempo effect of
1.5 years. This is very close to the 1.6 years given in Bongaarts and Feeney
(in this volume p. 11). I conclude that the simple, non-age-specific adjustment
is robust against observed departures from the constant shape assumption in
this application, and also that the increments to life concept has succeeded in
providing a general method for assessing robustness.
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Fig. 7. Time-continuous period increments to life, Swedish females, 1980-1995 (qx =
0 for x < 30 years).

7 Increments to life and mortality tempo: mixed models

What happens if the conditioning on survival to mid-adult ages is dropped and
variable increments to life are substituted for the constant increment to life
used in the Bongaarts-Feeney adjustment formula? The procedure described
in the previous section gives in this case an expectation of life more than
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5 years lower than the conventional expectation of life. The magnitude of
the implied tempo effects is about three times larger than the tempo effects
calculated by Bongaarts and Feeney.

The explanation for this discrepancy is evidently the age variation in incre-
ments to life shown Figures 3 and 4. The Bongaarts-Feeney mortality tempo
adjustment is derived on the assumption that increments to life are constant
with respect to age. When the survival function is conditional on survival
to age 30 years, the Swedish increments to life 1980-1995 vary in a range of
about ±0.05, as shown in Figure 7. When the survival function is uncondi-
tional, increments are very far from constant. Figure 4 shows a variation of
about ±0.9. Conditioning on survival to age 30 has the effect of radically
reducing the variability of increments to life by age.

Consistency with the Bongaarts-Feeney mortality tempo model therefore
requires that increments to life be considered only for adult survival. The
nature of mortality change at younger and older ages appears to be funda-
mentally different, so that the tempo model that makes sense at older ages
does not make sense at younger ages.

This suggests that we need a “mixed” model in which mortality change
at younger ages is modeled differently from mortality change at older ages.
To suggest what such models might look like, consider the familiar graph of
the force of mortality function with values (vertical axis) plotted against age
(horizontal axis). Thinking heuristically, suppose that there are two kinds of
mortality change, “up and down” change (movement in the vertical direction
to higher or lower values), and “back and forth” change (movement of a fixed
schedule of values in the horizontal direction, to the left or to the right).
Suppose further than “up and down” change occurs in infancy, childhood and
young adult ages, and that “back and forth” change occurs at older ages.

The force of mortality function may be most appropriate representation
of “up and down” change, the increments to life function the most appro-
priate representation of “back and forth” change. The distinction may be
captured mathematically by writing the Makeham force of mortality function
as μ(x, t) = a(t)ebx + c(t), where c(t) represents “up and down” change and
a(t) represents “back and forth” change that may be equivalently expressed in
terms of increment to life values λ(t) representing the rate at which movement
toward older or younger ages occurs.

So regarded, the Makeham defines a mixed model incorporating both forces
of mortality and increments to life. Both components of the model could be
generalized, to arrive at a more realistic model without changing the mixed
nature of the model.

8 Conclusion

The study of mortality and length of life has been dominated by the con-
cept of risks of death, to the point that mortality is sometimes regarded as
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being defined by age-specific death rates and the force of mortality function.
Empirically, however, survival functions are the theoretical structure closest
to the empirical data (migration may be handled with product limit survival
functions), and changing survival functions give rise to and may be modeled
by both forces of mortality and increments to life.

When we think in terms of risks of death, life times are a residual. How long
we live reflects how successful we are in escaping various risks of death. When
we think in terms of increments to life, deaths are the residual. Death is what
happens when we run out of life. As pointed out by Vaupel and Yashin (1987),
physicians and health personnel tend to think more in the latter terms than
the former. They suggest also that the two perspectives are complementary
rather than contradictory. A better understanding of this complementarity
may usefully advance the study of changing mortality and length of life.
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