
MPIDR Technical Report TR 2018-001 l January 2018

Vasily P. Gorlishchev l gpa15@yandex.ru
Pavel Grigoriev l grigoriev@demogr.mpg.de
Anatoli I. Michalski l mpoctok@yandex.ru

R programs for splitting abridged
fertility data into a fine grid of ages
using the neural network method

This technical report has been approved for release by: Dmitri A. Jdanov (jdanov@demogr.mpg.de),
Head of the Laboratory of Demographic Data.

© Copyright is held by the authors.

Technical reports of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions
expressed in technical reports are attributable to the authors and do not necessarily reflect those of the Institute.

Konrad-Zuse-Strasse 1  D-18057 Rostock  Germany  Tel +49 (0) 3 81 20 81 - 0  Fax +49 (0) 3 81 20 81 - 202  www.demogr.mpg.de

Max-Planck-Institut für demografische Forschung

Max Planck Institute for Demographic Research

For additional material see www.demogr.mpg.de/tr/

1

R programs for splitting abridged fertility data into a fine grid
of ages using the neural network method

Vasily P. Gorlishchev (gpa15@yandex.ru)

Pavel Grigoriev (Grigoriev@demogr.mpg.de)

Anatoli I. Michalski (mpoctok@yandex.ru)

2

Abstract. The need to split aggregated fertility data into a fine grid of ages is a challenge that is

often encountered by demographers. Several methods for addressing this problem have been

developed. In this technical report, we present an application of a new approach to splitting

abridged fertility data, the neural network (NN) model. Although neural networks have been

widely used in various fields, they have seldom been applied in demography. The algorithm

presented here is very flexible and simple to use, but it requires substantial computational

resources. The NN method allows us to split abridged fertility rates of any kind using a pre-

learned model generated with high-quality data drawn from the Human Fertility Database. The

results of testing show that in most cases, the NN model returns estimates that correspond very

closely to the original values. However, the model also tends to return erroneous estimates for

fertility patterns that are ‘unfamiliar’ to the pre-learned model.

3

1.Background

The need to split aggregated fertility data into a fine grid of ages sometimes arises. To handle

this task, several disaggregation methods have been developed and tested (McNeil et. 1975;

Smith, Hyndman, Wood, 2004; Liu, et al. 2011; Schmertmann 2012; Jasilioniene et al. 2012,

Grigoriev and Jdanov, 2015). Here, we present an application of the neural network (NN)

method, which represents a new approach to splitting abridged fertility data. While neural

networks have been widely used in various disciplines, they have seldom been applied in

demography. To our knowledge, this is the first attempt to apply the neural network method to

the problem of demographic data disaggregation. We intend to provide a fine split of aggregated

fertility rates (nfx) into fertility rates by single years of age (1fx). We have established three criteria

that must be met when applying the NN method in this context:

1) Fit – the predicted values should be as close as possible to the observed values;

2) Shape - the estimated fertility curves should be plausible and smooth; and

3) Non-negativity – the method should not generate negative values.

The NN method can be used to split any kind of input data with a structure that corresponds to a

pre-learned model. If needed, a pre-learned model with the desired format can be easily

generated by the user. Here, we describe a neural net that splits nine five-year age groups:

10-14, … , 50-54 into single ages from 12 to 54. The NN estimation algorithm contains a

smoothing spline and negative value extinction procedures.

2.Description of the algorithm

Below, we provide a very brief and general description of the NN algorithm. A more detailed

description of the process can be found elsewhere (Riedmiller and Braun, 1994). Our base

model is a pre-learned neural network with a resilient back-propagation algorithm. The output of

the network consists of smoothed estimates adjusted for negative values.

2.1. The neural network and the resilient back-propagation algorithm

The basic component of a neural net is a formal neuron, shown in Figure 1.

Figure 1. Formal neuron
Source: Adopted from Zaencev (1999)

4

A formal neuron contains a weighted sum and a non-linear element (activation function). The

operation of a formal neuron can be described by the following formulas:

ܶܧܰ = ∑ ௜௜ݓ ௜ݔ (1)

ܱܷܶ = ܶܧܰ)ܨ − ,(ߠ (2)

where

xi – the input signals, whereby the vector of all of the input values stands for x;

wi – the weight coefficients;

NET – the weighted sum of all input values, whereby the NET value is transferred to the non-

linear elements;

Θ – the threshold level of the neuron;

F – the non-linear function, which stands for the activation function – the sigmoidal (logistic)

function that accepts and recalculates ܶܧܰ) − (ߠ

1
1 NETOUT

e-=
+

 - Output with a sigmoidal activation function, whereby equals zero for this ߠ

function.

The combination of the formal neurons builds a neural net, shown in Figure 2.

Figure 2. Formal structure of the neural network

Source: Adopted from Zaencev (1999)

5

Formally, the neural network is just a sequential evaluation of linear and non-linear function

combinations:

(3)

The sequential evaluation provides a close approximation of the multidimensional function.

The resilient back-propagation algorithm (2) is a method used to tune the weights wi in a way

that allows the function f(x) to approximate data. After all of the train data have been entered

into the neural net and all of the derivative errors of the formal neurons have been counted, the

updated values ij
t)(D for the neural net coefficients are calculated by the following system of

equations:

ï
ï
ï
ï

î

ïï
ï
ï

í

ì

D

<
¶
¶

¶
¶

D

>
¶
¶

¶
¶

D

=D

-

-
--

-
-+

else
w
E

w
Eif

w
E

w
Eif

ij
t

ij

t

ij

t
ij

t

ij

t

ij

t
ij

t

ij
t

,

0*,*

0*,*

)1(

)()1(
)1(

)()1(
)1(

)(h

h

(4)

where

η is a step parameter. The updated values of the weights are based on the information on a

local error derivative

ï
ï
ï
ï

î

ïï
ï
ï

í

ì

<
¶
¶

D+

>
¶
¶

D-

=D

else
w
Eif

w
Eif

w
ij

t
ij

t

ij

t
ij

t

ij
t

,0

0,

0,

)(
)(

)(
)(

)(

(5)

The weights are updated by the following rule:

÷
÷
ø

ö
---çç

è

æ
= å åå

2

211122
...)(...)(2112

i i
Njjjjji

i
Nji

k

K

k

NN
wiFwwFxf qqq

6

ij
t

ij
t

ij
t www)()()1(D+=+

(6)

The cycle continues until convergence is reached.

2.2. Spline and elimination of negative values procedures

The smoothing spline estimates value
Ù
f for the neural net estimates f , and is by definition a

minimizer for the function:

f

x

x

n

i
ii

n

dxxfxfY
ˆ

2

1

2 min)())((
1

¾®¾¢¢+- òå
Ù

=

Ù

l
, (7)

where 0³l is a smoothing parameter that trades the quality of the approximation and the

smoothness of function (3).

 The vector of the smoothed spline parameters is calculated by the following formula:

YAIm 1)(ˆ -+= l (8)

with the matrix

ò ¢¢¢¢= dxxfxfA ji)()(
(9)

The negative values are eliminated by the following simple substitution:

ç
ç
ç

è

æ

<

³= Ù

ÙÙ
Ù

0)(0

0)(,)()(

i

ii
i

xfif

xfifxfxf (10)

2.3. Disaggregation of the neural network structure

We constructed a neural net with nine input neurons (age groups: 10-14, 15-19, … , 50-54), two

hidden layers with 27 and 36 neurons, and 43 output neurons (single age groups:

12,13,14,…,54). The structure of this neural net appears in Figure 3.

7

Figure 3. Structure of the neural net

3. Requirements

The scripts were tested using R version 3.1. The library ‘neuralnet’ is required for the calculation

of the neural network, and the library ‘bigsplines’ is required for the smoothing procedure. Both

packages can be installed from the standard R repository (CRAN).

4.Usage

The .zip file included in the technical report contains R scripts, and the data files used in the

example files HFD_BirthsExp1x1.csv and HFC_ASFR_TOT 9 age groups.txt were drawn from

the HFD and the HFC, respectively. All of the other data files were derived on the basis of

HFD_BirthsExp1x1.csv, and can be reproduced using the provided R scripts ‘1 Generating

abridged data.R’ and ‘2 Preparing data for learning.R’. The file NN Functions.R contains four

functions that needed to be loaded into the R environment using the source command. A

description of these functions is provided below.

4.1. R functions

After sourcing ‘NN Functions.R’ (command ‘source’), the following R functions are ready for use:
NN.learn(), NN.split (), NN.plot(), and NN.errors().

8

4.1.1. NN.learn()

This function builds a neural network on the basis of real observations (HFD data). The model
establishes the associations between the disaggregated and the aggregated fertility rates
generated from the same data source.

Usage: NN.learn(input = train.input, output = train.output)

The arguments are as follows:

train.input – the data frame (or the vector) containing the abridged age-specific fertility rates;

train.output – the data frame (or the vector) containing the disaggregated age-specific fertility
rates (Explanatory note: As both train.input and train.output are generated from the original birth
counts and the population exposures by single years of age, they have the same attributes as
CountryYear. The format of these data is described in section 4.2.); and

layers – the vector of the hidden layers and the units in them, default: layers=c(10,50,50,50,60).

The accuracy of the neural network prediction is very sensitive to this parameter. How the layers
are designed depends on both the quantity and the quality of the raw data. A larger amount of
data generally implies a higher degree of heterogeneity. If there are 300+ examples (empirical
fertility schedules), we recommend that the sizes of the layers be kept as small as possible:
c(10,50,50,50,60). If the data are homogeneous and the number of schedules is small (about
30), the sizes of the layers can be larger: c(10,50,50,50,50,50,50,50,50,60).(Explanatory note:
layers = c(20,20,20) – three-layer network with 20 units in each layer).

Example: NN.learn(input = train.input, output = train.output)

NN.learn returns a large R object that has to be passed into the NN.split function.

4.1.2. NN.split ()

This function splits abridged data (rates) into a fine grid of ages.

Usage: NN.split (input = x, model = model1)

The arguments are as follows:

x – the data frame (or the vector) containing the abridged age-specific fertility rates (Explanatory
note: The format of the input data is described in section 4.2.); and
model1 – the pre-learned model.

Example: NN.split (test.input[c('AUT1964','CAN1980'),], model = model1)

NN.split returns the data frame containing the disaggregated age-specific fertility rates in the
following format:

columns – ages by single years of age (12, 13, 14, ….,52, 53, 54)

rows – CountryYear (e.g., AUT1964)

9

Example of the output (transposed):

 AUT1965 CAN1980
12 0.00009951 0.00000000
13 0.00026307 0.00000000
14 0.00174004 0.00071945
15 0.00689436 0.00352892
16 0.02445333 0.01340019
17 0.05074924 0.02413369
18 0.08643147 0.03749711
19 0.12101206 0.05710087
20 0.14054130 0.06995949
21 0.15697429 0.08215975
22 0.16779605 0.09841259
23 0.17106072 0.10896298
24 0.17328453 0.12336094
25 0.17019851 0.13036878
26 0.16540037 0.13335822
27 0.15640507 0.12952442
28 0.14632630 0.12168024
29 0.13557170 0.11143938
30 0.12107552 0.09362149
31 0.11063618 0.08110425
32 0.09772666 0.06357454
33 0.08708050 0.05250953
34 0.07721435 0.04264718
35 0.06670614 0.03116163
36 0.05947780 0.02490329
37 0.04788512 0.01730801
38 0.04116032 0.01322619
39 0.03398012 0.00967506
40 0.02530419 0.00559102
41 0.01984139 0.00372593
42 0.01455716 0.00223163
43 0.00955392 0.00070228
44 0.00633050 0.00014468
45 0.00288936 0.00000000
46 0.00233072 0.00000000
47 0.00109580 0.00000000
48 0.00013841 0.00000336
49 0.00000000 0.00000000
50 0.00005253 0.00000278
51 0.00000000 0.00000826
52 0.00023370 0.00001688
53 0.00000000 0.00000000
54 0.00009951 0.00000000

4.1.3. NN.plot ()

This function visualizes the results of splitting using the NN method.

Usage: NN.plot (input, input.ages, output.ages, prediction, output=FALSE, additional=FALSE,
file.name='NN.plot output.pdf')

The arguments are as follows:

input – the data frame with the abridged fertility data;

input.ages – the mid-point values of the abridged age intervals;

10

output.ages – the desired output ages;

prediction – the predicted values returned by NN.split;

output (optional) – the data frame containing the original data by single years of age
(Explanatory note: Normally, these data are not available, but this option might still be used to
evaluate the performance of the NN model), default: output=FALSE;

additional (optional) – the data frame containing the predicted values obtained from an
alternative splitting method (e.g., HFD method, calibrated spline method, etc.), default:
additional=FALSE; and

file.name (optional) – the name of the output .pdf file, default: file.name='NN.plot output.pdf'.

Example:

> NN.plot(input=test.input, input.ages=seq(12.5,52.5,5),
prediction=prediction1, output= test.output, output.ages=(12:54),
file.name = 'NN split 9 age groups Example 2.pdf')

NN.plot returns a .pdf file with plots showing the results of splitting.

4.1.4. NN.errors()

This function calculates the root mean squared error (RSME) between the observed and the
predicted values by the following formula:

n

yy
RMSE

n

i
iiå

=

-
= 1

2)()

, (11)

where iy and iy) - observed and predicted values, respectively. n - number of observations.

NN.errors is used to evaluate the performance of the NN method (for testing purposes).

Usage: NN.errors<- function(output=test.output, prediction=prediction1)

The arguments are as follows:

prediction – the data frame (or the vector) containing the predicted values of the ASFRs; and

output – the data frame (or the vector) containing the observed (real) values of the ASFRs.

NN.errors returns a list containing rmse.CCY and rmse.age objects summarizing the RSME

statistic by CountryYear or age, respectively.

11

Example:
> Errors<-NN.errors(output = test.output[c('AUT1965','CAN1980'),],
 prediction=prediction1[c('AUT1965','CAN1980'),])

4.2 Format of the input data

The input should be either a data frame or a vector containing the age-specific fertility rates. A
fragment of the aggregated input data to be disaggregated appears below:

The data used for learning have the same format:

12

Note: The row and the column names in train.input and train.output must be identical. The same
requirement applies to test.input and test.output.

5. Examples

For the sake of simplicity and the convenience of the user, the procedure for splitting

aggregated fertility data is divided into three modules:

1) generating the abridged data,

2) preparing the data for learning, and

3) modeling and predicting.

The corresponding R scripts that perform these functions are included in the .zip file. Module (1)

allows users to generate abridged fertility data of any kind, which can then be used for learning.

By default, the age-specific fertility rates for the nine age groups used in this report are

calculated on the basis of the birth counts and the population exposures by single years of age

(see file ‘HFD_BirthsExp1x1.csv’). Module 2 contains the utilities for reshaping the input data in

the internal format. Finally, using Module 3, the users can build their own neural network model

and split the aggregated data into single ages.

As the scripts with examples are accompanied by detailed comments, even inexperienced R

users should find the NN method very simple to use.

13

References

Grigoriev P, Jdanov DA (2015). Splitting abridged fertility data using different interpolation
methods: is there the optimal solution?. 80th Annual Meeting of the Population Association of
America 2015 (Hilton San Diego Bayfront, San Diego, CA, 2015)
http://www.humanfertility.org/Docs/paa/Grigoriev_Jdanov.pdf

Hastie TJ. and Tibshirani RJ (1990). Generalized Additive Models, Vol. 43 of Monographs on
Statistics and Applied Probability, Chapman and Hall, London.

Jasilioniene A, Jdanov DA, Sobotka T, Andreev EM, Zeman K, Nash EJ, and Shkolnikov VM
(with contributions of Goldstein J, Philipov D. and Rodriguez G) (2012). Methods Protocol for
the Human Fertility Database. Available at: http://www.humanfertility.org

Liu Y, Gerland P, Spoorenberg T, Kantorova V, Andreev K (2011). Graduation methods to
derive age-specific fertility rates from abridged data: a comparison of 10 methods using HFD
data. Presentation at the First Human Fertility Database Symposium, Max Planck Institute for
Demographic Research, Rostock, Nov 2011.
http://www.humanfertility.org/Docs/Symposium/Liu-Gerland%20et%20al.pdf

McNeil DR, Trussell TJ, Turner JC (1977). Spline interpolation of demographic data.
Demography 14(2): 245-252

Riedmiller M, Braun H (1993). A direct adaptive method for faster backpropagation learning:
The RPROP algorithm. In Proceedings of the IEEE International Conference on Neural
Networks 1993 (ICNN 93).

Schmertmann C (2012). Calibrated spline estimation of detailed fertility schedules from abridged
data. MPIDR Working Paper WP-2012-022. Rostock.

Smith L, Hyndman R, Wood S (2004). Spline interpolation for demographic variables: the
monotonicity problem. Journal of Population Research 21 (1), pp. 95-97.

Zaencev (1999). Neural networks: main models. The manual for the course "Neural networks”
[Neironnye seti: osnovnye modeli. Uchebnoe posobie k kursu “Neironnye seti”]. Voronezh, 76 p.

	tr-2018-001-text
	tr-2018-001-title
	tr-2018-001-text

