

Max-Planck-Institut für demografische Forschung Max Planck Institute for Demographic Research

Konrad-Zuse-Strasse 1 • D-18057 Rostock • Germany • Tel +49 (0) 3 81 20 81 - 0 • Fax +49 (0) 3 81 20 81 - 202 • www.demogr.mpg.de

MPIDR Technical Report TR 2018-002 | January 2018

R programs for splitting abridged fertility data into a fine grid of ages using the quadratic optimization method

Anatoli I. Michalski | mpoctok@yandex.ru Pavel Grigoriev | grigoriev@demogr.mpg.de Vasily P. Gorlishchev | gpa15@yandex.ru

For additional material see www.demogr.mpg.de/tr/

This technical report has been approved for release by: Dmitri A. Jdanov (jdanov@demogr.mpg.de), Head of the Laboratory of Demographic Data.

© Copyright is held by the authors.

Technical reports of the Max Planck Institute for Demographic Research receive only limited review. Views or opinions expressed in technical reports are attributable to the authors and do not necessarily reflect those of the Institute.

R programs for splitting abridged fertility data into a fine grid of ages using the quadratic optimization method

Anatoli I. Michalski (mpoctok@yandex.ru)

Pavel Grigoriev (grigoriev@demogr.mpg.de)

Vasily P. Gorlishchev (gpa15@yandex.ru)

Abstract. Occasionally, it is necessary to split aggregated fertility data into a fine grid of ages. In this technical report, we present an application of the quadratic optimization (QO) method for splitting abridged fertility data. The QO approach allows us to split not only age-specific fertility rates, but also birth counts in cases in which population exposures are available. Unlike the existing methods, the QO algorithm simultaneously satisfies five criteria of the 'ideal' disaggregation method: 1) *shape* – the estimated fertility curves should be plausible and smooth; 2) fit – the predicted values should be as close as possible to the observed values; 3) *non-negativity* – only positive values should be returned for the birth-order data; 4) *balance* – the estimated five-year age group totals should match the input data; and 5) *parity* – the balance by parity must be maintained. The examples provided in this report demonstrate the simplicity, flexibility, and high degree of effectiveness of the proposed technique.

1.Background

The challenge of having to split aggregated fertility data into single years of age is often encountered by demographers. To tackle this problem, several reasonably effective disaggregation methods have been developed and tested (McNeil et. 1975; Smith, Hyndman, Wood, 2004; Liu, et al. 2011; Schmertmann 2012; Jasilioniene et al. 2012, Grigoriev and Jdanov, 2015). The need for disaggregation tends to arise when demographers are using historical data or data from developing countries that do not have functioning systems of vital registration. Splitting is often required for the purposes of data harmonization; i.e., for ensuring that the data are comparable across time and countries. The issue of splitting is particularly relevant in discussions about the maintenance of large international databases such as the Human Fertility Database (http://www.humanfertility.org) and the Human Fertility Collection (http://www.fertilitydata.org). Currently, the HFD has its own splitting protocol, the HFD method (Jasilioniene et al. 2012); while the HFC uses the Calibrated Spline (CS) estimator (Schmertmann, 2012) to disaggregate age-specific fertility rates (Grigorieva et al. 2015). Both methods work reasonably well, but they also have certain disadvantages (see Grigoriev et al. 2018). These challenges motivated us to develop a new method that can be universally applied to both the high-quality HFD data and the heterogeneous and noisy HFC data. Our new method simultaneously satisfies the following criteria:

- 1) Shape the estimated fertility curves should be plausible and smooth;
- 2) Fit the predicted values should be as close as possible to the observed values;
- 3) Non-negativity only positive values should be returned;
- 4) Balance the estimated five-year age group totals should match the input data; and
- 5) Parity the balance by parity must be maintained.

To our knowledge, none of the existing methods fully meets the first four criteria, and no attempt has been made to extend the restrictions to criterion (5).

2. Description of the algorithm

The problem of splitting aggregated fertility data into single years of age is formulated as the reconstruction of a smooth curve, which satisfies criteria (1-5). The smoothness of the disaggregated age-specific fertility rates (ASFR) is determined by the quadratic function, which equals the sum of the squares of the second order divided differences for the ASFR, which have to be as small as possible. In this way, the problem of splitting aggregated fertility data is reduced to the problem of quadratic optimization under a set of linear constraints derived from criteria (2-5).

Mathematically, the quadratic optimization problem for the age-specific fertility rate calculation can be formulated as

Minimize $\ F \cdot fr\ ^2$	criterion (1)
subject to $G' fr - b = 0$,	criterion (4)
$fr_i = 0$, $j=1,,n$.	criterion (3)

Here, *n* is the number of years for which the age-specific fertility rate is calculated, fr is the vector of the one-year ASFR values, F is the $(n-2) \times n$ matrix for the calculation of the secondorder divided differences, b is the vector of the observed number of births by m five-year age groups, and G is the $m \times n$ matrix of the number of women exposed to a birth event at a specific age in a specific five-year age group.

The quadratic optimization problem takes on a more complex form when both age- and parityspecific fertility rates have to be estimated. That is,

minimize $\left\ F \cdot fr\right\ ^2 + \mathop{a}\limits_{p=1}^5 \left\ F \cdot fr^p\right\ ^2$		criterion (1)							
subject to $G' fr - b = 0$		criterion (4)							
G^{p} ' fr^{p} - $b^{p} = 0$	<i>p</i> =1,,5	criterion (4)							
$E_j fr_j - \overset{5}{{a}} E_j^p fr_j^p = 0$	<i>j</i> =1,, <i>n</i>	criterion (5)							
fr_i^{p-1}	<i>j</i> =1,, <i>n</i> ,	criterion (3)							
fr_j^p 3 0	<i>j</i> =1,, <i>n</i> , <i>p</i> =1,,	5 criterion (3)							
The new notations fr^{p} are - the vectors of one-year ASFRs by parities 1,2,3,4, and 5+; b^{p} - the vectors of the observed number of births by <i>m</i> five-year age groups and by parities									
$A \circ o A = A = G^p m \times n$									

1,2,3,4, and 5+; G^{ν} - $m \times n$ matrixes of the number of women exposed to births at a specific age in a specific five-year age group and parities 1,2,3,4, and 5+; E_i - the number of women in the *j*-th one-year age group exposed to births; and E_i^p - the number of women in the *j*-th one-year age group who had already given birth to p-1 children. In the case of unconditional estimates for the age-specific fertility rate, all of the G^p matrixes are equal to the G matrix, and the vectors E and E^{p} are the rows of the G matrix.

3. Requirements

The scripts were tested using R version 3.1. The application of the QO method requires the use of the 'quadprog' package, which must be installed from a standard R repository (CRAN).

4.Usage

The .zip file included in the technical report contains *R scripts* and the data files used in the examples. R functions *QOSplit.R* and *QOSplitPar.R* have to be loaded into an R environment using the *source* command. A description of these functions is provided below.

4.1. R functions

4.1.1. QOSplit.R()

This function splits the aggregated age-specific fertility rates (ASFRs) into single years of age using the quadratic optimization procedure.

Usage: QOSplit (Fx ,L, AgeInt)

The arguments are as follows:

Fx – the vector of the aggregated ASFRs to be split into single ages;

L – the vector containing the lower limits of the age intervals (e.g., L=10 for age interval 10-14); and *AgeInt* - the vector containing the length of the age intervals.

All of the arguments should have the same length.

Example: QOSplit (Fx= c(0.00008, 0.02655, 0.10538, 0.09983, 0.05105, 0.01904, 0.00359, 0.00033, 0.00000), L=seq(10,50,5), AgeInt=rep (5,9))

QOSplit.R returns the data frame in the following format:

Age	ASER
10	0.00000000
11	
12	0.00000000
13	0.00000000
14	0.00040106
15	0.00330651
16	0.01036136
17	0.02223489
18	0.03862065
19	0.05823645
20	0.07882435
21	0.09715068
22	0.11096405
23	0.11899532
24	0.12095762
25	0.11754635
26	
27	0.10104228
28	0.09049050
29	0.07964717
30	0.06910420
31	0.05918206
32	0.05010353
33	0.04199370
34	0.03487994
35	0.02869193
36	0.02326165
37	0.01846799
38	0.01423672
39	
40	0.00739889
41	0.00487835
42	0.00299531
43	0.00171613
44	0.00095713
45	0.00058459
46	0.00041477
47	0.00031853
48	0.00022143
49	
50	0.0000000
51	0.0000000
52	0.0000000
53	0.0000000
54	0.0000000

By default, the minimum and the maximum ages (here, 10 and 54) in the output correspond to the minimum and the maximum ages of the first (10-14) and the last (50-54) age intervals in the input data.

4.1.2. QOSplitPar.R()

This function splits the aggregated age- and parity-specific fertility data (either rates or births counts) into single years of age using a quadratic optimization procedure. In cases in which the population exposures by single year of age are not available, the function can only return the ASFRs.

Usage: QOSplitPar<-function(CY,Fx,Pop5,Pop1=NULL, L, AgeInt, Rates=TRUE)

The arguments are as follows:

CY- the country-year string (e.g., "AUT1984");

Fx – the data frame containing the aggregated birth counts to be split;

Pop5 – the vector of the population exposures (aggregated): length(Pop5)=length(Fx);

Pop1 – the vector of the population exposures by single year of age: length(Pop1)=length(AgeOutput) (Note: By default, the Pop1=NULL – data are not available.);

L – the vector containing the lower limits of the age intervals (e.g., L=10 for the age interval 10-14)

AgeInt - the vector containing the length of the age intervals; and

Rates – in response to the question of whether rates or birth counts should be returned, Rates=FALSE - birth counts should be returned, and otherwise rates should be returned (Note: By default, Rates=TRUE because Pop1=NULL).

Example:

QOSplitPar(CY="FIN2004", Fx=d5[,5:10], Pop5=d5\$Exposure, Pop1=NULL, L=d5\$Age, AgeInt=d5\$AgeInt, Rates=TRUE)

QOSplitPar.R returns the data frame in the following format:

Age	ASFR0	ASFR1	ASFR2	ASFR3	ASFR4	ASFR5P	CountryYear	Diff
	0.00000000	0.00000000	0.00000000	0.00000000	0.00000000		FIN2004	0.00000
			0.00000000				FIN2004	0.00000
14	0.00012292	0.00012292	0.00000000	0.00000000	0.00000000	0.00000000	FIN2004	0.00000
			0.00000000					-0.00003
			0.00000000					-0.00003
			0.00009336				FIN2004	0.00000
			0.00109648				FIN2004	0.00003
			0.00336921				FIN2004	0.00003
			0.00688077					-0.00002
			0.01128111					-0.00003
22	0.05722504	0.03690366	0.01625608	0.00341569	0.00062999	0.00002558	FIN2004	-0.00001
23	0.07097391	0.04298532	0.02150905	0.00508500	0.00117509	0.00019845	FIN2004	0.00002
24	0.08488892	0.04863515	0.02677927	0.00698116	0.00188521	0.00057731	FIN2004	0.00003
25	0.09814433	0.05331850	0.03184188	0.00909216	0.00271028	0.00115783	FIN2004	0.00002
26	0.10975555	0.05635845	0.03650950	0.01143118	0.00357262	0.00187426	FIN2004	0.00001
27	0.11893407	0.05734987	0.04057096	0.01394311	0.00441011	0.00266440	FIN2004	0.00000
28	0.12508750	0.05615939	0.04379126	0.01650449	0.00517618	0.00346962	FIN2004	-0.00001
29	0.12781954	0.05292544	0.04591159	0.01892354	0.00583987	0.00423481	FIN2004	-0.00002
30	0.12692999	0.04805820	0.04664930	0.02094015	0.00638577	0.00490845	FIN2004	-0.00001
31	0.12241476	0.04223964	0.04569795	0.02222590	0.00681403	0.00544255	FIN2004	-0.00001
32	0.11451635	0.03603456	0.04297412	0.02258389	0.00711714	0.00580521	FIN2004	0.00000
33	0.10372386	0.02989062	0.03861743	0.02194878	0.00727990	0.00598062	FIN2004	0.00001
34	0.09077299	0.02413831	0.03299052	0.02038678	0.00727942	0.00596907	FIN2004	0.00001
35	0.07664605	0.01899098	0.02667907	0.01809562	0.00708515	0.00578692	FIN2004	0.00001
			0.02049179				FIN2004	0.00001
37	0.04947378	0.01084595	0.01500616	0.01258647	0.00599630	0.00503835	FIN2004	0.00000
38	0.03796894	0.00789047	0.01056844	0.00985745	0.00512737	0.00452997	FIN2004	0.00000
39	0.02836902	0.00562444	0.00729367	0.00737723	0.00411599	0.00396707	FIN2004	-0.00001
			0.00506566					-0.00001
			0.00353701					-0.00001
			0.00244416				FIN2004	0.00000
			0.00160745				FIN2004	0.00001
			0.00093109				FIN2004	0.00002
			0.00040313				FIN2004	0.00003
			0.00009552				FIN2004	0.00003
			0.0000000					-0.00002
			0.0000000					-0.00003
			0.0000000				FIN2004	0.00000
			0.0000000				FIN2004	0.00000
			0.0000000				FIN2004	0.00000
			0.0000000				FIN2004	0.00000
			0.0000000				FIN2004	0.00000
54	0.00000000	0.00000000	0.0000000	0.00000000	0.00000000	0.00000000	FIN2004	0.00000

Columns ASFR0, ASFR1, ASFR2, ASFR3, ASFR4, and ASFR5P refer to the total (0) age-specific fertility rate, and to the ASFRs by parities 1,2,3,4, and 5+, respectively. Variable *Diff* indicates a small difference between ASFR0 and the sum of ASFR1–ASFR5P.

The output containing birth counts has the same structure.

QOSplitPar(CY="FIN2004",Fx=d5[,5:10],Pop5=d5\$Exposure,Pop1=d1\$Exposure, L=d5\$Age,AgeInt=d5\$AgeInt,Rates=FALSE)

400	в0	В1	в2	в3	в4	P50	CountryYear	Diff
Age 12	0.00	0.00	0.00	0.00	0.00	0.00	FIN2004	0.00
13	0.00	0.00	0.00	0.00	0.00	0.00	FIN2004	0.00
14	3.97	3.97	0.00	0.00	0.00	0.00	FIN2004	0.00
15	53.04	54.06	0.00	0.00	0.00	0.00	FIN2004	
16	143.29	144.28	0.00	0.00	0.00	0.00	FIN2004	
17	269.70	266.89	2.81	0.00	0.00	0.00	FIN2004	0.00
18	464.36	429.24	34.00	0.00	0.12	0.00	FIN2004	1.00
19	736.14	618.63	108.34	7.23	0.91	0.00	FIN2004	1.03
	1081.99	821.65	227.38	30.52	2.94	0.00	FIN2004	
		1022.77		66.75	8.99	0.00	FIN2004	
		1196.60		110.75		0.83		
		1362.19		161.14		6.29		0.67
		1548.60		222.29		18.38	FIN2004	0.98
			1023.80		87.14	37.23	FIN2004	0.76
			1172.11			60.17	FIN2004	0.30
			1326.29			87.10	FIN2004	
			1425.09				FIN2004	-0.44
			1446.33				FIN2004	-0.50
			1375.63				FIN2004	-0.35
31	3445.39	1188.85	1286.18	625.55	191.78	153.18	FIN2004	-0.15
32	3408.00	1072.39	1278.91	672.10	211.81	172.76	FIN2004	0.03
33	3202.95	923.01	1192.49	677.77	224.80	184.68	FIN2004	0.20
	2869.14		1042.76				FIN2004	0.28
35	2565.04		892.84				FIN2004	0.28
	2232.32	518.90					FIN2004	0.18
	1781.12	390.47				181.39		0.02
	1375.56	285.86			185.76		FIN2004	
	1047.48	207.67			151.98		FIN2004	
40	774.03	147.61				126.25		
41	548.34	101.19		132.16		103.97		
42	369.16	65.73	91.37	82.32	48.55	81.31	FIN2004	
43	233.77	39.14	59.83	47.57	26.95	60.03	FIN2004	0.25
44	136.06	19.69	34.80	25.99	13.72	41.19	FIN2004	0.67
45	66.62	6.32	14.78	13.54	6.68	24.34	FIN2004	0.96
46	26.60	0.42	3.56	6.79	2.99		FIN2004	0.98
47	6.59	0.00	0.00	2.92	0.93	3.60		
48	0.00	0.00	0.00	0.94	0.07	0.00		
49	0.00	0.00	0.00	0.16	0.00	0.00		
50	0.61	0.00	0.00	0.00	0.14	0.46		0.01
51	1.19	0.00	0.00	0.00	0.29	0.89		0.01
52	1.30	0.00	0.00	0.00	0.33	0.98		
53	0.87	0.00	0.00	0.00	0.23	0.65		
54	0.00	0.00	0.00	0.00	0.00	0.00	FIN2004	0.00

4.2. Format of the input data

The input data appear in the form of .csv (comma separated values) files, with the first line containing the variable names (header). Five data files are used in the examples:

- · 'HFD abridged data 7 groups.csv',
- · 'HFD abridged data 9 groups.csv',
- · 'HFD abridged data 7 groups BO.csv',
- · 'HFD abridged data 9 groups BO.csv', and
- 'BirthsExposASFR1x1_BO.csv'.

Files (1) and (2) refer to the input data with seven and nine age groups, respectively. These files have to be used by *QOSplit.R.*

Fragment of 'HFD abridged data 7 groups.csv':

```
head(dta2,10)
```

	Age	CountryYear	Code	Year	Births	Exposure	ASFR	AgeGrLabel	AgeInt
	1 5	AUT1951	AUT	1951	7350	215582.54	0.0340936701089	15-19	5
	20	AUT1951	AUT	1951	27775	242049.79	0.1147491183529	20-24	5
	25	AUT1951	AUT	1951	32974	291065.68	0.1132871453618	25-29	5
	30	AUT1951	AUT	1951	17917	217312.90	0.0824479356725	30-34	5
	35	AUT1951	AUT	1951	11638	257812.81	0.0451412790544	35-39	5
	40	AUT1951	AUT	1951	4702	293646.64	0.0160124427101	40-44	5
	45	AUT1951	AUT	1951	393	554677.92	0.0007085192791	45-49	5
	15	AUT1952	AUT	1952	7184	208671.92	0.0344272482853	15-19	5
	20	AUT1952	AUT	1952	27770	234527.53	0.1184082738602	20-24	5
1	25	AUT1952	AUT	1952	32427	280115.63	0.1157629083390	25-29	5

Fragment of 'HFD abridged data 9 groups.csv':

head(dta1,10)

	Age	CountryYear	Code	Year	Births	Exposure	ASFR	AgeGrLabel	AgeInt
	<u>1</u> 0	AUT1951	AUT	1951	15.00	140071.63	0.00010708806630	10-14	5
	15	AUT1951	AUT	1951	7350.00	215582.54	0.03409367010891	15-19	5
	20	AUT1951	AUT	1951	27775.00	242049.79	0.11474911835288	20-24	5
	25	AUT1951	AUT	1951	32974.00	291065.68	0.11328714536183	25-29	5
	30	AUT1951	AUT	1951	17917.00	217312.90	0.08244793567248	30-34	5
	35	AUT1951	AUT	1951	11638.00	257812.81	0.04514127905437	35-39	5
	40	AUT1951	AUT	1951	4702.00	293646.64	0.01601244271005	40-44	5
	45	AUT1951	AUT	1951	379.59	287396.02	0.00132079073329	45-49	5
	50	AUT1951	AUT	1951	13.41	267281.90	0.00005017174751	50-54	5
ł,	10	AUT1952	AUT	1952	18.00	163855.71	0.00010985274788	10-14	5

Note: For testing purposes, these data files include more variables than are actually needed. Only four variables are used by function *QOSplit.R*: *Age, CountryYear, ASFR, and AgeInt*.

Files (3) and (4) refer to the parity-specific fertility data aggregated into seven and nine age groups. These files have to be used by *QOSplitPar.R*

Fragment of 'HFD abridged data 7 groups BO.csv':

Age CountryYear Code YearB0B1B2B3B4B5pExposureASFR015AUT1984AUT 1984833274228525620313799.640.026551974374520AUT1984AUT 198434072205741122319662703932330.000.105378405962925AUT1984AUT 198428383105381172846001165352284304.520.099833094458030AUT1984AUT 1984127352668435333411524849249448.190.051052685529635AUT1984AUT 1984464063511391234826806243700.600.019039756159840AUT1984AUT 198499294158228184328276387.810.003589159739045AUT1984AUT 1984670814738412547.140.000162405682915AUT1985AUT 1985748667427053900306332.550.0244374944811	head(d	lat5,10)										
20AUT 1984AUT 1984340722057411223196627039323330.000.105378405962925AUT 1984AUT 198428383105381172846001165352284304.520.099833094458030AUT1984AUT 1984127352668435333411524849249448.190.051052685529635AUT1984AUT 1984464063511391234826806243700.600.019039756159840AUT1984AUT 198499294158228184328276387.810.003589159739045AUT1984AUT 1984670814738412547.140.000162405682915AUT1985AUT 1985748667427053900306332.550.0244374944811	Age C	ountryYear	Code	Year	в0	В1	в2	в3	в4	в5р	Exposure	ASFR0
25AUT1984AUT 198428383105381172846001165352284304.520.099833094458030AUT1984AUT 1984127352668435333411524849249448.190.051052685529635AUT1984AUT 1984464063511391234826806243700.600.019039756159840AUT1984AUT 198499294158228184328276387.810.003589159739045AUT1984AUT 1984670814738412547.140.000162405682915AUT1985AUT 1985748667427053900306332.550.0244374944811	Ĩ5	AUT1984	AUT	1984	8332	7422	852	56	2	Ö	313799.64	0.0265519743745
30AUT1984AUT 1984127352668435333411524849249448.190.051052685529635AUT1984AUT 1984464063511391234826806243700.600.019039756159840AUT1984AUT 198499294158228184328276387.810.003589159739045AUT1984AUT 1984670814738412547.140.000162405682915AUT1985AUT 1985748667427053900306332.550.0244374944811	20	AUT1984	AUT	1984	34072	20574	11223	1966	270	39	323330.00	0.1053784059629
35AUT1984AUT 1984464063511391234826806243700.600.019039756159840AUT1984AUT 198499294158228184328276387.810.003589159739045AUT1984AUT 1984670814738412547.140.000162405682915AUT1985AUT 1985748667427053900306332.550.0244374944811	25	AUT1984	AUT	1984	28383	10538	11728	4600	1165	352	284304.52	0.0998330944580
40AUT1984AUT 198499294158228184328276387.810.003589159739045AUT1984AUT 1984670814738412547.140.000162405682915AUT1985AUT 1985748667427053900306332.550.0244374944811	30	AUT1984	AUT	1984	12735	2668	4353	3341	1524	849	249448.19	0.0510526855296
45 AUT1984 AUT 1984 67 0 8 14 7 38 412547.14 0.0001624056829 15 AUT1985 AUT 1985 7486 6742 705 39 0 0 306332.55 0.0244374944811	35	AUT1984	AUT	1984	4640	635	1139	1234	826	806	243700.60	0.0190397561598
15 AUT1985 AUT 1985 7486 6742 705 39 0 0 306332.55 0.0244374944811	40	AUT1984	AUT	1984	992	94	158	228	184	328	276387.81	0.0035891597390
	45	AUT1984	AUT	1984	67	0	8	14	7	38	412547.14	0.0001624056829
	15	AUT1985	AUT	1985	7486	6742	705	39	0	0	306332.55	0.0244374944811
20 AUT1985 AUT 1985 32629 19738 10775 1819 247 50 327347.34 0.0996769975281	20	AUT1985	AUT	1985	32629	19738	10775	1819	247	50	327347.34	0.0996769975281
25 AUT1985 AUT 1985 28774 10811 11963 4514 1149 337 293083.48 0.0981768061441	25	AUT1985	AUT	1985	28774	10811	11963	4514	1149	337	293083.48	0.0981768061441
ASFR1 ASFR2 ASFR3 ASFR4 ASFR5P		ASFR1			ASFR	2		ASFR3	3		ASFR4	ASFR5P
0.0236520347824 0.00271510827737 0.00017845782105 0.000006373493609 0.00000000000000	0.023	6520347824	0.002	27151	0827737	7 0.000	017845	782105	5 0.00	00006	5373493609	0.00000000000000
0.0636315838308 0.03471066712028 0.00608047505644 0.000835060155259 0.00012061980020	0.063	6315838308	0.034	47106	6712028	3 0.000	508047	505644	0.00	00835	5060155259	0.00012061980020
0.0370658897720 0.04125154253615 0.01617983421438 0.004097718882556 0.00123810905293	0.037	0658897720	0.041	12515	425361	5 0.010	5179834	421438	3 0.00	04097	718882556	0.00123810905293
0.0106956077733 0.01745051748020 0.01339356280757 0.006109485099892 0.00340351236864	0.010	6956077733	0.017	74505	1748020	0.01	339356	280757	0.00	06109	9485099892	0.00340351236864
0.0026056562848 0.00467376772975 0.00506359032354 0.003389404868105 0.00330733695362	0.002	6056562848	0.004	46737	677297	5 0.00	506359	032354	0.00	03389	9404868105	0.00330733695362
0.0003401018301 0.00057166052294 0.00082492784324 0.000665731241910 0.00118673830080	0.000	3401018301	0.00	05716	6052294	4 0.00	082492	784324	0.00	00665	5731241910	0.00118673830080
0.000000000000 0.00001939172333 0.00003393551583 0.000016967757915 0.00009211068582	0.000	00000000000	0.00	00193	9172333	3 0.00	003393	551583	0.00	00016	5967757915	0.00009211068582
0.0220087613935 0.00230142046609 0.00012731262153 0.0000000000000 0.0000000000000	0.022	0087613935	0.002	23014	2046609	9 0.00	012731	262153	0.00	00000	000000000000000	0.0000000000000
0.0602968088881 0.03291610678737 0.00555678870035 0.000754550197353 0.00015274295493	0.060	2968088881	0.032	29161	0678737	0.00	555678	870035	5 0.00	00754	\$550197353	0.00015274295493
0.0368871012450 0.04081772196782 0.01540175515863 0.003920384731340 0.00114984304131	0.036	8871012450	0.040	08177	2196782	2 0.01	540175	515863	0.00	03920	0384731340	0.00114984304131
AgeInt AgeGrLabel	AgeIn	t AgeGrLab	el									
5 15-19	_	5 15-1	19									
5 20-24			24									
5 25-29		5 25-2	29									
5 30-34		5 30-3	34									
5 35-39		5 35-3	39									
5 40-44			44									
5 45-49		5 45-4	49									
5 15-19		5 15-1	19									
5 20-24		5 20-2	24									
5 25-29	1	5 25-2	29									
I												

Fragment of 'HFD abridged data 9 groups BO.csv':

hos	d (dat	t5,10)										
		untryYear	Code	Vear	вО	В1	в2	в3	B/	в5р	Exposure	ASFR0
_	.2	AUT1984		1984		13		0	0			0.00008021297656
	5	AUT1984		1984		7422		56	2	_		0.02655197437448
	20	AUT1984					11223		270			0.10537840596295
	25	AUT1984										0.09983309445801
	30	AUT1984			12735	2668						0.05105268552961
	5	AUT1984		1984		635		1234				0.01903975615981
	0	AUT1984		1984		94						0.00358915973899
	5	AUT1984		1984		0			7			0.00032859085186
	0	AUT1984		1984		ŏ	-		-			0.000000000000000
	2	AUT1985		1985	_	21	_	ŏ	ŏ	_		0.00013666855812
-	-	ASER		1.000	ASE			ASE	-		ASER4	
0.	0000			00000		_	000000			0000		0.00000000000000
												9 0.0000000000000
												0.0001206198002
												5 0.0012381090529
0.	0106	956077733	0 0.0	17450	517480	20 0.0	133935	62807	57 0.	0061	09485099892	2 0.0034035123686
0.	0026	056562848	0 0.0	04673	767729	75 0.0	050635	90323	54 0.	00338	8940486810	5 0.0033073369536
0.	00034	401018301:	1 0.0	00571	660522	94 0.0	008249	27843	24 0.	0006	55731241910	0.0011867383008
0.	0000	000000000	0.0	00039	234728	58 0.0	000686	60775	02 0.	0000	34330387508	3 0.0001863649608
0.	0000	000000000	0.0	00000	000000	00 0.0	000000	00000	00 0.	0000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000
0.	0001	366685581	2 0.0	00000	000000	00 0.0	000000	00000	00 0.	0000	000000000000000000000000000000000000000	0.0000000000000000000000000000000000000
Ag	jeInt	AgeGrLab	el									
	3	12-1	14									
	5	15-1	19									
	5	20-2	24									
	5	25-	29									
	5	30-	34									
	5	35-	39									
	5	40-4	44									
	5	45-4										
	5	50-										
1	3	12-1	14									
I.												

Note: For testing purposes, these data files include more variables than are actually needed. The following variables are used by function *QOSplitPar.R*: *Age, CountryYear, B0, B1, B2, B3, B4, B5p, Exposure, and AgeInt.*

Both of the *BO* files were generated from the original birth counts and the population exposures by single year of age ('BirthsExposASFR1x1_BO.csv'). This file provides the information on the population exposures (argument *Pop1* of the function *QOSplitPar.R*). Additionally, this file contains the original fertility estimates we used to assess the model fit.

Fragment of 'BirthsExposASFR1x1_BO.csv':

head(dat1,10))											
CountryYear	Code	Year	Age	Agegroup	в0	B1	в2	в3	в4	в5р	Exposure	ASFR0
AUT1984	AUT	1984	12	10-14	0	0	0	0	0	0	51383.50	0.000000000
AUT1984	AUT	1984	13	10-14	3	3	0	0	0	0	53807.85	0.000055800
AUT1984	AUT	1984	14	10-14	10	10	0		0	0	56877.19	0.000175817
AUT1984	AUT	1984	15	15-19	96	94	2	0	0	0	60561.21	0.001585173
AUT1984	AUT	1984	16	15-19	405	389	15			0	61930.79	0.006539558
AUT1984	AUT	1984	17	15-19	1243	1183	58	2	0	0	62726.76	0.019816104
AUT1984	AUT	1984	18	15-19	2417	2217	190	9	1	0	63175.63	0.038258423
AUT1984	AUT	1984	19	15-19	4171	3539	587		1		65405.25	0.063771639
AUT1984	AUT	1984	20	20-24	5688	4422	1161	99	6	0	66104.74	0.086045267
AUT1984	AUT	1984	21	20-24	6581	4415	1908	222	35	1	66588.15	0.098831399
ASFR1		ASER	2	ASFR:	3	ASE	FR4	ASFR	₹5P			
0.00000000	0.000	00000	0 0.	00000000	0.00	00000	000 0.	0000	000			
0.000055800	0.000	00000	0 0.	00000000	0.00	00000	000 0.	0000	000			
0.000175817	0.000	00000	0 0.	00000000	0.00	00000	000 0.	0000	000			
0.001552149	0.000	003300	0 0.	00000000	0.00	00000	000 0.	0000	000			
0.006281205	0.000	024220	6 0.	000016100	0.00	00000	000 0.	0000	000			
0.018859574	0.000	092464	5 0.	000031900	0.00	00000	000 0.	0000	000			
0.035092646	0.003	300748	39 0.	000142460	0.00	000158	300 0.	0000	000			
0.054108806	0.00	397481	5 0.	000672729	0.00	000153	300 0.	0000	000			
0.066893842	0.017	756303	37 0.	001497623	3 0.00	000908	300 0.	0000	000			
0.066303088	0.028	365374	7 0.	003333927	0.00	005256	519 0.	0000	015			
•												

5. Examples

The R scripts *ExamplesQOSplit.R* and *ExamplesQOSplitPar.R* included in the .zip file contain various examples in which the functions *QOSplit* and *QOSplitPar* are used. As the scripts are accompanied by detailed comments, even inexperienced R users should find the QO method fairly simple to use.

References

Grigoriev P, Jdanov DA (2015). Splitting abridged fertility data using different interpolation methods: is there the optimal solution? Presentation at the 80th PAA Meeting, San Diego, USA. http://www.humanfertility.org/Docs/paa/Grigoriev_Jdanov.pdf

Grigoriev P, Michalski AI, Gorlishchev VP, Jdanov DA, Shkolnikov VM (2018). New methods for estimating detailed fertility schedules from abridged data. MPIDR Working Paper WP-2018-001. Rostock. Available at http://www.demogr.mpg.de/papers/working/wp-2018-001.pdf

Grigorieva O, Jasilioniene A, Jdanov DA, Grigoriev P, Sobotka T, Zeman K, Shkolnikov VM (2015). Methods Protocol for the Human Fertility Collection. Available at: <u>http://www.fertilitydata.org/docs/methods.pdf</u>

Jasilioniene A, Jdanov DA, Sobotka T, Andreev EM, Zeman K, Nash EJ, and Shkolnikov VM. (with contributions of Goldstein J, Philipov D, and Rodriguez G) (2012). Methods Protocol for the Human Fertility Database. Available at: <u>http://www.humanfertility.org</u>

Liu Y, Gerland P, Spoorenberg T, Kantorova V, Andreev K (2011). Graduation methods to derive age-specific fertility rates from abridged data: a comparison of 10 methods using HFD data. Presentation at the First Human Fertility Database Symposium, Max Planck Institute for Demographic Research, Rostock, Nov 2011. http://www.humanfertility.org/Docs/Symposium/Liu-Gerland%20et%20al.pdf

McNeil DR, Trussell TJ, Turner JC (1977). Spline interpolation of demographic data. *Demography* 14(2): 245-252.

Schmertmann C (2012). Calibrated spline estimation of detailed fertility schedules from abridged data. MPIDR Working Paper WP-2012-022. Rostock.

Smith L, Hyndman R, Wood S (2004). Spline interpolation for demographic variables: the monotonicity problem. *Journal of Population Research* 21 (1), pp. 95-97.

Williams HP. (2013). Model Building in Mathematical Programming. Chichester: John Wiley & Sons.