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Maciej J. Dańko∗

Max Planck Institute for Demographic Research

Abstract

Self-reported health, happiness, attitudes, and other statuses or perceptions are often the
subject of biases that may come from different sources. For example, the evaluation of an indi-
vidual’s own health may depend on previous medical diagnoses, functional status, and symptoms
and signs of illness; as on well as life-style behaviors, including contextual social, gender, age-
specific, linguistic and other cultural factors (Jylha 2009; Oksuzyan et al. 2019). The hopit
package offers versatile functions for analyzing different self-reported ordinal variables, and for
helping to estimate their biases. Specifically, the package provides the function to fit a gen-
eralized ordered probit model that regresses original self-reported status measures on two sets
of independent variables (King et al. 2004; Jürges 2007; Oksuzyan et al. 2019). The first
set of variables (e.g., health variables) included in the regression are individual statuses and
characteristics that are directly related to the self-reported variable. In the case of self-reported
health, these could be chronic conditions, mobility level, difficulties with daily activities, per-
formance on grip strength tests, anthropometric measures, and lifestyle behaviors. The second
set of independent variables (threshold variables) is used to model cut-points between adjacent
self-reported response categories as functions of individual characteristics, such as gender, age
group, education, and country (Oksuzyan et al. 2019). The model helps to adjust for specific
socio-demographic and cultural differences in how the continuous latent health is projected onto
the ordinal self-rated measure. The fitted model can be used to calculate an individual predicted
latent status variable, a latent index, and standardized latent coefficients; and makes it possible
to reclassify a categorical status measure that has been adjusted for inter-individual differences
in reporting behavior.

∗Corresponding author: danko@demogr.mpg.de, maciej.danko@gmail.com
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1 Introduction

hopit is an open source software library written in the R (R-Core-Team 2018) and C++ (Bates and
Eddelbuettel 2013; Eddelbuettel and François 2011) programming languages. The hopit package
provides versatile methods for fitting and analyzing ordered response data to adjust for heterogene-
ity in reporting behavior.

The ordered response data classify a measure of interest into ordered categories provided as a
response option for a question asked during a survey. If, for example, the dependent variable is
a happiness rating, then a respondent typically answers a question such as: “Taking all things
together, would you say you are … ?”; and then selects from response options such as: “very
happy”, “pretty happy”, “not too happy”, and “very unhappy” (Liao, Fu, and Yi 2005). Similarly,
if interviewees are asked to evaluate their general health (e.g., “Would you say your health is … ?”),
they may choose among several categories, such as “very good”, “good”, “fair”, “bad”, and “very
bad” (King et al. 2004; Jürges 2007; Rebelo and Pereira 2014; Oksuzyan et al. 2019). In political
science, respondents may be asked for their opinions about recent legislation (e.g., “Rate your
feelings about the proposed legislation.”), and instructed to choose among categories like “strongly
oppose”, “mildly oppose”, “indifferent”, “mildly support”, and “strongly support” (Greene and
Hensher 2010). It is easy to imagine other multi-level ordinal variables that might be used in a
survey, and to which the methodology described below could be applied.

In practice, it is assumed that when responding to a survey question about their general happi-
ness, health, feelings, attitudes, or other status, participants are assessing the true value of this
unobserved continuous variable, and project it onto the discrete scale provided. The thresholds
that different individuals use to categorize their true status by selecting a specific response option
may be affected by the reference group chosen, their earlier life experiences, and cross-cultural
differences in the use of such scales. Thus, the responses of individuals may vary depending on
their gender, age, cultural background, education, and personality traits; among other factors.

From the perspective of reporting behavior modeling, among the main tasks researchers face are
computing this continuous estimate of the underlying, latent measure for each individual based on
several specific characteristics of the responses considered, and accounting for variations in report-
ing across socio-demographic and cultural groups. More specifically, to build a latent, underlying
measure, a generalized hierarchical ordered threshold model is fitted that regresses the reported
status/attitude/feeling on two sets of independent variables (Boes and Winkelmann 2006; Greene
et al. 2014). When the dependent reported ordered variable is self-rated health status, then the
first set of variables - i.e., health variables - assess specific aspects of individuals’ health, such as
measures of chronic conditions, mobility, difficulties with a range of daily activities, grip strength,
anthropometric characteristics, and lifestyle behaviors. Using the second set of independent vari-
ables (threshold variables), the model also adjusts for differences across socio-demographic and
cultural groups. It allows the threshold between adjacent response categories to differ among indi-
viduals of different ages, genders, educational levels, and cultural backgrounds. (King et al. 2004;
Jürges 2007; Oksuzyan et al. 2019; but see Rebelo and Pereira 2014).

Once the model is fitted, its estimates (latent measure and threshold coefficients) can be used
to calculate the differences in reporting behavior among groups of people with different contextual
characteristics through the calculation of differences between the expected and the reported ordinal
response measures (Jürges 2007; Oksuzyan et al. 2019).

2



2 Methods

Table 1. Glossary.

Term Symbol Definition
Exemplary case specific

synonyms
Categorical response 𝑦 Dependent variable

obtained during the
survey

Self-rated health,
self-rated happiness

Latent measure ℎ Modeled continuous latent
measure of the

investigated response
variable

Latent health, latent
happiness

Latent index 𝐻 Standardized latent
measure

Health index, happiness
index

Latent variables — Variables used to model
the latent measure

Health variables,
happiness variables

Latent terms 𝑋 Terms of the design
matrix used to model the

latent measure
Latent coefficients 𝛽 Coefficients corresponding

to each latent term
Standardized coefficient 𝐷 Standardized value of a

coefficient
Disability weights

Thresholds 𝛼 Thresholds used to group
the latent measure

Cut-points

Threshold variables — Variables used to model
the thresholds

Socio-demographic,
cultural, contextual

variables
Threshold terms 𝑌 Terms of the design

matrix used to model the
latent measure

Threshold coefficients 𝛾, 𝜆 Coefficients corresponding
to each threshold term

2.1 Generalized (hierarchical) ordered threshold model

Ordered threshold models are used to fit ordered categorical dependent variables. The generalized
ordered threshold models (Ierza 1985; Boes and Winkelmann 2006; Greene et al. 2014) are an
extension of ordered threshold models (McKelvey and Zavoina 1975). Whereas in the latter models
the thresholds are constant, in the generalized models the thresholds are allowed to be dependent
on covariates. Greene and Hensher (2010) and Greene et al. (2014) pointed out that for a model to
make sense, the thresholds must also be ordered. This observation motivated Greene and coauthors
to call these models HOPIT, which stands for hierarchical ordered probit models.

In the self-rated health example, the response variable is self-rated health, and the latent measure
ℎ𝑖 can depend on different health conditions and diseases (health variables). These variables are
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modeled with the parallel regression assumption. According to this assumption, the coefficients
that describe the relationship between the lowest response category and all of the higher response
categories are the same as the coefficients that describe the relationship between another (e.g.,
adjacent) lowest response category and the remaining higher response categories. In the consid-
ered case, ℎ𝑖 is modeled as a linear function of the design matrix of health variables 𝑋 and its
corresponding coefficients 𝛽:

ℎ𝑖 =
𝐾
∑
𝑘=1

𝛽𝑘𝑋𝑖,𝑘 = 𝑋′𝛽 (1)

where index 𝑖 ∈ 1...𝑁 is a number of cases (e.g., respondents), 𝑋 is in the form of a design matrix,
and 𝐾 is the number of columns in 𝑋. As described above, the categorization (response mechanism)
of the latent measure ℎ𝑖 is modeled in terms of thresholds 𝛼𝑖,𝑗, while assuming that the lower order
thresholds are never greater than the higher order thresholds (hierarchical assumption):

⎧{{{{
⎨{{{{⎩

𝑦𝑖 = 1 ⇔ 𝛼𝑖,0 ≤ ℎ𝑖 < 𝛼𝑖,1
𝑦𝑖 = 2 ⇔ 𝛼𝑖,1 ≤ ℎ𝑖 < 𝛼𝑖,2
⋯
𝑦𝑖 = 𝑗 ⇔ 𝛼𝑖,𝑗−1 ≤ ℎ𝑖 < 𝛼𝑖,𝑗
⋯
𝑦𝑖 = 𝐽 ⇔ 𝛼𝑖,𝐽−1 ≤ ℎ𝑖 < 𝛼𝑖,𝐽

(2)

The thresholds (cut-points, 𝛼) are modeled using threshold variables coded as design matrix 𝑌 ,
their coefficients 𝛾, and intercepts 𝜆. These variables model the contextual characteristics of the
respondent (e.g., country, gender, and age). As the threshold variables are modeled without ap-
plying the parallel regression assumption, each threshold is modeled by a variable separately (Boes
and Winkelmann 2006; Greene et al. 2014).

Different parametrizations of thresholds exist (Greene et al. 2014; Rebelo and Pereira 2014; Jürges
2007). In the package, the parametrization of King et al. (2004) and Jürges (2007) is used, which
assumes that:

𝛼𝑖, 𝑗 =

⎧{{
⎨{{⎩

−∞ 𝑓𝑜𝑟 𝑗 = 0
𝜆1 +∑𝑀

𝑚=1 𝛾1,𝑚𝑌𝑖,𝑚 𝑓𝑜𝑟 𝑗 = 1
𝛼𝑖, 𝑗−1 + 𝑒𝑥𝑝(𝜆𝑗 +∑𝑀

𝑚=1 𝛾𝑗,𝑚𝑌𝑖,𝑚) 𝑓𝑜𝑟 𝐽 − 1 ≥ 𝑗 ≥ 2
∞ 𝑓𝑜𝑟 𝑗 = 𝐽

(3)

The condition 𝑦𝑖 = 𝑗 ⇔ 𝛼𝑗−1,𝑖 ≤ ℎ𝑖 < 𝛼𝑗,𝑖 can be easily expressed in terms of the probability,
which leads to:

𝑃(𝑦𝑖 = 𝑗) = 𝑃(𝛼𝑗−1,𝑖 ≤ ℎ𝑖 < 𝛼𝑗,𝑖), (4)

hence
𝑃(𝑦𝑖 = 𝑗) = Φ(𝛼𝑖, 𝑗 − ℎ𝑖) − Φ(𝛼𝑖, 𝑗−1 − ℎ𝑖), (5)

where Φ is a distribution function (cdf, cumulative density function). For example, for probit
regression it is standard normal cdf Φ(𝑥) = 1

2 + 1
2 ∗ 𝑒𝑟𝑓( 𝑥√

2), whereas for logit regression it takes
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the form Φ(𝑥) = 1
1+𝑒−𝑥 . In reporting behavior analyses the probit model is typically chosen. This

model simply assumes that ℎ𝑖 is affected by a random noise 𝜖𝑖 having standard normal distribution
𝜖𝑖 ∼ 𝒩(0, 1).
Using all of the definitions presented above, the log likelihood function can be constructed as:

ln𝐿 =
𝑁
∑
𝑖=1

𝐽
∑
𝑗=1

𝑧𝑖, 𝑗 ln [Φ(𝛼𝑖, 𝑗 − ℎ𝑖) − Φ(𝛼𝑖, 𝑗−1 − ℎ𝑖)], (6)

where 𝑧𝑖,𝑗 is an indicator function defined as:

𝑧𝑖, 𝑗 = {0 𝑓𝑜𝑟 𝑦𝑖 = 𝑗
1 𝑓𝑜𝑟 𝑦𝑖 ≠ 𝑗 (7)

2.2 Analysis of reporting heterogeneity

The model estimates are used to determine reporting behavior; i.e., how the continuous latent
measure is projected onto the categorical response. In practice, this is done by comparing actual
categorical ordered responses with theoretical responses that are adjusted for heterogeneity in
reporting behaviors, and are, therefore, more comparable across individuals.

One of the first steps of the analysis is the standardization of the latent measure to obtain the
latent index 𝐻𝑖.

𝐻𝑖 = 1 −
ℎ𝑖 − min

𝑖
ℎ𝑖

max
𝑖

ℎ𝑖 − min
𝑖

ℎ𝑖
(8)

In the self-rated health example, 𝐻𝑖 is a proxy for the true underlying health of an individual, and
varies from 0, representing the (model-based) worst health state in the sample, to 1, representing
the (model-based) best health state in the sample.

The predicted latent measure ℎ𝑖 obtained from the model is also used to standardize the latent
variable coefficients. In the self-rated health example, the standardized coefficients are called dis-
ability weights 𝐷𝑘 (Jürges 2007; Oksuzyan et al. 2019) and are calculated for each health variable
to provide information about the impact of a specific health measure on the latent index 𝐻𝑖. The
disability weight for a health variable is equal to the ratio of the corresponding health coefficient and
the difference between the lowest and the highest values of predicted latent health. In other words,
the disability weight reduces 𝐻𝑖 by some given amount or percentage (i.e., the 𝐻𝑖 of each individual
is reduced by the same amount if the person had a heart attack or other heart problems)(Jürges
2007; Oksuzyan et al. 2019).

𝐷𝑘 = 𝛽𝑘
max

𝑖
ℎ𝑖 − min

𝑖
ℎ𝑖

(9)

While the latent index 𝐻𝑖 is intended to reflect the underlying health, happiness, or other status
across individuals, the standardized coefficients 𝐷𝑘 (e.g., disability weights in the case of self-rated
health) are computed for an average individual in the study population. The relationship between
𝐻𝑖 and 𝐷𝑘 follows the equation:
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𝐻𝑖 = 𝐶 −
𝐾
∑
𝑘=1

𝐷𝑘𝑋𝑖,𝑘, where 𝐶 =
max

𝑖
ℎ𝑖

max
𝑖

ℎ𝑖 − min
𝑖

ℎ𝑖
(10)

Reporting behavior analysis is based on the reclassification of individuals into new response cate-
gories. There are two methods of reclassification: (1) the Jürges (2007) percentile method (see also
Rebelo and Pereira 2014; Oksuzyan et al. 2019) and (2) the direct reclassification method based
on model-estimated thresholds.

In the first method, the classification is based on the calculated latent index 𝐻𝑖, which is adjusted
for inter-individual differences in reporting behavior. This method is based on the original distri-
bution of the categorical response variable (see also 4.2). First, for each category 𝑗, an empirical
distribution function is constructed:

̂𝐹 (𝑗) = 1
𝑁

𝑁
∑
𝑖=1

1𝑦𝑖
≤ 𝑗 (11)

where 1 is an indicator function taking 1 if the condition is true, or is 0 otherwise. The calculated
cumulative frequencies of the latent index 𝐻𝑖 are used as percentiles (cut-points) so that each
individual 𝑖 can be reclassified into a new response category.

In the second method the reclassification is based on eq. (2), so that each individual has her/his
own model-derived cut-points.

3 Fitting the model to the exemplary health survey data using
the hopit package

3.1 Installing and loading the package

To install and load the package simply run the following code:

install.packages("hopit")

library(hopit)

3.2 Exemplary data

In the examples presented below I use healthsurvey, which is a completely artificial data set that
is simulated using the distributions of some major health and socio-demographic characteristics.
The distributions and the data structure are roughly based on the WAVE1 SHARE database (DOIs:
10.6103/SHARE.w1.600); see Börsch-Supan et al. (2013) for technical details about the SHARE
database. The structure of healthsurvey for the first six individuals (IDs) is presented below.

print(t(healthsurvey[1:6,-1]), quote=FALSE, na.print='NA', right=TRUE)

6



1 2 3 4 5 6
health Very good Good Good Good Excellent Good
diabetes no no yes no no no
obese no no no no no no
IADL_problems no no no no no no
hypertension no yes no no no yes
high_cholesterol no yes no no no yes
respiratory_problems no no no no no yes
heart_attack_or_stroke no yes no no no no
poor_mobility no no no no no yes
very_poor_grip no no no no no no
depression no no no yes no no
other_diseases yes yes no no no yes
sex man man man man woman man
ageclass 80+ 70-79 50-59 60-69 80+ 80+
education prim- prim- prim- sec+ prim- prim-
country Y Y X Y Z Y
csw 2407.48 1198.12 885.26 772.04 1304.24 917.16
psu YB YB XC YA ZB YD

The first variable on the list (health) is the categorical self-reported health status. This variable is
followed by 11 determinants of health, which include information on the presence of chronic diseases
and other health conditions. The sex, ageclass, education, and country variables describe the
contextual characteristics of individuals. The last group of variables (csw, psu, and ssu) describes
the survey design.

3.3 Fitting a basic model

The generalized ordered probit models can be fitted using the hopit function. The function takes
two kinds of formulas: (1) latent.formula, which models the impact of the latent variables on
categorical health; and (2) thresh.formula, which models the thresholds.
One of the crucial steps needed for the proper interpretation of the model results is determining
the order of the dependent variable, which must be a factor.

levels(healthsurvey$health)

[1] "Excellent" "Very good" "Good" "Fair" "Poor"

To fit the model, the hopit function is called. Because the order is decreasing (from the best to
the worst health state), the hopit parameter decreasing.levels is set to TRUE.

model1 <- hopit(latent.formula = health ~ hypertension +
high_cholesterol +
heart_attack_or_stroke +
poor_mobility +
very_poor_grip +
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depression +
respiratory_problems +
IADL_problems +
obese +
diabetes +
other_diseases,

thresh.formula = ~ sex + ageclass,
decreasing.levels = TRUE,
data = healthsurvey)

The summary of the fitted model can be created using a standard generic function.

summary(model1)

Formula (latent variables):
health ~ hypertension + high_cholesterol + heart_attack_or_stroke +

poor_mobility + very_poor_grip + depression + respiratory_problems +
IADL_problems + obese + diabetes + other_diseases

Formula (threshold variables): ~sex + ageclass
Link: probit
Number of cases: 10000
Response levels: Excellent, Very good, Good, Fair, Poor

Robust SE were used (sandwich estimator of the variance-covariance matrix).

Estimate Std. Error z value Pr(>|z|)
hypertensionyes 0.19232 0.02478 7.76 8.4e-15 ***
high_cholesterolyes 0.09780 0.02918 3.35 0.00080 ***
heart_attack_or_strokeyes 0.34401 0.03183 10.81 < 2e-16 ***
poor_mobilityyes 0.72832 0.03564 20.44 < 2e-16 ***
very_poor_gripyes 0.49720 0.12299 4.04 5.3e-05 ***
depressionyes 0.25323 0.02390 10.59 < 2e-16 ***
respiratory_problemsyes 0.36777 0.03337 11.02 < 2e-16 ***
IADL_problemsyes 0.61579 0.03637 16.93 < 2e-16 ***
obeseyes 0.18991 0.03295 5.76 8.3e-09 ***
diabetesyes 0.33726 0.04010 8.41 < 2e-16 ***
other_diseasesyes 0.33533 0.02370 14.15 < 2e-16 ***
(L).1|2 -0.09248 0.03194 -2.90 0.00379 **
(L).2|3 -0.26826 0.03236 -8.29 < 2e-16 ***
(L).3|4 0.07514 0.02905 2.59 0.00968 **
(L).4|5 -0.20346 0.05222 -3.90 9.8e-05 ***
(G).sexwoman.1|2 0.02373 0.03015 0.79 0.43111
(G).sexwoman.2|3 0.01366 0.03460 0.39 0.69304
(G).sexwoman.3|4 0.03661 0.02869 1.28 0.20193
(G).sexwoman.4|5 0.11847 0.05039 2.35 0.01872 *
(G).ageclass60-69.1|2 -0.01835 0.03383 -0.54 0.58763
(G).ageclass60-69.2|3 0.05336 0.04068 1.31 0.18963
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(G).ageclass60-69.3|4 0.06003 0.03616 1.66 0.09693 .
(G).ageclass60-69.4|5 0.16842 0.06492 2.59 0.00949 **
(G).ageclass70-79.1|2 -0.32157 0.04391 -7.32 2.4e-13 ***
(G).ageclass70-79.2|3 0.17131 0.04774 3.59 0.00033 ***
(G).ageclass70-79.3|4 0.19360 0.03777 5.13 3.0e-07 ***
(G).ageclass70-79.4|5 0.23235 0.06653 3.49 0.00048 ***
(G).ageclass80+.1|2 -0.33134 0.07274 -4.56 5.2e-06 ***
(G).ageclass80+.2|3 0.14976 0.07590 1.97 0.04848 *
(G).ageclass80+.3|4 0.17851 0.05025 3.55 0.00038 ***
(G).ageclass80+.4|5 0.22379 0.07674 2.92 0.00354 **
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Sigma: 1
Log-likelihood: -12945.98
Deviance: 25891.96
AIC: 25953.96

model1 contains 11 dichotomous health variables and two threshold variables. The fitted coefficient
includes 𝛽 (latent.params, first 11 coefficients in the summary), 𝜆 (thresh.lambda, threshold
intercepts, “(L)” prefix in the summary), and 𝛾 (thresh.gamma, parameters related to threshold
covariates, “(G)” prefix in the summary). The model coefficients can be accessed directly by the
generic coef(model1, aslist = TRUE) function, which has an option to group parameters into a
list (aslist = TRUE); or simply by calling model1$coef.ls.

3.4 Model selection and latent-threshold interactions

model1 can be further extended by adding the country of origin to the threshold formula to control
for cultural and linguistic differences.

model2 <- hopit(latent.formula = health ~ hypertension +
high_cholesterol +
heart_attack_or_stroke +
poor_mobility +
very_poor_grip +
depression +
respiratory_problems +
IADL_problems +
obese +
diabetes +
other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
data = healthsurvey)

The fit of the two models can be compared using the AIC function:
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AIC(model2, model1)

model2 model1
25154.19 25953.96

or using the Likelihood Ratio Test (LRT), because the models are nested:

print(anova(model2, model1), short = TRUE)

Likelihood ratio test:
Chi^2 df Pr(>Chi^2)

815.78 8 <2e-16 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

In the code above, the option short = TRUE is used to generate a shortened summary of the test.
The results of LRT show that model2 is more parsimonious than model1.
While both latent.formula and thresh.formula allow the user to specify the interactions within
the formulas, the interactions between latent and threshold variables can also be modeled. De-
pending on how an interaction is interpreted, it can be added to either the latent or the threshold
formula:

model3 <- hopit(latent.formula = health ~ hypertension +
high_cholesterol +
heart_attack_or_stroke +
poor_mobility +
very_poor_grip +
depression +
respiratory_problems +
IADL_problems +
obese +
diabetes +
other_diseases +
sex : respiratory_problems,

thresh.formula = ~ sex +
ageclass +
country +
sex : depression,

decreasing.levels = TRUE,
data = healthsurvey)

There are two additional interactions sex : respiratory_problems and sex : depression in
model3. The first interaction has an impact on the latent health variable; i.e., respiratory_problems
has a gender-specific effect on this variable. In other words, respiratory problems (if present)
affect the health of men and women differently. The second interaction modulates the effect of
the gender variable on the thresholds if depression is present; i.e., women with depression have
different thresholds than women without depression.
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3.5 Including a survey design

The hopit function also has an option to include a survey design using the survey package (Lumley
2004, 2019). The example below fits a model using a simple two-level cluster sampling design.

design <- svydesign(ids = ~ country + psu, weights = healthsurvey$csw,
data = healthsurvey)

model2s <- hopit(latent.formula = health ~ hypertension +
high_cholesterol +
heart_attack_or_stroke +
poor_mobility +
very_poor_grip +
depression +
respiratory_problems +
IADL_problems +
obese +
diabetes +
other_diseases,

thresh.formula = ~ sex + ageclass + country,
decreasing.levels = TRUE,
design = design,
data = healthsurvey)

Generally, ignoring the survey design can lead to biased results. However, in the example presented
here, the design is of little importance. This becomes clear when comparing the coefficients of the
latent variable for the two models:

round(cbind('No survey design' = model2$coef.ls$latent.par,
'Has survey design' = model2s$coef.ls$latent.par),4)

No survey design Has survey design
hypertensionyes 0.1848 0.1841
high_cholesterolyes 0.0897 0.0830
heart_attack_or_strokeyes 0.3466 0.3504
poor_mobilityyes 0.7035 0.7019
very_poor_gripyes 0.5142 0.4982
depressionyes 0.2500 0.2527
respiratory_problemsyes 0.3786 0.3756
IADL_problemsyes 0.5926 0.5661
obeseyes 0.1904 0.1912
diabetesyes 0.3284 0.3348
other_diseasesyes 0.3294 0.3294

3.6 Checking the convergence of the fitted model

The accuracy of the model fit can be assessed using the profile function, which calculates and
plots the profile of the log likelihood function around fitted coefficient values.
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profile(model2)
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Figure 1: Log likelihood profile of the fitted model

It then becomes clear that the model converged to the maximum log likelihood (Fig. 1).
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4 Analysis of reporting heterogeneity for the health data example

4.1 Disability weights and latent index

The fitted model can be further used to analyze reporting heterogeneity. Let us ignore latent-
threshold interactions for the sake of simplicity, and consider model2 for further analyses. The
latent health variables can be directly accessed using model2$coef.ls$latent.params. We can,
however, standardize these coefficients using Jürges’ approach (Jürges 2007) in order to obtain so
called disability weights. The disability weights are the same for each individual in the modeled
population. The standardization is done using the standardizeCoef function.

txtfun <- function(x) gsub('_',' ',substr(x, 1, nchar(x)-3))
sc <- standardizeCoef(model1, namesf = txtfun)

The namesf argument is a function or a character vector that is used to rename the coefficients.
The exact values of disability weights are stored in sc:

print(sc)

Std. coef
hypertension 0.0536
high cholesterol 0.0272
heart attack or stroke 0.0958
poor mobility 0.2028
very poor grip 0.1385
depression 0.0705
respiratory problems 0.1024
IADL problems 0.1715
obese 0.0529
diabetes 0.0939
other diseases 0.0934

and can be summarized and plotted by the standard generic functions.

print(summary(sc), show.coef.names=FALSE)

Standardized coeficient Pr(>|z|)
hypertension 0.0536 0.0000 ***
high cholesterol 0.0272 0.0008 ***
heart attack or stroke 0.0958 0.0000 ***
poor mobility 0.2028 0.0000 ***
very poor grip 0.1385 0.0001 ***
depression 0.0705 0.0000 ***
respiratory problems 0.1024 0.0000 ***
IADL problems 0.1715 0.0000 ***
obese 0.0529 0.0000 ***
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diabetes 0.0939 0.0000 ***
other diseases 0.0934 0.0000 ***
---
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

plot(sc)
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Figure 2: Disability weights

The standardized health status for each individual is called the health index (or the latent index).
It is simply calculated using the latentIndex function.

hi <- latentIndex(model2)

The generic functions print, summary, and plot also apply here.

summary(hi)

(0,0.05] (0.05,0.1] (0.1,0.15] (0.15,0.2] (0.2,0.25] (0.25,0.3] (0.3,0.35]
0 8 8 22 50 71 84

(0.35,0.4] (0.4,0.45] (0.45,0.5] (0.5,0.55] (0.55,0.6] (0.6,0.65] (0.65,0.7]
162 215 303 310 221 413 407

(0.7,0.75] (0.75,0.8] (0.8,0.85] (0.85,0.9] (0.9,0.95] (0.95,1]
779 715 1410 1140 2567 1113
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plot(hi, response = "data", ylab = 'Health index', col='deepskyblue3')
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Figure 3: Health index vs. self-reported health

The boxplot above (Fig. 3) shows the reported health status versus the health index. It is also
possible to plot the expected categorical health status on the Y axis, calculated according to eq.
(2), by setting response = "fitted".
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4.2 Cut-points and adjusted health levels

The main aim of the reporting heterogeneity analyses is to determine the cut-points used to calculate
the adjusted health status for each individual. The calculation of cut-points is realized using the
getCutPoints function.

z <- getCutPoints(model = model2)
plot(z)

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00 P
oo

r

Fa
ir

G
oo

d

V
er

y 
go

od

E
xc

el
le

nt
Health index

C
ou

nt
s

Figure 4: Health index cut-points for adjusted health levels

Returned cut-points:

round(z$cutpoints, 4)

4.41% 17.68% 52.34% 77.63%
0.4147 0.6366 0.8527 0.9067

The function also returns adjusted health levels for each individual that are calculated according
the Jürges (2007) method:

rev(table(z$adjusted.levels))

Excellent Very good Good Fair Poor
1897 2806 3499 1339 459
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It is, however, also possible to obtain adjusted health levels for each individual using estimated
model thresholds:

table(model2$Ey_i)

Excellent Very good Good Fair Poor
637 4472 4011 818 62

The analysis of health level frequencies is performed using the getLevels function:

hl <- getLevels(model = model2, formula = ~ sex + ageclass,
sep = ' ', weight.original = FALSE)

plot(hl)
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Figure 5: Adjusted and original health levels

The formula describes the grouping variables. It is set to the threshold formula by default, but it
can be changed. Here, the country variable is omitted, which means that the age-gender-specific
frequencies are calculated for the combined countries. The results are plotted using the generic
plot function (Fig. 5). If the model includes a survey design and weight.original = TRUE then
the original frequencies are adjusted with the survey weights. The differences between the original
and the adjusted frequencies (%) can be calculated directly using the getLevels output:
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round(100*(hl$original - hl$adjusted),2)

Poor Fair Good Very good Excellent
man 50-59 3.28 4.77 -1.03 -9.54 2.53
woman 50-59 0.68 -1.21 -2.96 2.71 0.78
man 60-69 1.66 0.83 -3.00 -9.00 9.51
woman 60-69 0.06 -0.75 -1.18 -2.12 3.99
man 70-79 -0.19 -0.96 2.78 -2.59 0.96
woman 70-79 -3.75 -4.03 3.47 1.97 2.34
man 80+ -1.87 -6.07 5.84 -5.14 7.24
woman 80+ -13.55 1.64 4.31 7.39 0.21

4.3 Bootstrapping the confidence intervals

The package offers the boot_hopit and percentile_CI functions for calculating the confidence
intervals for any measure derived from the model using parametric bootstrap methods. In each of
the bootstrap repetitions, a new set of model coefficients is drawn from the multivariate normal
distribution, taking the originally estimated model coefficients as a mean, and using the model
estimated variance-covariance matrix. The drawn coefficients are then used to calculate the measure
of interest via a user-defined function. In the example below, I calculate the confidence intervals of
the difference between the original and the adjusted frequencies of bad health. The bad health is
determined by the presence of “Poor” or “Fair” self-rated health categories.
First, a function to be bootstrapped is defined, which is then used to calculate the mentioned
difference:

diff_BadHealth <- function(model) {
hl <- getLevels(model = model, formula = ~ sex + ageclass, sep = ' ')
hl$original[,1] + hl$original[,2] - hl$adjusted[,1]- hl$adjusted[,2]

}

The function is used in the boot_hopit function, which also needs to specify a fitted model and
the data used to fit model2

B <- boot_hopit(model = model2, func = diff_BadHealth, nboot = 100)

The confidence intervals are calculated using the percentile_CI

est.CI <- percentile_CI(B)

The same function is used to calculate the difference based on the estimates of the model.

est.org <- diff_BadHealth(model = model2)

The code below plots the differences and the bootstrapped confidence intervals
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pmar <- par('mar'); par(mar = c(9.5, 6, pmar[3:4]))
m <- max(abs(est.CI))
pos <- barplot(est.org, names.arg = names(est.org), las = 3,
ylab = 'Original - adjusted differences \nin the prevalences of bad health (%)',
ylim = c(-m, m), density = 20, angle = c(45, -45), col = c('blue', 'orange'))

for (k in seq_along(pos))
lines(c(pos[k,1],pos[k,1]), est.CI[,k], lwd = 2, col = 2)

abline(h = 0); box(); par(mar = pmar)
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Figure 6: Difference between the original and the adjusted prevalences of bad health. The confidence
intervals were calculated using the percentile bootstrap method.

The results (Fig. 6) show that men tend to over-report bad health at ages (50,60] and (50,70],
whereas women tend to over-report bad health at ages [70,80); and that both sexes tend to under-
report bad health at ages (80, 120]. See also Oksuzyan et al. (2019) for similar analyses that were
performed using real SHARE data.
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