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1. Introduction

Low fertility is a pervasive phenomenon. All European countries currently experience
below-replacement fertility levels, and the proportion of the world’s population living in a
low fertility context continues to increase. The purpose of this contribution is to rethink
demographic methods for the analysis of fertility from the perspective of recent research on
low fertility and to assess data requirements for such analysis. In doing so, we will map
many of the areas where the contributions of the late Gerard Calot were particularly
relevant.

In a low fertility context, there are some demographic tools that become central. This is
the case with tempo effects, parity specific analysis, and the introduction of fertility life
table measures such as period parity-progression rates. While many of these methods have
been available at least since the 1950s1, what is new is the possibility of combining these
different elements of analysis. In particular, the logic and method of tempo adjustment can
be extended to any fertility measure that is calculated from tempo adjusted age- and parity-
specific fertility rates. This idea, while simple, has not yet caught on in research. It is still
common to find some confusion about what particular methods can or cannot do. Fertility
life table measures can eliminate compositional effects, that is, the role of the period
distribution of women by parity, but they do not provide a measure that is free from tempo
effects2. Fortunately, the influence of parity distribution can be separated not only
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1 Hobcraft (1996) argues that the timely use of such measures would have allowed
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conceptually but also analytically from tempo distortions caused by changes in the timing of
fertility, and we can gain more insight into fertility trends from such a separation.

The concept of tempo effects is therefore the first crucial point that is addressed in this
article. The logic and mathematics of tempo effects are connected with the idea of
demographic translation introduced by Ryder (1964, 1980) and developed further by Foster
(1990), Calot (1993) and Keilman (1994, 2001)3. Despite the importance of tempo effects in
these analyses, their goals are different. Demographic translation is concerned with the
transformation from cohort to period measures of fertility and vice versa. In contrast, tempo
adjustment does not concern itself with any cohort-period transformation. It was introduced
by Bongaarts and Feeney (1998) (henceforth B-F) in order to obtain “the total fertility rate
that would have been observed in a given year had there been no change in the timing of
births during that year” (B-F: 275)4. It is therefore based on a counterfactual: assuming no
postponement, what would the TFR be? This requires an analysis of the effects of
postponement and the development of measures that compensate for those effects (Ortega
and Kohler, 2002). While the procedure is used by B-F only for the adjustment of the TFR,
the formula works at the age-specific level (B-F, 277). It can therefore be employed to
adjust each age-specific fertility rate independently. In this sense, the B-F formula is a
special case of tempo adjustment where the adjustment ratio is the same for all the rates.

The difference of approach between tempo adjustment and the translation approach is
quite subtle, since the latter also provides a decomposition of period fertility in a tempo and
a quantum index (Ryder, 1980; Hobcraft, 1996). However, the meaning attached to tempo
and quantum is different. Within the translation approach, the idea is to relate the moments
of the distribution of period fertility (period TFR, mean age, variance, asymmetry, …) to
those of cohort fertility. When only the first two moments are considered (cohort TFR and
cohort mean age), the component associated with the cohort TFR is the quantum component,
whereas the one associated with the mean age (more precisely, with the derivative of the
mean age) is the tempo component. This quantum component cannot be interpreted as “the
total fertility rate that would have been observed in a given year had there been no change in
the timing of births during that year”, as in the B-F approach; that is not its purpose. The
timing index for a particular year is calculated as the sum across cohorts of the proportions
of completed cohort fertility that took place during the year in question5. This index will be
larger (or smaller) than one if fertility is being anticipated (or postponed). As a result, if any
event takes place after the year of reference (for instance, a war), and some cohorts see their
fertility permanently reduced, this procedure would lead to an ex-post interpretation of this
as an anticipation of fertility. This is because the proportion of fertility cumulated before the
war was larger for those cohorts than could have been expected at the time. Ward and Butz
(1978) and Butz and Ward (1979) saw this problem and referred to it as an Ex Post Timing
Index. They proposed an Ex Ante Timing Index which is similar to the timing index
                                                          

Toulemon, 1993b; van Imhoff and Keilman, 2000; Bongaarts and Feeney, 2000; van
Imhoff, 2001). The same can be said of measures based on duration specific fertility rates
which control duration but are also affected by tempo changes. It is possible to extend the
logic of tempo adjustment to that context as does Brass (1990), defining postponement for
duration-specific rates.
3 With further contributions by Pressat (1969), Leguina (1976), Deville (1977), Chavez
(1979), Feichtinger (1979) and Keyfitz (1985). Personal perspectives and reviews of method
are found in Hobcraft et al. (1982), Keilman and van Imhoff (1995), van Imhoff (2001).
Hobcraft et al. refer to demographic translation as cohort-inversion.
4 Lack of understanding of the difference between demographic translation and tempo
adjustment is what lies behind the recent debate on the  B-F procedure (B-F; Keilman and
van Imhoff, 2000; Kim and Schoen, 2000; Bongaarts and Feeney, 2000). As Keilman and
van Imhoff point out, the reason might be the discussion by B-F of the similarity between
cohort fertility and a moving average of tempo adjusted TFRs.
5 As a matter of fact Ryder (1980) estimates the tempo index in two alternative ways that
lead to similar results. One is based in the translation formulas using the change in the mean
age, while the other uses the sum of proportions of completed cohort fertility.
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produced by Ryder but which only uses past information in the cohort completion process.
They use economic models to forecast future fertility with the caveat that these models also
require forecasting of the economic series themselves. This concept of tempo effects
remains different from that of B-F in any case, since the idea is still connected to a
translation concept irrelevant for the B-F counterfactual.

The practical relevance of tempo adjusted fertility measures stems from the extensive
changes in childbearing age which occur in low fertility countries. In most countries,
childbearing is being postponed (Council of Europe, 2000; Frejka and Calot, 2001b; Kohler,
Billari and Ortega, 2001). This is not a new phenomenon. Hooker (1898) and Yule (1906a)
studied the consequences of postponement at the turn of the century, and they developed the
main ideas. They proposed the use of the mean age to measure postponement6 and showed
that it was the speed of change of postponement that affected the marriage or birth rates.
This analysis was connected with empirical evidence on the effects of abnormal
circumstances, such as the Prussian war, on marriage and fertility rates. Rates fall below
normal levels during those years, but there is recuperation after the war. Today we know
that this pattern of rebound effects has been characteristic of short-term fluctuations in vital
rates both in historical and in present times (Lee, 1997; Reher and Ortega, 2000). The
effects of postponement and recuperation were again at play during World War II and the
subsequent baby boom. Hajnal (1947) made a deep qualitative analysis of postponement in
this context. He also pointed out that the widespread use of family limitation was making
fertility postponement more relevant. He defined postponement in a general way very
similar to the idea of tempo effects: “It is not even necessary to suppose that at the time the
‘postponement’ takes place […] people have the idea clearly in their minds that they will
later have the children they are ‘postponing’” (p. 151). From Hajnal’s time until today,
tempo effects have played an important role in explaining fertility trends. First, there was a
process of fertility anticipation which was essential for an understanding of the baby-boom
process. This is the motivation for the work of Ryder (1964, 1980), Pressat (1969) and
Deville (1977). Subsequently, there has been a surge of interest in studying fertility
postponement, which is related to the fact that a delay in childbearing has become a
pervasive characteristics of fertility patterns in low and lowest-low fertility countries.

Another crucial concept in the analysis of low fertility is the study of parity-specific
fertility. There is broad agreement on this both with regard to cohort and period fertility
(Lutz, 1989; Ní Bhrolchain, 1992; Rallu and Toulemon, 1993; Keilman, 1993; Hobcraft,
1996): the reasons and contexts for having a first child are generally different from those for
having a second or a third7. Since the proportion of births of higher orders is becoming very
small, these three transitions at least should be studied individually. There is a further reason
to take parity into account in the context of demographic translation or tempo adjustment.
As Hobcraft (1996) and B-F eloquently argue, tempo adjustments should be inferred from
trends in parity-specific mean ages at childbearing. Otherwise a reduction in quantum might
be taken as a tempo effect since the overall mean age generally declines when the proportion
of higher order birth does. One example of this is shown by Lotka and Spiegelman (1940).
Ryder (1980) was aware of this and, even within a quantum-tempo decomposition of
general fertility, he devised an ad-hoc procedure to correct the timing index for the effect of
a quantum change on the mean age at childbearing. Basically his procedure requires an
estimate of the mean age at birth of the first child, and an estimate of the average inter-birth
interval. This may be an interesting approach when no other information is available, but
when it is possible to work with parity-specific births separately this is preferable, no matter

                                                          
6 Their analysis of postponement is basically connected to age at marriage. Since they did
not have data on age at marriage they used the proportion of minors at marriage instead.
They probably did not know that such data was already available in Ogle (1890). Hooker
and Yule entered a very interesting debate about the possible causes of marriage
postponement, Hooker favoring the spread of education and changes in the desired standard
of comfort and Yule economic factors such as price changes (Yule 1906a, 1906b; Hooker,
1906).
7 See, for instance, Namboodiri (1972), Seiver (1978), Louchard and Sagot (1984), de
Cooman et al. (1987) or Heckman and Walker (1990).
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whether we are studying cohort or period fertility. All the recently proposed tempo-
adjustment procedures use parity-specific data. In the context of cohort fertility this is not
always the case. We believe that the attempt should be made of basing any inferences from
postponement, recuperation, etc., on parity-specific analysis.

In what follows, we will use the insights described above both to discuss and rethink
the measurement of fertility with specific relevance to low fertility contexts. This discussion
will be structured as follows: in Section 2 we will present the basic tools for the
measurement of parity specific fertility: the childbearing rates. These can be classified as
either incidence rates or intensities depending on whether exposure is measured explicitly
(intensities), or only along the age dimension, irrespective of parity (incidence rates). This
distinction proves particularly relevant in the context of tempo adjustment, since in Section
3 we will show that inference about tempo should be based on intensities rather than on
incidence rates. Otherwise compositional effects will bias the measurement. An example is
given of how to adjust childbearing intensities based on the K-O framework. These can also
be converted to adjusted incidence rates.

Tempo adjusted childbearing rates can then be used to describe fertility behavior.
Fertility life table measures are particularly common in such descriptions. In Section 4 we
will discuss fertility tables for a parity-specific analysis and the different summary measures
available.

Both period and cohort perspectives are relevant in specific contexts. Section 5 will
concentrate on the description of period fertility. It is possible to summarize the effects of
tempo change and the composition of the population by age and parity on the number of
births as a set of ratios. This way of describing fertility trends is particularly valuable, since
the different demographic influences on fertility can be separated. In searching for an
explanation of fertility trends, one should concentrate on explaining the appropriate
summary fertility measures that are free from tempo and compositional effects. Section 6
will examine the cohort approach to fertility analysis. There are many topics in demography
that require a cohort dimension. Its strength is the ability to track dynamically groups of
individuals. This is essential for some demographic topics such as family dynamics, kinship,
Easterlin effects, etc. For cohorts with completed fertility, the cohort perspective is not
problematical. It simply requires the use of fertility rates along the diagonals of the lexis
diagram. However, problems arise in cohort completion. We will show that the analysis of
tempo and compositional effects is particularly useful in this context, as it allows the
decomposition of hypothesis about future fertility in two dimensions: quantum and tempo.
The adjusted childbearing intensities can be used as a basis for the future evolution of
quantum. The future evolution of tempo can be projected based on the mean ages at
childbearing leading to different postponement scenarios. For each of these it is possible to
complete fertility for the cohorts which presently are of childbearing age, in a way which is
both demographically coherent and takes into account all the information available.

2. The Basic Components:  Childbearing Rates

We will start our analysis with the most basic components of common fertility
measures: the childbearing rates. Depending on the sophistication of the analysis, rates can
be made specific for a number of dimensions, the most common being the mother’s age or
the mother’s birth cohort, parity, marital status, and duration from marriage or last birth8.
These measures are obtained by dividing the number of births occurring to mothers in a
specific category by a measure of exposure, that is, person-years lived by a certain group of
women. Depending on the exposure measure in the denominator, we distinguish fertility
intensities and incidence rates. If we divide by a measure of exposure in a specific category,
we speak of occurrence-exposure rates or, following Hoem and Hoem (1989), childbearing
intensities. These rates are also referred to as rates of the first kind or simply rates (Calot,

                                                          
8 Other possibilities include the father’s characteristics, education level, race or ethnicity,
place of residence, etc. (see Lutz, 1989).
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2002). When the denominator is a measure of exposure of all women in the age category,
we call them incidence rates following Finnäs (1980) and Borgan and Ramlau-Hansen
(1985). Lotka and Spiegelman (1940) and van Imhoff (2001) use the term frequencies for
these rates. They are also called rates of the second kind, reduced events, and, again, just
rates. There is a straight relation between them. If we call mC(a) and fC(a) the childbearing
intensity and incidence rate for the women of class C and age a, E(a) and EC(a) exposure to
all women of age a, and to those in class C, and B(a) and BC(a) births to all women age a,
and to women in class C, we have the following relationship:
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That is: in order to transform intensities into incidence rates we simply have to multiply the
former by the proportion of exposure contributed by women of class C. As we have argued,
we are especially interested in the analysis of fertility by birth order. In this particular case,
the class C refers to births of a given order i, and exposure is limited to those women who
can potentially have a birth of order i, that is, women of parity i−1.

There are two kinds of considerations which determine the choice between rates and
intensities: some connected to their intrinsic properties, some to measurement issues. We
will start with the former9.

Intensities are generally advocated on theoretical grounds because, when they include
all the relevant dimensions of fertility, they can reflect the instantaneous probability that a
woman in that specific category gives birth (Hoem, 1976). However, this is only guaranteed
when the subgroups of women are homogeneous with respect to their fertility behavior. If a
group is not homogenous, the fertility intensity is a weighted average of the intensities for
the different women where the weights are proportional to the respective intensities.

A second and important intrinsic advantage of intensities in the context of parity-
specific analysis is their independence with respect to earlier childbearing behavior. Since
past births are precisely the events that lead to transitions between parities, past fertility
levels determine the proportion of exposure by women of parity j−1, which according to [1]
is the conversion factor from intensities to incidence rates. This means that trends in fertility
incidence rates result not only from changes in fertility but also from changes in the
population composition by parity (Whelpton, 1946). In this sense, the interpretation of
trends in fertility intensities is easier since it is free from these compositional effects. This
property is particularly important in the estimation of tempo effects as discussed extensively
in Section 3.

On the other hand, incidence rates have the advantage of their additivity: the age-
specific fertility rate is the sum of the incidence rates for the different classes. This is not the
case with intensities, since the sum of intensities for different parities does not make sense.
One would need to convert them to incidence rates, using [1] or a life table distribution and
add them up. This additive property also extends to the calculation of the TFR as we will
discuss in Section 4.

When both intensities and incidence rates are available, one can choose between them
according to the purpose at hand. The problem is that intensities require more data: class-
specific exposure is required and this is not always readily available. This measurement
issue very often explains why fertility incidence rates are used. Of the two factors needed in
the calculation, births and exposure, births are the most widely available.

Vital statistics often provide a decomposition of births according to age and a number
of characteristics including birth order or education. A connected choice is what kind of rate
to calculate within the Lexis diagram: age-period, age-cohort, or cohort-period. The most

                                                          
9 See also Wunsch (2001), Vallin and Caselli (2001), Van Imhoff (2001), Toulemon (2001)
for discussions of these issues.
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common combinations in fertility studies are age-period and cohort-period. Not all countries
provide the triple age-cohort-period classification (the Lexis diagram triangles) in their vital
statistics, so this is not always a matter of choice. Where available, cohort-period
parallelograms may be preferable since a unique cohort can be followed making them more
apt for projection purposes10. The cross-classification of births is less of a problem when the
micro data regarding births is available. This is becoming more common. It allows the
researcher to cross-classify births as required. The only limitation is that the number of
subclasses grows exponentially with the number of dimensions, which is the so-called
“dimensionality curse”.

Regarding exposure, E(a) is not generally known but it can be estimated. The most
common estimates are mid-year populations or a population half-count (Wunsch, 2001b).
These data are generally available from the intercensal population reconstructions made by
statistical agencies. Using cross-classified births and aggregate exposure, fertility incidence
rates can be calculated for many populations11. The calculation of fertility intensities
requires the additional knowledge of exposure specific to the different subgroups. This is
usually problematic since vital statistics generally do not provide all the necessary data. In
particular, death and migration statistics are not generally cross-tabulated according to the
same criteria as births, in particular parity. In order to reconstruct the population it is usually
assumed that mortality and migration are independent from parity12. It is then possible to
reconstruct the flows since, besides migration and mortality, the inflows into the parity j and
age a category are the women of age a−1 in the previous year who were of parity j and the
women who had a birth of order j during the period. The outflows are the women of age a
that had a birth of order j+1 (Calot, 2002). This can be more reliable when combined with
census information in the reconstruction of the intercensal population13. The reconstruction
of population is only the first step in the estimation of exposure. Exposure is usually
measured again through the mid-year population or the population half-count. In general, as
we can see, the reconstruction of exposure for subclasses is more problematic from the
perspective of data quality.

While traditional measurement is based on vital statistics and population reconstruction,
there are other possibilities. The ideal system may be registration as it is carried out in the
Scandinavian countries. This covers the entire population, making it possible to estimate
both births and exposure accurately according to the desired characteristics. A good
alternative is the use of very large retrospective surveys, say over 100.000 women14. Smaller
surveys such as the FFS are not useful in this respect since the sample size is too small to
estimate parity- and age-specific rates. Based on this micro data, it is possible to estimate
directly either the intensities or the incidence rates, although it is generally the intensities or
the probabilities that are obtained. The advantage of using individual data is that it allows

                                                          
10 On these issues and how to convert between the different rates see Calot (1984a). Note
also the possibility of using fertility probabilities instead of intensities. Here the
denominator would be the population at the beginning of the period.
11 A common limitation is that in some countries only birth-order within marriage is
known.  This limits the parity-specific analyses that can be done (Keilman, 1993).
12 See Hoem (1970), Finnäs (1980) and Borgan and Ramlau-Hansen (1985) for joint
statistical modeling of fertility, migration and mortality and conversion of incidence rates or
incidence rates to intensities.
13 In this context it is important that censuses keep asking about children-ever-born. In
some countries this question has been withdrawn on the assumption that fertility surveys are
sufficient (INE, 2001). They are not, since they do not have enough sample size to provide
reliable estimates of the very small proportions of women in some age and parity categories.
A connected problem with intercensal reconstruction is that the results tend to be different
depending on whether backward or forward reconstruction is used. This is connected with
violations of the independence assumption.
14 Examples of such surveys are the INSEE Enquête Famille in France (Rallu and
Toulemon, 1993b), the Encuesta Sociodemográfica in Spain (Requena 1997), China’s one
per thousand fertility survey (Feeney and Yu, 1987) or Russia’s 5% micro census (Scherbov
and van Vianen, 2001).
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the researcher to choose the relevant dimensions with sample size being the only limitation.
An example of this is the estimation of age, parity and duration-specific rates as in Rallu and
Toulemon (1993a), where the number of categories grows to several thousand. In some of
these categories, exposure is very limited, leading to rates with large variance. The
alternative to the calculation of separate rates for each group is the use of a hazard
regression model where the intensity is modeled as a function of a vector of characteristics
(Hobcraft and Casterline, 1983; Hoem and Hoem, 1989; Lutz, 1989; Andersson, 1999,
2000). This eliminates the degrees of freedom problem at the cost of introducing a model
that assumes some kind of additive effects of the covariates.

3. Tempo Effects on Incidence rates and Intensities

Fertility trends are the result of childbearing at the individual level. Here, two
dimensions are relevant: how many children are given birth to, and at what age. At the
aggregate level these two dimensions are intertwined: when there are shifts in the age at
which childbearing takes place, the date at which childbirth occurs shifts as well. This
means that the number of births taking place in a given period when there are age shifts in
the fertility schedule is different from the number of births that would have occurred in the
absence of an age shift. This is the basic idea behind tempo effects. Tempo effects are
defined as the proportion by which fertility changes in the presence of age shifts. We are
interested in tempo effects because, on the basis of aggregate data, they allow us to separate
the two dimensions that at the individual level are evidently different: how many and when.

The history of tempo effects has been relatively short: Bongaarts and Feeney introduced
the concept in 1998. They estimated these effects from the change in the mean ages at
childbearing for different parities in successive years. They proposed the use of Ryder’s
translation formula for a linear case, which applies a factor 1/(1−r) to the period TFR. In
B-F reinterpretation, r is the pace at which the period parity-specific mean age at
childbearing is shifted15. While a useful approach, and a useful formula as a first
approximation, some of its problems have led to reformulations.

A first problem lies in the assumption that age shifts are equal for all ages. This means
that the B-F formula is valid only for parallel shifts in the fertility schedule. This is not
generally the case. While the practical consequences of deviations from this pattern with
regard to TFR adjustment may not be very important in most cases (Yi and Land, 2000)
there is no guarantee for this. More importantly, when age shifts are not parallel the errors at
different ages are partially cancelled out in the overall TFR, but the procedure is inadequate
for adjusting each of the age-specific fertility rates separately. It is therefore important to
develop adjustment formulas that allow for more general shifts in the fertility schedule.
Kohler and Philipov (2001, henceforth K-P) have done this for a fairly general family of
shifts, and have developed a procedure for adjusting rates in the case of variance changes.
The resulting formula can be seen as a generalization of the B-F procedure, where each one
of the age- and parity-specific fertility incidence rates, fj(a), is adjusted using an age- and
parity-specific tempo effect, rj(a). The adjusted fertility rates are thus given by:

fj’(a) = fj(a) / [1−rj(a)] [2] 

Their article provides the formula linking the tempo effects, rj(a), to the change in the mean
age at childbearing, γ, and the proportional change in the standard deviation, δ.  They also
propose an iterative procedure to estimate the overall adjusted TFR taking into account
variance effects.

A problem common to B-F and K-P is the use of fertility incidence rates for the
estimation of tempo effects. Kohler and Ortega (2001a, henceforth K-O) address this very

                                                          
15 Hobcraft (1996) carried out very similar calculations in applying Ryder’s method to
England.
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issue by using fertility intensities instead of incidence rates. In order to understand their
approach, it is helpful to first consider the different concepts of mean and variance that can
be calculated from fertility incidence rates and intensities. It then becomes possible to see
why inference based on incidence rates is wrong, and this in turn enables us to see how to
estimate tempo effects which are free of compositional biases. The basic idea is to measure
tempo effects only from the fertility behavior for the parity of interest.

What is usually referred to as the mean age at birth and variance for a particular birth-
order is based on the fertility incidence rate schedule. If we are using cohort-period
incidence rates and age attained during the year the expressions for the mean, µF

C, and
variance, VarF

C, are respectively16:
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We have already shown that fertility incidence rates at a given parity are the result of
the combination of present fertility (as measured by intensities) and past fertility (as present
in the parity composition of the population). Because of this, we cannot base our estimate of
changing fertility behavior on the incidence rates. Two examples might clarify the kind of
compositional effects that are present in mean ages calculated from incidence rates. First, let
us consider that in previous years there has been a delay in first births combined with a
reduction in quantum. This is a common scenario in many countries. Let us assume that
from a base year onwards no further changes occur. The result is that since many women
had their first births when the rates were higher and births took place earlier, the proportion
of women at parity zero at older ages is out of equilibrium with relatively few women in that
category. As we move towards the future, even if there is no further change in the birth
intensities, the proportions of older women at parity zero will increase and there will be a
shift in the mean age at birth for parity one and above. This would seem to indicate a tempo
effect where there is none. Take a second example: let us assume that the quantum of first-
birth falls dramatically from one year to the next, while higher parities continue unaltered.
This will lead to fewer young women entering parity one. Over the following years, the
mean age at second birth will increase, but this is not due to a change in behavior. Again this
would be taken within B-F adjustment as a tempo effect in second births. Similar arguments
could be drawn up for the calculation of variances.

A second commonly used mean age (and variance) comes from the equilibrium
distribution of women by parity. We will call this the mean age at birth of the stable
distribution, µS. This may be seen as a special application of the previous formula where the
parity composition of the population instead of the current one is assumed to be the
equilibrium one. Still, the dependence of the equilibrium distribution on the intensities at all
parities is undesirable. Take for instance a postponement of first birth with no change in
quantum. The next year the equilibrium population distribution will have relatively fewer
young women at high parities. This means that the mean age at second and higher order
births in the stationary distribution will increase even if there has been no change in
behavior at those parities. A possible solution would be the use, for the purpose of
estimating tempo effects, of the stationary distribution corresponding to the first year (or the
second), to estimate the mean ages at birth in both years. While this would solve the
problem of a changing parity distribution, it is still not entirely appropriate, since the tempo

                                                          
16 When using age-period or age-cohort incidence rates we have to add 0.5 to the mean age.
When using age at the beginning of the year we have to add 1.
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effects we want to remove are present in the intensities. Therefore the stable distribution
associated with the unadjusted intensities is different from the stable distribution associated
with the tempo adjusted rates. While a possible iterative system could be worked out to
solve this conundrum of jointly adjusting the rates and estimating the mean ages, a simpler
solution is proposed by K-O: to use the mean age at birth calculated from the intensity
schedule. The corresponding formulas are the same as [3] where the incidence rates, fC(a),
are replaced by the intensities, mC(a). We call these expressions the mean age at birth and
the variance of the intensity schedule (µI and VarI). They correspond to the mean age and
variance that would be observed in a population where the distribution of women according
to parity is perfectly uniform. This is obviously not realistic, but it serves the purpose of
estimating the tempo effects. A surprising result of the application of this mean age is that
the usual sequence in mean ages according to birth-order is generally absent: it is possible,
for instance, for the mean age at third birth to be lower than the mean age at second birth.
This indicates that the profile of birth probabilities might be as young for third births as for
second ones. While this choice is natural given the use of fertility intensities, as an
alternative it is possible to use a different fixed distribution to calculate mean ages and
variances.

A second aspect in the estimation of tempo effects is the presence of variance effects.
Again, if the shifts of the fertility schedule are parallel, one could use the shifts in the mean
age as the estimate of tempo effects. When the shifts are not parallel and variance changes
as in the K-P model, the mean age and the variance computed from the observed schedule
are affected by tempo distortions. An iterative procedure is needed to derive the mean age
and variance that would have been observed in the absence of tempo effects. The procedure
is essentially the same as K-P with the exception that K-O apply it to the intensity schedule.
Once tempo and variance changes are estimated, the adjustment formulas are given by:
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Where γj is the overall tempo change (the increase in the mean age of the adjusted intensity

schedule), δj is the increase in the log of the standard deviation, and ja is the mean age of

the adjusted schedule. As we can see, older ages are more strongly adjusted when the
variance is increasing and vice versa. The iterative procedure designed by K-O consists of
using the adjustment formulas [4] based on the observed intensity schedule using a
smoothing procedure to estimate γ and δ from time series of mean ages and standard
deviations. From the adjusted schedules, new time series of γ, δ and a are obtained. The
process continues until convergence is reached.

As an example of the adjustment formulas we can take the particular case of Sweden in
199817. Table 1 shows the observed fertility intensities for births of order 1, 2, 3 and the
incidence rates for births of order 4 and above. The analysis in K-O provides the estimates
for gamma and delta as given in the last rows of the table. The a , also from K-O, are the
mean ages of the adjusted intensity schedule. The application of the adjustment formulas [4]
leads to the particular age- and parity-specific tempo effects in Table 1 from which we can
then obtain the adjusted intensity schedules in the last columns of Table 1. The table also
provides the sums (the cumulated intensity) and the mean ages of the intensity schedules.
Figure 1 plots the schedules. The cumulated intensity corresponds to the quantum index
used by K-O. We see that the adjustment is particularly intense for parity zero and
especially parity one. Variance effects are stronger for parities one and three and above. For
those parities the range of tempo effects is therefore wider. Note that the tempo effects can
be interpreted as the percentage by which each observed intensity rate must be adjusted to
remove tempo distortions.

4. Life Table Measures of Fertility

Life table measures are probably the central tool of demographic analysis. Most of the
commonly used measures in demography such as life expectancy, total fertility rate, parity
progression ratios, net reproduction ratios, can be interpreted as life table measures. Period
life table measures are synthetic measures, since they do not refer to a real cohort but to a
synthetic one that experienced the period rates over the lifetimes (Vallin and Caselli, 2001).
Life table measures thus provide a unifying framework for the study of both period and
cohort demographic indicators. In this section, we will briefly review the different life table
methods available for the study of fertility through parity and age18. We will call these tables
fertility tables.

Like Feeney and Yu (1987), we can distinguish two kinds of fertility tables: additive
and multiplicative. Additive tables are based on age-specific fertility incidence rates. They
were first used by Böckh (1899) in the Berlin Statistical Yearbook19. They are called

                                                          
17 The original data come from Andersson (2001). They have been transformed from
period-cohort form to age-period by means of smoothing splines.
18 There are alternative fertility life tables which use other relevant dimensions such as birth
interval and parity (Feeney, 1983; Feeney and Yu, 1987; Nì Bhrolcháin, 1987), birth
interval, parity and age jointly (Rallu and Toulemon, 1993a), age and marital status (Farr,
1880, Ansell, 1874), parity only (Chiang and van der Berg, 1982; Lutz, 1989), age, parity
and marital status (Whelpton, 1946; Oechsli, 1975). Also, we are dealing with pure fertility
tables, while many early examples of fertility life tables were combined with mortality,
leading to reproduction tables. Systematic work on these tables stems from Kuczynski
(1928, 1932), although earlier examples can be found in Farr (1880), or Böckh (1886 and
other years). See Stolnitz and Ryder (1949) and Lewes (1984) for a survey and a historical
note.
19 For a number of years Richard Böckh tabulated births according to parity and age but did
not standardize the figures. In 1899 he standardized them using the age distribution of
women thereby obtaining fertility incidence rates for the first time. Kuczynski, who was a
student of Böckh at the Berlin statistical office, popularized the measures in England and the
United States (Kuczynski, 1928, 1932; an example of the impact of his work is Glass et al.,
(footnote continued)
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additive because the total fertility measure, the parity-specific TFR, is arrived at by adding
up fertility rates for a given parity. However, this implies treating parity-specific births as if
they were repeatable events, which they are not (Henry, 1972; Keilman 1994). Adding the
parity-specific TFRs, the general TFR is obtained. This also applies when other dimensions
besides parity are considered. In general the class-specific TFR, TFRC is given by:

∑=
a

CC afTFR )(

The overall TFR is then obtained either from the addition of the different class-specific
TFRs, or from the addition of the overall fertility incidence rates:

∑∑ ==
aC

C afTFRTFR )(

This simplicity is both the strength and the weakness of additive life table measures.
Since the TFR is merely a sum of rates, it can be regarded as a simple summary measure of
fertility that takes into account fertility at all ages with equal weight. This simplicity makes
period TFR time series quite volatile, which is a strong point of the measure20. A second
strong point is its relatively lax data requirements. Its first weak point is the lack of built-in
demographic logic. As we have seen, incidence rates do not reflect the risk of giving birth
for any particular women. They are influenced by the parity distribution of women at each
age. When these tables are applied to a cohort, they acquire some demographic consistency,
since they track the same group of women – or men – over time. Applied to period data, this
consistency is lacking, and it is not unusual to find first-birth period specific TFRs of higher
than one (Feeney and Yu, 1987; Hobcraft, Menken and Preston, 1982; Keilman, 1994)21.
This is not a problem if one interprets it as a sign of a very favorable – and inherently
unstable – parity distribution together with high fertility for that order rather than just as an
impossible fertility quantum. It is necessary to be aware of which application can
legitimately be used for each measure. An example of an additive table is given in Table 2
where use is made of the tempo adjusted fertility incidence rates for Sweden, using the K-O
procedure and the conversion formula [1]. We see that the tempo adjusted parity-specific
TFRs are considerably larger than the observed ones for parities zero and one. This is
particularly so for the first birth, where the observed rates would suggest a childlessness of
almost 40% as compared with 20% from the adjusted rates. Allowing for the different
parities, then, the overall adjusted TFR of 1.67 compares to the observed 1.43.22 We can also
see the mean ages for the incidence rate schedule. As we have commented in the previous
section, these are higher with parity. There are no great differences in this case between the
mean ages for the adjusted and observed schedule. It is also possible to estimate an implied
parity distribution from the difference between the TFRs for different parities (Charles,

                                                          

1938), and we owe to him many of the terms used in fertility analysis like total fertility.
However, he neglected the analysis of fertility by parity. On the other hand, when Charles
(1937) consulted him during his exile in England regarding the study of fertility by birth
order, he suggested the use of fertility incidence rates in what was to be the comeback of
additive fertility tables which would be followed by Lotka and Spiegelman (1940). After
WW2 Henry and Pressat took the distinction between rates of the first and the second kind.
20 The volatility of the period TFR is desirable in that it makes it, at least potentially, easier
to find the determinants of change. See Ní Bhrolchain (1992) for a similar position. Ryder
(1980, 1986) instead, sees this as an inconvenient.
21 This is also a possibility in cohort parity-specific life tables when there is parity selective
mortality or migration. Let us assume for instance that, for some reason, there is a one-time
very high emmigration of childless women in a particular country. Cohort second-order
TFR might then well be higher than one since the population composition by parity has
experienced a change with greater weight attached to parity-one women, who are the ones
contributing to parity two births.
22 This figure is somewhat below the published figure of 1.50 since certain categories of
birth have been excluded, like those born to foreign women (see Andersson, 1999).
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1937). This measure should be avoided when based on period data since tempo distortions
and parity composition can lead to very erroneous estimates.

Multiplicative life tables treat births of a particular order as a non-repeatable event.
Since this is precisely what they are, this brings some demographic consistency into the life
table calculations. They are based on fertility intensities. Having been first used by Quensel
(1939) and Whelpton (1946), they were revived in their parity and age form by Park (1976),
Lutz (1989), Rallu and Toulemon (1993a), Giorgi (1993) and de Simoni (1995). In their
classic form, they assume that the intensities are piecewise constant within the respective
age intervals. However, it is also possible to disregard this assumption and work in
continuous time. We refer the reader to K-O for such a context. The name of the tables
stems from the multiplicative nature of the intensities. The basic measure we will use is the
proportion of women of parity j at age a0 experiencing at least n additional births between
exact ages a0 and a1: nPj(a0,a1). These proportions are particularly simple to calculate for one
additional birth:
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where we see the multiplicative nature of the intensities. When the proportion is calculated
in the remaining lifetime, we have Park’s (1976) lifetime probability of n additional births,
nPj(a0). The argument a0 can also be dropped when the calculation is carried out through the
whole reproductive age span. K-O very often use the measure 1Pj(a), which they call
conditional parity progression probability at age a. As we have mentioned, it is generally the
case that quantum measures based on multiplicative life tables are more stable than those
based on additive measures. This is so because the additive measures only reflect the sum of
the rates: when there are very high but transitory rates at several ages, they are simply added
up. By contrast, the weight given to a particular age in a multiplicative quantum measure
depends negatively on the quantum itself. For instance, the first derivative of the parity
progression ratio for parity 0 is given by:
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That is: the derivative is equal to the proportion of childless women in the table. We see
then how the effect of a single intensity is muted according to how close the quantum
measure is to the maximum. This means, for instance, that whenever fertility is very high at
young ages, the weight given to older ages diminishes. This is a strong point when using
cohort data, but it may be a disadvantage when we are only interested in a pure period
measure. In such a case it is possibly more interesting to use cumulated intensities which are
additive and can be converted in probabilities through a direct transformation. Figure 2 is a
useful graphical representation of the reversed cumulated intensities. As suggested by
Toulemon (2001b), a double-scale graph of the cumulated intensities in the second scale
shows the lifetime probability measure, 1Pj(a).

Fertility tables are useful for the organization of the fertility intensities and the
computation of summary measures. They are increment-decrement tables where the state
variable is parity, and access to each parity requires previous transition through the lower
states. In order to build the tables, a first step is to calculate the transition probabilities from
the intensities. This is a relatively tricky issue. On the one hand, there is the possibility of
using the formulas based on Markov chain theory as in Hoem and Jensen (1982),
alternatively, standard simplifications such as those described by Schoen (1988) or Palloni
(2001) may be used. The problem is that these formulas do not easily capture the particular
context of the birth sequence. The simplest approach is probably the direct estimation of
birth probabilities instead of intensities as in Rallu and Toulemon (1993b), or the use of the
simple exponential formula which is then compatible with [5]23. In such a case we would get
the age- and parity- specific probability of birth, qj(a) as:

qj(a) = 1− exp[−mj(a)] [6] 

We can then use the birth probabilities to work out the remaining life table measures. For
the general fertility table, the remaining columns are the number of women of parity j and
exact age a, Dj(a), and the number of births occurring to those women at age a, bj(a). These
quantities are calculated iteratively over age from the formulas:

bj(a) = Dj(a) qj(a) [7] 

Dj(a+1) = Dj(a) − bj(a) + bj−1(a) [8] 

It is common that the last parity category, J, includes parities J and above, the rates being
fertility incidence rates for this group. The formulas are then slightly different for this last
parity:

bJ(a) = DJ(a) fJ(a)

DJ(a+1) = DJ(a) + bJ−1(a)

Note also the initial conditions:

D0(α) = N ; Dj(α) = 0, j > 0

where N is the radix of the table which is equal to the size of the synthetic cohort. Table 3
shows the general fertility table based on the tempo adjusted intensities for Sweden in 1998.

One of the advantages of the fertility table is that many summary measures can be
constructed directly from the table births. For instance, mean numbers of births for women
in the synthetic cohort can be defined by rectangular sums of births in the table (de Simoni,
1995) as:

                                                          
23 An interesting alternative is to apply the exponential formula to six month age intervals
obtained by duplication of the rates. This would allow for two transitions within a year, but
no more, in correspondence with the biological limitations.
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In particular, the completed fertility of the fertility table corresponds to b0,J(α,ω)/N =
b0,J(α)/N. In our case, the value is 1.7. This is the index called PATFR by Rallu and
Toulemon (1993a), meaning that it is the index of total fertility obtained from a parity and
age fertility table. This index is free from compositional effects (because it is based on the
table distribution of women) and from tempo distortions (because it has been computed
from tempo adjusted intensities). The cumulated sums CF(a)=b0,J(α,a−1)/N are also a useful
measure since they provide the cumulated fertility before age a. They are commonly used
especially in cohort studies, where they are referred to as incomplete cohort fertility. From
the sum of columns corresponding to each parity, the parity-specific total fertility indexes
can be obtained, PATFRj. This can be interpreted as the proportion of women in the
synthetic cohort that had at least j+1 children. They are shown as the last row of the birth
column in Table 4. They also correspond to Park’s lifetime probabilities of j+1 births. In this
example it appears that both the proportion of women having an additional birth at parity 0
and 1 are very high, with less than 16% childlessness and more than two thirds of the
women having at least 2 children. In contrast, the parity 2 index is very small, below 17%.
The differences between the PATFRj and the TFRj obtained in the additive table, Table 2,
are the result of the parity distribution of women in 1998 being different from that of the
stable distribution. Since the values based on the multiplicative table are higher than those
for the additive table for low parities (0 and 1) and lower for high parities (2, 3 and more),
this shows that the proportion of women in the lower parities is surprisingly low. This is the
result of the roller coaster fertility phenomenon that took place in Sweden during the early
1990s, when the rates for the first and second births were high for a few years (e.g., see
Hoem and Hoem, 1996). Fertility beyond the third birth is almost negligible.

From the PATFRj the Parity Progression Ratios (PPRs), πj, (Henry, 1953; Ryder, 1986;
Ní Bhrolchain, 1987; Feeney and Yu, 1987) can be defined. They represent the proportion
of women that were ever at parity j who moved on to parity j+1. They can be calculated as

πj = PATFR j+1 / PATFR j

In our case the parity progression rates for parity 1 and 2 are 79.3% and 25.0% respectively.

The distribution of women by parity at the different ages is immediately available in the
fertility table as Dj(a). If the fertility intensities remained constant long enough, these

Fig. 3: Cumulated Proportions of Women at Different Parities

Based on the Stable distribution for Sweden, 1998
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proportions would be the ones observed in the population. It is in this sense that these
proportions provide the stable age distribution of women by parity. The final distribution is
particularly evident in the last row. In this specific example the high PPRs for parities 0 and
1 in connection with the low PPR for parity 2 lead to approximately half the women in the
stable distribution having two children. Figure 3 shows the cumulated proportions of women
at the different parities by age.

The calculation of the additional birth proportions nPj(a,b) is more complicated for the
general case. The fertility table can be interpreted as the exercise of tracking the fertility of a
woman initially parity 0 from age α until age ω. The additional birth proportions require
similar calculations, but for a woman initially parity j and age a and followed only until age
b and the birth of order j+n. They can be constructed by forming a specific fertility table
with a radix of one chosen for the desired initial category (age a and parity j) and where the
absorbent parity is j+n. K-O call this the synthetic cohort age a and parity j. The additional
birth proportions can then be read either as the proportion of women in the absorbent state at
age b+1, or as the cumulated sum bj+n−1(a,b). Table 4 shows an example of such a
calculation for women at parity 1 at thirty-five years of age. As can be seen, all the
associated measures, such as number of births or mean age, can also be applied here. In this
case there is a 46.82% chance that the woman in question will have an additional birth, but
at 2.8%, the probability of having more than two children is very low.

It is also possible to obtain birth-interval measures, since the mean birth interval from
parity j to parity j+1 is equal to the difference between the mean age at birth at parity j+1
minus the mean age at birth at parity j for the women who had additional children. This can
be computed by splitting the number of births in the general fertility table into two columns:
those by women that had additional children, +bj(a), and those by women that remained at
parity j+1, 1bj(a). They are given respectively by:

+bj(a) = bj(a) · πj+1(a) [10] 

and

1bj(a) = bj(a) · [1−πj+1(a)] [11] 

One can then get the mean ages at birth for those that progressed and those that did not, and
by subtracting this from the mean age at the next birth, we get the mean birth interval for the
transition for parity j to j+1 (Feichtinger, 1987). In Table 5 we show an example of the
calculations. We observe that those women who progress to second birth were much
younger when having their first birth than those that did not (27.2 versus 33 years). The
same applies for progression to third birth. Because of this, the difference between the
overall mean ages at birth would be an underestimate of the birth interval. The mean birth
intervals obtained are therefore 3.7 years from first to second birth and 4.7 from second to
third.

It is also possible to obtain a mean birth order for different ages (de Simoni, 1995). For
a particular age a, the mean birth order would be:
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We can base any of the standard life table functions for increment-decrement tables on
fertility tables. In particular, one can also define conditional person-years lived or waiting
times (Palloni, 2001). Waiting times at age 15 and parity 0 can be calculated easily from the
fertility table by calculating a number of women-years lived table Lj(a) = [Dj(a)+ Dj(a+1)]/2
and adding up the number of years lived in each state. Table 6 shows such a calculation. In
this particular case, we see how late childbearing implies that women pass most of their
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childbearing life at parity zero (15 years), and the proportion spent at parity one is very low
given the late progression to parity one and the high progression rate to parity two. These
waiting times can be generalized for other ages and parities. The basic idea is to base the
calculation on the table for the synthetic cohort age a and parity j. De Simoni (1995) also
proposes a number of age-span measures based on person-years-lived at a given parity by
women who progress to an additional birth and by women who do not, which are all based
on the table of Lj(a).

While we have concentrated on the measurement of fertility by parity and age, there are
alternative schemes for the study of fertility (Lutz, 1989; see also footnote 18). Each of them
leads to related summary measures. The most common alternatives are parity and duration
life tables. Here, it is possible to define mean birth intervals and parity progression rates
(Henry, 1953; Feeney and Yu, 1987; Nì Bhrolchain, 1987), and an index of total fertility,
Rallu and Toulemon’s (1993a) PDTFR, Parity and Duration TFR. Using large surveys, it is
possible to extend this to additional dimensions, as shown by Rallu and Toulemon’s (1993a,
1993b) calculation of PADTFR: the parity, age and duration index of Total Fertility. Both
the summary measures proposed for parity and age and parity and duration schemes can be
extended to the parity, age and duration scheme. Regarding the choice between parity and
age versus parity and duration, there are good arguments for both. Tables with no duration
loose sight of the low fertility period following birth and the conception-birth interval.
Tables with no age loose sight of the fact that age conditions parity progression: it is not the
same for a woman to reach parity one at thirty, thirty-five or forty years. Indeed, its
postponement is one of the characteristic elements of present fertility, and one of its effects
is what K-O call the fertility aging effect: the lower fertility achieved by women who delay
their fertility. This, together with the technical possibility of removing tempo effects within
the parity and age scheme, is the main reason for our choice here.

5. Layers in Period Fertility Analysis: From Births to Fertility Behavior

Fertility table modeling as described in the preceding section is valid both for a period
and a cohort perspective. In the first case, rates are applied to a synthetic cohort; in the
second, to a birth cohort. Period measures frequently are of interest, since they provide a
measure of fertility at a given moment in time. This is very important, since time is one of
the main dimensions of change in fertility (Nì Bhrolchain, 1992). Understanding these
trends is one of the main purposes of fertility analysis. Only by using period measures can
we gain insight into the effects which current events have on fertility. This is important
irrespective of whether we are looking at the effect of socioeconomic evolution on fertility,
that of public policies, etc. Having a life table interpretation is then a good property for a
period measure of fertility. The basic possibility opened up by the techniques described in
the preceding sections is the removal of compositional and tempo distortions from period
fertility measures. This is important because neither the composition of the population nor
tempo distortions on quantum are directly connected to behavior. They should therefore be
removed before trying to explain period fertility.

On the other hand, whenever we are interested in the consequences of period fertility, it
is usually the number of births that matter (Calot, 2001a, 2001b; Toulemon, 2001a; van
Imhoff, 2001): this determines the size of future generations with its impact on their labor
market conditions, housing, pension systems, education, etc. (Ryder, 1965). The basic
purpose of demographic analysis in this respect is the  separation of the different
contributing factors to the number of births. It then becomes relevant to explore how tempo
effects and population composition combine with fertility behavior in determining the
number of births. In this section, we will concentrate on providing such a decomposition of
the different layers in period fertility from births to fertility behavior.

The idea of removing compositional effects from period fertility is central in fertility
analysis. It goes back at least to Newsholme and Stevenson (1906),  who stated that “the
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corrected rate measure is a force, the crude rate the result of the operation of this force”24.
Based on our discussion, there is a growing number of factors to remove from observed
births until we get to fertility: age composition, parity composition, and tempo distortions.
The first is the composition of the population by age, which is removed by using the Total
Fertility Rate. The relationship between the TFR and the number of births has been studied
by Ryder (1964, 1980) and Calot (1984,1985). Calot uses the term mean generation size for
the factor that translates the TFR into births. Ryder (1980) calls age distribution factor the
number that converts the TFR into the birth-rate25. Obviously, mean generation size is equal
to the age distribution factor multiplied by the average population size (or mean exposure).
Because of  the shortcomings of the TFR as a measure of completed fertility, Calot (2001a;
2001b) advocates that the period TFR should not be interpreted as a measure of fertility
quantum at all, but rather as a measure of period generation replacement: as the ratio of the
newborn generation to the generation of mothers.

A second factor in the number of births are tempo effects. Ideally we can remove tempo
distortions using fertility intensities. These adjusted intensities can be converted back into
fertility incidence rates in order to obtain a TFR measure which is free from tempo effects.
This procedure for adjusting the TFR leads to a result which is analogous to the B-F
procedure with the exception that the inference on tempo effects rests on a sounder
methodological basis. We can thus give a mean tempo effect measure similar to B-F’s r
where:

TFRAdj

TFR
r

.
1−=   [12] 

The interpretation, when put in percentage terms, is the percentage of births “missing”
because of tempo effects. It can be defined separately for the different parities.

Finally, the effect of parity composition can be removed using the adjusted PATFR, the
total fertility estimate from the multiplicative fertility table of tempo adjusted intensities.
Since the adjusted PATFR is a pure index of fertility in the sense that it is free from tempo
and compositional distortions, it is called the Period Fertility Index, PF by Ortega and
Kohler (2002). We can define a parity distribution effect similar to r which we call d, the
parity distribution effect:

1
.

. −=
PF

TFRAdj
d [13] 

We have inverted the sign so that this index will be positive when the parity composition
favors high fertility, and negative when it rather leads to low fertility. Again, the parity
distribution effect can be defined separately for the different parities. They could also be
defined for a particular age.

This procedure provides a coherent partition of the TFR into its demographic
components which can be fruitfully exploited for forecasting or analysis purposes. Putting
together [12] and [13], we have:

TFRt = (1−rt) · (1 + dt) · PFt [14] 

                                                          
24 They try to correct for age and marital composition: “the corrected birth-rate must be a
measure of fertility, which operating upon a population of given constitution as to age, sex
and marriage, produces as its result the crude birth-rate” (Newsholme and Stevenson, 1906:
35).
25 It is possibly better to use the mean generation size since introducing the age distribution
leads to confounding factors: past fertility determines the size of the population at young
ages. Therefore after a baby-boom the crude birth rate might fall merely because the
proportion of women at childbearing ages in the population falls (Whelpton, 1963).
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From the definition of the mean generation size, G, we can directly connect the number of
births to the adjusted PATFR, our measure of quantum that is free from non-behavioural
effects, as:

Bt = Gt · (1−rt) · (1 + dt) · PFt [15] 

Other combinations of terms are also possible: for instance, one can define a mean
generation size for the tempo adjusted TFR which would include Gt and rt. These issues are
further developed in Ortega and Kohler (2002).

A minor caveat for this procedure is the sensitivity of the partition to the sequence of
operations: the decomposition is different if the effect of parity distribution is removed
before the tempo effect, which is also possible. We prefer the decomposition given here
because the interpretation of the tempo effect is simpler, it refers to the actual proportion of
births being missed. It also provides a useful comparison to the adjustment procedures based
on incidence rates such as B-F and K-P.

In Table 7 we show examples of such decompositions for Sweden in 1990 and 1998.
The first was the year when fertility reached its highest levels in Sweden for many years
after a very fast increase and before a very sudden collapse (Andersson, 1999). This collapse
reached a trough in 1998 (Andersson, 2001). Looking at the period fertility index PF, we
can see that the peak was real: for all parities the values are much higher in 1990 than in
1998.  In 1990 tempo effects and parity distribution played in opposite directions: there
were some tempo effects, on average 11% of the fertility level, but the parity composition
partially offset this effect. Tempo effects were particularly strong for first birth and the
adjusted TFR is actually higher than one. Of course, this can only happen when the parity
distribution favors high fertility. The strong parity composition effect discounts that effect
leading to a period fertility index of 0.89. To understand the large parity distribution effect
we have to remember that the period fertility increase happened basically at all ages. If the
rates had been sustained for some time, the proportion of women at higher parities would
have been larger, and there would had been fewer births accordingly. This is what the ratio d
picks up. The situation is different in 1998. Tempo effects are more important than before,
especially for first and second birth. On the other hand, now the compositional effect is also
leading to low fertility, as we can see from the negative values of d at parities 0 and 1. As
we have shown in Table 3, this is precisely the result of the fertility peak of the 1990s. Since
many women had progressed at the time to higher parities, there is a lower observed fertility
at low parities and substantially more births at high parities (d is 17.7% and 91.7% for
parities 2 and 3 respectively). Table 7 also provides the PATFR so that the alternative
decomposition can be worked out as well. The mean tempo effect in PATFR is obtained by
comparing the adjusted PATFR and the unadjusted one.

It may also be of interest to look at mean ages and birth intervals. These are shown in
the table as well. We see how substantial postponement has taken place irrespective of
whether we look at the mean age of the stable distribution or that of the incidence rate
schedule. The mean birth intervals can also be estimated from the life table of observed or
tempo adjusted intensities. In the latter case, we obtain a tempo adjusted birth interval. We
see that the results in this case are not very sensitive to tempo distortions. They also operate
in different directions for the transition to second and third births. Comparing the figures for
1990 with those of 1998 we see that the birth intervals have widened slightly. This should be
seen as a period effect: in the year of high fertility, 1990, not only was fertility higher but
the birth interval shorter. It is also possible to compute the rest of the fertility measures
presented in Section 5.

It is important to bear in mind that these are all period measures, they therefore measure
fertility in a given year and should not be interpreted as what will be observed in cohorts of
women. That is the object of cohort analysis which we analyze in the next section.
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6. Cohort Fertility

Cohort fertility is a particularly interesting strand of fertility analysis. In its present
form, it owes much to the work of Whelpton (1949), Ryder (1951) and Hajnal (1947)26. The
idea is to follow the fertility experience of a cohort of women (or men) through time. When
the fertility rates are of the cohort-period or cohort-age type, cohort analysis follows from
simply reading the rates along the diagonal of the Lexis diagram instead of the vertical lines.
What lends cohort fertility its attraction is that the rates refer to roughly the same group of
women. If parity-selected migration and mortality are not important, there will be a
correspondence between fertility measures based on the cohort additive fertility tables and
retrospective measures of fertility based on children-ever-born to women in a survey
(Wunsch, 2001a). This therefore provides an interesting connection between fertility and
family dynamics which is not so straightforward in period analysis.

The key characteristic of cohort fertility dynamics is that its variability from cohort to
cohort is very small compared to the variability over time of period total fertility. There are
two reasons for this. One is purely mathematical: since the variability of period fertility is
very high, averaging over different periods, which is what cohort fertility does, must reduce
the variance. The second is connected to the concept of a cohort: women may decide
according to period circumstances when to have children but they might have an ex-ante
idea about what ultimate level of fertility they want. If the variance of this ex-ante idea is
not large across cohorts because of common socialization, the variance of cohort fertility
should be smaller. Ryder (explained in Hobcraft et al, 1982) actually showed that the
variance of fertility is reduced to similar levels irrespective of whether we follow real
cohorts or other combinations of period fertility which do not correspond to a cohort. This
does not necessarily mean that cohorts have no effect. On the contrary, while there are
reasons why the variance should be smaller, there are also factors leading to inter-cohort
variability like cohort size, education (which is always more comparable for people who
were educated at the same time), contraceptive knowledge, etc. (Ryder, 1965). These can
lead to differences in fertility across cohorts. In recent times, interest in the study of cohort
fertility has grown as exemplified by Lesthaeghe and Willems (1999), Lesthaeghe (2001),
Frejka and Calot (2001a; 2001b), van Imhoff (2001), and K-O.

From an analytic point of view the study of fertility does not present particular
difficulties. The fertility measures presented in Section 4 are all applicable both to cohort
and period analysis. The only difference is in the notation. The cohort equivalent of the TFR
is generally called Completed Cohort Fertility, CCF. The reason for this is that it is possible
to use census information to provide estimates of cumulated fertility and parity distribution
at a particular moment in time (Sallume and Notestein, 1932). While demographic
translation formulas can be used for translating period measures into cohort measures and
vice versa, this should not in fact be done. Not only is it an impossible task (van Imhoff,
2001), but also a quite useless one: if we know the matrix of rates over time we should
compute both cohort and period measures directly from the rates.

The main problem from the point of view of cohort analysis is cohort completion: what
will the completed cohort fertility be of the generation still of childbearing age. This issue is
very much connected to fertility forecasting, and we can see cohort-completion methods as
forecasting methods and vice versa. Akers (1965) draws a distinction between the period
method, the cohort method and the parity progression method in forecasting births or
completing cohorts. This distinction is still valid today. The period method is based on the
assumption that the period TFR remains constant or follows a specific trajectory. The cohort
method is based on some hypothesis about the completed cohort fertility of different
cohorts, the “remaining” births to these cohorts being spread through time. The parity
progression method is based on the calculation of birth intensities that are specific to, at

                                                          
26 Earlier studies of fertility using cohorts of women are Ansell (1874) and Maynard (1923).
Sallume and Notestein (1932) focused on completed fertility of birth cohorts.
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least, parity and age, and possibly marital status and birth interval. It is then assumed that
these intensities will remain constant or will follow a particular trajectory over time.

The period method of cohort completion/fertility projection is possibly the first
(Whelpton, 1928) and by far the most commonly used despite its methodological
shortcomings (Lee, 1974 , 1993; Tuljapurkar and Boe, 1999). It is based on the assumption
of future paths for the total fertility rate and the application of a generally fixed age-specific
fertility schedule. It is useful because of its simplicity and relatively lax data requirements.
This makes the introduction of statistical forecasting methods easier. However, it is
misleading in periods of fertility change, that is, precisely in those periods when forecasts
are more relevant. Fertility peaks associated merely with fertility anticipation would be
taken to be more permanent, instead of assuming that they will end when tempo stabilizes.
Conversely, fertility observed in times of postponement might be interpreted as downward
trends. The particular applications of Lee and Tuljapurkar and Boe get around this problem
by introducing ad-hoc ultimate levels of fertility. Projections based on parity- and age-
specific fertility incidence rates such as Yi and Land (2001) can also be considered as period
projections. Their approach is based on assuming an ongoing change in the shape of the
incidence rate schedule as given by its mean age and variance. Even if parity is considered,
the use of incidence rates implies that the parity composition of the population is not.

The cohort method for cohort completion consists in setting up a “target” fertility level
for the different cohorts and then using an appropriate method to distribute the births. An
example of such a procedure has recently been advanced by Lesthaeghe (2001). It is based
on taking a cohort as a reference and measuring “postponement” and “recuperation” against
it. Postponement is defined as the relative lagging of cumulated fertility in a given cohort
born in year b before age 30 with respect to the reference cohort. Recuperation is given by
the relative catching up of fertility after age 30. For a given cohort, completed cohort
fertility is then given by two parameters: kb, the intensity of postponement, and Rb, the
intensity of recuperation:

CCFb = CCF* − dn(30)·kb+ rn(50)·Rb

dn(a) and rn(a) being some country-specific calendars of age-related relative postponement
and recuperation defined over the intervals 15-30 and 30-50 respectively. This method
solves some of the issues involved in cohort methods such as how to use the information
from incomplete cohorts. It is here used to estimate the kb parameters for all cohorts and the
Rb parameter for those cohorts that are over 30. It is then possible to extrapolate based on
time series of kb and Rb. Analogously incomplete cohort fertility can be worked out as:

CFb(a) = CF*(a) − dn(a)·kb  , a ≤ 30

CFb(a) = CF*(a) − dn(30)·kb + rn(a)·Rb ,  a>30

The simplicity of this method makes it a useful descriptive device where the two parameters
have a meaningful interpretation, but in forecasting fertility it relies on many hidden or
explicit assumptions. A first problem arises from the constant fertility trough at age 30 and
the discontinuity in modeling before and after that age. The age at which this trough
happens is a function of the decline in quantum and the difference between the mean ages of
the fertility schedule for the reference cohort and cohort b. This will inevitably shift over
time. Where both k and R are large, the discontinuity around age 30 may lead to spikes
around age 30 that might not be very congruent. It would be interesting to analyze each birth
order separately as in Bosveld (1996). The reason is that the constants k and R when defined
for births of all orders must simultaneously play the role of both quantum and tempo. Take a
case like that of Spain, where CCF has declined fast and there has been intense
postponement of first births. The model will say there is no recuperation, which means that
there are fewer births at older ages than before. This is not surprising if fertility at higher
parities has fallen and it was very high in the cohort of reference. Recuperation could only
make sense at a parity-specific level, meaning that the first births that did not happen at
young ages are taking place at older ages. This is the reason why the method works for
countries like the Netherlands, where quantum has not changed much in the last thirty years,
but it does not work in countries with large quantum changes. A second aspect is that the
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method provides a comparison between cohorts. In order for the procedure to have
predictive content, the comparison with the reference cohort would have to contain relevant
information for the prediction of cohorts having children now. In countries that have
experienced sharp socioeconomic changes in the interim, like those of Eastern European,
Spain, or Portugal, it is unclear whether one can gain predictive power through comparison
with a cohort which lived under very different conditions. This last problem is not exclusive
to Lesthaeghe’s method, but also applies to cohort methods in general.

The parity progression approach consists of using period intensities specific to several
dimensions including parity. Here the idea is that the most relevant way of obtaining
information on what current childbearing generations will do is to look at what women in
the same circumstances were doing in the last periods for which data is available. Early
examples are Akers’(1965) and Ryder’s (1980, 1986) completion of cohort fertility which
was based on the last period intensities specific for parity, marital status and birth interval.

K-O’s method of cohort completion also belongs to the parity progression approach.
This method is based on the projection of fertility intensities for alternative scenarios of
quantum, tempo and variance. While it can be applied to any given set of
postponement/quantum scenarios, they concentrate on two: the postponement stops and the
postponement continues scenario. The postponement stops consists of using the current
tempo adjusted parity- and age-specific fertility intensities for completing cohort fertility.
While this is an interesting scenario to consider, it is probably not the most likely.
Postponement trends seem to be very persistent (Kohler, Billari and Ortega, 2001), therefore
it is more likely that postponement will continue in the future. The postponement continues
scenario assumes that the tempo-adjusting parameters, γ and δ, will continue in future and
that the quantum, given by the cumulated intensity for a given parity, will remain unaltered.
It is similar to Yi and Land’s (2001) scenario but defined for tempo-adjusted fertility
intensities instead of tempo-distorted incidence rates. K-O provide formulas for obtaining
completed cohort fertility and related measures directly from the intensities observed.
Conceptually this is the same as introducing tempo and variance effects back into the future
intensities by means of system [4], the difference being that now the adjusted rates come
from the profile of adjusted fertility schedules in the reference year T. The mean age and
variance of the adjusted schedule will change over time. In a given year t they will be given
by:
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We can then transform the adjusted intensity schedule into one that has mean and variances
given by [16]. Once this adjusted schedule has been obtained, we can get the observed
intensities for the given year t from system [4]. While formula [16] is valid only for the
postponement continues scenario with constant γ and δ parameters, it can be generalized to
cover any future profile of tempo and variance parameters. This makes the procedure
amenable to the incorporation of statistical forecasting methods for the future paths of 1pj, γj

and δj. K-O is an improvement on previous parity progression projections in the explicit
consideration of tempo. This was a flaw of earlier attempts that were based on tempo-
distorted measures of fertility and did not take into consideration the effect of tempo change
on the intensities. This is the reason, for instance, why earlier attempts such as Akers’
(1965) needed to combine, even in an ad-hoc manner, parity-progression with a cohort
approach to ensure sensible demographic results. Kohler and Ortega (2001b) apply the
methods to three countries, Sweden, the Netherlands and Spain. A comparison of completed
cohort fertility with the projected cohort fertility for different base years, shows that the
projection fares well when the assumptions about quantum, tempo and variance are close to
the period evolution of fertility as in the Netherlands, while they fail in years of unusual
developments like the Swedish roller coaster fertility of the 1990s. While this is an
improvement on previous methods, more effort needs to be put into forecasting turning
points both in the quantum and tempo of fertility.
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The reason why procedures based on parity progression lead to results different from
period methods  basically lies in the feedback effects of progression at lower parities: since
second births only occur to women at parity one, the parity progression rate to second birth
declines when the first birth is postponed. Such feedback effects are called fertility aging
effects by Ortega and Kohler (2002). These effects can be partially or totally compensated
when births at higher parities are also being postponed. Empirical patterns show that fertility
aging has a stronger effects in some countries like Spain or Sweden than in others like the
Netherlands.

7. Discussion

In this article we have provided an overview of old as well as more recent methods for
the analysis of fertility. We have tried to emphasize the flexibility of the methods and the
broadness of interest of demographers and fertility researchers. It is a fortunate circumstance
that we can adapt the methods to our interests, and that no matter what our interests are,
there are a small number of key issues that we should address. It does not make sense to
wage war over the question of whether the TFR is a good or a bad measure. It is good in
some contexts, too simple in others, and indeed too complex in others. Accordingly, it is the
specific context of our research which should guide us in the adoption of the appropriate
measures. We have tried to present a wide range of techniques that are at the disposal of the
researcher and we have placed particular emphasis on how to combine them.

In a context of low fertility a key issue is the separate analysis of fertility by birth order.
Since most births are of an order lower than 3, the separate analysis of transition to first,
second and third birth is sufficient. Given that in many low fertility countries a larger
proportion of births occur outside marriage, it is advisable to study births irrespective of
marital status. To make this possible, vital statistics must provide the appropriate tabulation
of births, which is not always the case. We have also seen that it is important to use
intensities, real exposure-occurrence rates, instead of incidence rates or rates of the second
kind. The second ones are not suitable for the study of parity progression, one of the main
predictable factors in fertility. They also lead to better estimation of tempo effects, which is
a second important predictable component of fertility. The study of tempo is also especially
important in a low fertility context since the timing of childbearing becomes more flexible.
The adjustment of timing to the socioeconomic circumstances can potentially lead to large
variations in period fertility. Trends in postponement may also be connected to social
interactions. The use of tempo adjustment techniques makes it possible to ellucidate the
contribution of changing tempo to period fertility rates.

The application of life table techniques to tempo adjusted fertility intensities leads to
the isolation of the behavioral component in fertility from parity composition and tempo
effects. Only at this stage should we attempt to explain fertility trends, or make hypotheses
about future developments. We provide a toolkit of ratios for the study of period fertility
that isolate the contribution to the number of births of generation size, mean tempo effects
and the parity distribution effect. This set of tools can be applied either to general fertility or
to order-specific fertility.

The knowledge gained from the analysis of tempo-adjusted fertility intensities is also
valuable for completing cohort fertility following the so-called parity progression method.
This is based on the assumption that current patterns of childbearing according to age and
parity and current postponement trends provide information about future developments.
This procedure can be used either for cohort completion or fertility forecasting. It makes full
use of those observable elements besides pure fertility quantum that have predictable
implications for fertility, such as the parity composition of the population and the existence
of tempo distortions in the presence of tempo change.
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Table 1: Observed and Adjusted Intensities. Sweden 1998. Age-Period data.
Intensities x 1000 r(a,t)x100 Adjusted Intensities x 1000

Age\Parity 0 1 2 3+ 0 1 2 3+ 0 1 2 3+
16 1.6 21.6 2.1
17 3.9 21.6 5.0
18 7.5 29.6 21.5 9.7 9.6 32.8
19 11.9 55.4 21.5 9.9 15.2 61.5
20 18.4 89.0 21.5 10.1 23.5 99.0
21 25.0 106.0 57.0 21.5 10.4 -3.2 31.8 118.2 55.2
22 32.4 136.8 48.9 71.9 21.5 10.6 -3.2 -6.2 41.2 153.0 47.4 67.8
23 40.8 164.8 58.0 61.9 21.5 10.8 -3.1 -6.7 52.0 184.8 56.3 58.0
24 49.0 164.2 58.4 54.4 21.5 11.0 -3.0 -7.3 62.4 184.5 56.7 50.7
25 63.3 183.6 55.6 60.7 21.4 11.2 -3.0 -7.8 80.5 206.8 54.0 56.3
26 76.1 206.7 57.6 60.6 21.4 11.4 -2.9 -8.4 96.9 233.3 56.0 55.9
27 87.1 209.0 52.7 62.2 21.4 11.7 -2.8 -9.0 110.8 236.6 51.2 57.1
28 101.6 214.8 51.5 49.9 21.4 11.9 -2.8 -9.5 129.3 243.8 50.1 45.6
29 112.4 217.7 52.9 48.2 21.4 12.1 -2.7 -10.1 143.0 247.6 51.5 43.8
30 121.0 219.6 49.0 34.5 21.4 12.3 -2.6 -10.6 153.9 250.4 47.7 31.2
31 118.5 219.1 46.4 33.1 21.4 12.5 -2.6 -11.2 150.6 250.5 45.3 29.8
32 104.8 207.1 44.6 33.9 21.3 12.7 -2.5 -11.7 133.2 237.3 43.5 30.4
33 92.5 180.1 40.7 31.4 21.3 12.9 -2.5 -12.3 117.6 206.9 39.7 27.9
34 81.6 166.7 39.9 28.1 21.3 13.2 -2.4 -12.9 103.7 192.0 39.0 24.9
35 75.2 149.1 36.6 23.9 21.3 13.4 -2.3 -13.4 95.5 172.1 35.8 21.1
36 59.3 120.3 29.8 21.7 21.3 13.6 -2.3 -14.0 75.3 139.2 29.1 19.1
37 44.4 92.9 22.7 18.7 21.3 13.8 -2.2 -14.5 56.4 107.7 22.2 16.3
38 38.8 67.1 17.4 13.7 21.3 14.0 -2.1 -15.1 49.2 78.1 17.1 11.9
39 29.3 48.0 12.3 10.8 21.2 14.2 -2.1 -15.6 37.1 56.0 12.1 9.3
40 21.0 29.9 8.7 7.8 21.2 14.5 -2.0 -16.2 26.7 35.0 8.5 6.7
41 12.7 18.2 4.5 4.9 21.2 14.7 -1.9 -16.7 16.2 21.3 4.4 4.2
42 7.1 9.8 2.7 3.3 21.2 14.9 -1.9 -17.3 9.0 11.6 2.7 2.8
43 4.9 5.2 1.7 2.8 21.2 15.1 -1.8 -17.9 6.2 6.1 1.6 2.3
44 2.6 2.8 0.4 1.4 21.2 15.3 -1.7 -18.4 3.3 3.3 0.4 1.2
45 0.8 1.2 0.5 1.3 21.2 15.5 -1.7 -19.0 1.0 1.4 0.5 1.1

Cum. Intensities 1.450 3.310 0.850 0.740 1.840 3.770 0.830 0.680
Mean Ages 30.74 29.48 29.22 29.05 30.74 29.54 29.23 28.92
Gamma x 100 21.37 11.98 -2.76 -9.46
Delta x 10000 -1.44 21.57 6.44 -55.63
Source: Andersson (2001) for the cohort-period observed intensities, Kohler and Ortega (2001) for 

the gamma and delta parameters. Own calculations.
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Table 2: Observed and Adjusted Frequencies. Sweden 1998. Age-Period data.
Frequencies x 1000 Adjusted Freq. x 1000

Age\Parity 0 1 2 3+ 0 1 2 3+
16 1.62 2.07
17 3.91 4.99
18 7.46 0.25 9.51 0.28
19 11.71 1.00 14.92 1.11
20 17.73 2.90 22.59 3.22
21 23.52 5.52 0.43 29.96 6.15 0.42
22 29.20 10.76 0.82 0.09 37.19 12.03 0.80 0.09
23 35.09 17.34 1.99 0.11 44.68 19.44 1.93 0.11
24 39.66 21.49 3.09 0.35 50.49 24.15 3.00 0.33
25 46.77 29.32 5.07 0.58 59.54 33.03 4.93 0.54
26 50.93 37.70 7.45 1.23 64.82 42.56 7.24 1.13
27 51.16 42.82 9.41 1.72 65.10 48.46 9.15 1.58
28 51.52 47.24 11.86 2.19 65.55 53.60 11.54 2.00
29 48.90 49.19 14.88 2.78 62.19 55.95 14.49 2.53
30 44.39 48.95 16.03 2.83 56.45 55.82 15.61 2.55
31 37.38 46.80 17.23 3.35 47.53 53.50 16.80 3.02
32 29.07 41.33 17.77 4.21 36.95 47.36 17.33 3.77
33 22.68 33.89 17.07 4.62 28.83 38.93 16.67 4.12
34 18.11 29.32 17.29 4.75 23.01 33.76 16.89 4.21
35 15.58 24.32 16.11 4.50 19.80 28.07 15.75 3.97
36 11.72 18.89 13.17 4.42 14.88 21.86 12.88 3.88
37 8.20 13.93 10.13 4.07 10.41 16.16 9.91 3.55
38 6.76 9.78 7.78 3.20 8.58 11.38 7.62 2.78
39 4.88 7.19 5.47 2.57 6.19 8.38 5.36 2.23
40 3.36 4.44 3.86 1.92 4.26 5.20 3.78 1.66
41 2.04 2.70 2.00 1.20 2.59 3.16 1.96 1.03
42 1.11 1.51 1.22 0.81 1.41 1.78 1.20 0.69
43 0.75 0.80 0.76 0.66 0.96 0.94 0.74 0.56
44 0.39 0.43 0.19 0.34 0.50 0.51 0.19 0.29
45 0.11 0.18 0.25 0.30 0.15 0.22 0.25 0.25

TFRj 0.6257 0.5500 0.2013 0.0528 0.7961 0.6270 0.1964 0.0468
Mean Ages 28.08 30.38 32.69 34.42 28.07 30.43 32.71 34.33
Source: Andersson (2000) for the cohort-period observed frequencies. Own calculations

as explained in text.
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Table 3: Fertility Table. Tempo Adjusted Intensities, Sweden 1998.

Women Probabilities x 1000 Births
Age\Parity 0 1 2 3+ 0 1 2 3+ 0 1 2 3+

16 1000 0.00 0.00 0.00 2.07 0.00 0.00 0.00 2.07 0.00 0.00 0.00
17 997.93 2.07 0.00 0.00 5.00 0.00 0.00 0.00 4.99 0.00 0.00 0.00
18 992.95 7.05 0.00 0.00 9.56 32.28 0.00 0.00 9.49 0.23 0.00 0.00
19 983.45 16.32 0.23 0.00 15.08 59.62 0.00 0.00 14.84 0.97 0.00 0.00
20 968.62 30.18 1.20 0.00 23.17 94.25 0.00 0.00 22.45 2.84 0.00 0.00
21 946.17 49.78 4.05 0.00 31.34 111.48 53.74 0.00 29.66 5.55 0.22 0.00
22 916.52 73.89 9.38 0.22 40.36 141.89 46.29 67.76 36.99 10.48 0.43 0.01
23 879.53 100.40 19.43 0.65 50.66 168.71 54.71 58.03 44.56 16.94 1.06 0.04
24 834.97 128.02 35.30 1.71 60.48 168.47 55.13 50.71 50.50 21.57 1.95 0.09
25 784.47 156.94 54.92 3.66 77.36 186.85 52.54 56.30 60.69 29.32 2.89 0.21
26 723.79 188.31 81.36 6.55 92.33 208.11 54.48 55.89 66.83 39.19 4.43 0.37
27 656.96 215.94 116.12 10.98 104.89 210.68 49.91 57.09 68.91 45.50 5.80 0.63
28 588.05 239.36 155.82 16.77 121.29 216.32 48.85 45.60 71.32 51.78 7.61 0.76
29 516.73 258.90 199.98 24.39 133.25 219.32 50.16 43.78 68.86 56.78 10.03 1.07
30 447.87 270.98 246.73 34.42 142.62 221.53 46.61 31.22 63.87 60.03 11.50 1.07
31 384.00 274.82 295.26 45.92 139.84 221.57 44.25 29.77 53.70 60.89 13.07 1.37
32 330.30 267.63 343.09 58.99 124.73 211.20 42.61 30.38 41.20 56.52 14.62 1.79
33 289.10 252.30 384.99 73.60 110.93 186.86 38.94 27.93 32.07 47.15 14.99 2.06
34 257.03 237.23 417.15 88.60 98.53 174.69 38.21 24.92 25.32 41.44 15.94 2.21
35 231.71 221.11 442.65 104.54 91.09 158.10 35.11 21.05 21.11 34.96 15.54 2.20
36 210.60 207.26 462.06 120.08 72.52 129.98 28.68 19.05 15.27 26.94 13.25 2.29
37 195.33 195.59 475.75 133.33 54.88 102.12 21.92 16.34 10.72 19.97 10.43 2.18
38 184.61 186.34 485.29 143.76 48.01 75.10 16.92 11.88 8.86 13.99 8.21 1.71
39 175.74 181.21 491.07 151.98 36.46 54.41 12.02 9.30 6.41 9.86 5.90 1.41
40 169.34 177.75 495.03 157.88 26.31 34.37 8.48 6.70 4.46 6.11 4.20 1.06
41 164.88 176.10 496.94 162.07 16.03 21.05 4.38 4.20 2.64 3.71 2.18 0.68
42 162.24 175.04 498.47 164.25 8.91 11.49 2.68 2.83 1.45 2.01 1.34 0.47
43 160.79 174.47 499.15 165.59 6.18 6.07 1.64 2.34 0.99 1.06 0.82 0.39
44 159.80 174.41 499.39 166.41 3.25 3.24 0.42 1.21 0.52 0.57 0.21 0.20
45 159.28 174.36 499.74 166.62 1.00 1.37 0.54 1.07 0.16 0.24 0.27 0.18
46 159.12 174.28 499.71 166.88 Sum per woman 0.841 0.667 0.167 0.024

Mean Age 28.22 30.93 33.5 35.11
Source: Own calculation based on intensities in table 1.

Table 4: Specific Fertility Table for a woman age 35 and parity 1

Women Probabilities x 1000 Births
Age\Parity 1 2 3+ 1 2 3+ 1 2 3+

35 1.0000 0.0000 0.0000 158.097 35.115 21.047 0.1581 0.0000 0.0000
36 0.8419 0.1581 0.0000 129.980 28.680 19.050 0.1094 0.0045 0.0000
37 0.7325 0.2630 0.0045 102.121 21.925 16.341 0.0748 0.0058 0.0001
38 0.6577 0.3320 0.0103 75.103 16.921 11.880 0.0494 0.0056 0.0001
39 0.6083 0.3758 0.0159 54.412 12.019 9.301 0.0331 0.0045 0.0001
40 0.5752 0.4044 0.0204 34.366 8.476 6.700 0.0198 0.0034 0.0001
41 0.5554 0.4207 0.0239 21.046 4.385 4.198 0.0117 0.0018 0.0001
42 0.5437 0.4306 0.0257 11.491 2.681 2.833 0.0062 0.0012 0.0001
43 0.5375 0.4357 0.0269 6.071 1.639 2.338 0.0033 0.0007 0.0001
44 0.5342 0.4382 0.0276 3.245 0.421 1.212 0.0017 0.0002 0.0000
45 0.5325 0.4398 0.0278 1.366 0.535 1.071 0.0007 0.0002 0.0000
46 0.5318 0.4403 0.0280 Sum 0.4682 0.0280 0.0008

Mean Age 37.211 38.965 40.630
Source: Own calculation based on intensities in table 1.
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Table 5: Mean Birth Intervals, First to Second and Second to Third Births

Births in the life table
Age \ Class 1 to 2 Remain at 1 2 to 3 Remain at 2

18 0.222 0.005 0.000 0.000
19 0.950 0.023 0.000 0.000
20 2.773 0.072 0.000 0.000
21 5.394 0.155 0.122 0.095
22 10.154 0.330 0.234 0.200
23 16.316 0.621 0.548 0.515
24 20.616 0.951 0.949 0.997
25 27.769 1.555 1.321 1.564
26 36.631 2.556 1.896 2.536
27 41.748 3.748 2.289 3.507
28 46.374 5.403 2.764 4.848
29 49.221 7.561 3.314 6.717
30 49.789 10.239 3.393 8.108
31 47.551 13.343 3.404 9.662
32 40.613 15.911 3.308 11.311
33 30.321 16.824 2.877 12.115
34 23.254 18.187 2.537 13.404
35 16.368 18.588 1.954 13.589
36 9.924 17.015 1.244 12.007
37 5.473 14.501 0.700 9.730
38 2.679 11.315 0.380 7.832
39 1.240 8.619 0.176 5.726
40 0.461 5.647 0.076 4.120
41 0.158 3.548 0.021 2.158
42 0.044 1.967 0.007 1.329
43 0.011 1.048 0.002 0.816
44 0.003 0.563 0.000 0.210
45 0.000 0.238 0.000 0.267

Mean Ages 29.617 34.457 30.925 34.144
Age next birth 33.498 35.110
Birth Interval 3.881 4.185
Source: Own calculation based on table 3.
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Table 6: Waiting Times at the Different Parities

Women Years Lived
Age \ Parity 0 1 2 3+

16 0.999 0.001 0.000 0.000
17 0.995 0.005 0.000 0.000
18 0.988 0.012 0.000 0.000
19 0.976 0.023 0.001 0.000
20 0.957 0.040 0.003 0.000
21 0.931 0.062 0.007 0.000
22 0.898 0.087 0.014 0.000
23 0.857 0.114 0.027 0.001
24 0.810 0.142 0.045 0.003
25 0.754 0.173 0.068 0.005
26 0.690 0.202 0.099 0.009
27 0.623 0.228 0.136 0.014
28 0.552 0.249 0.178 0.021
29 0.482 0.265 0.223 0.029
30 0.416 0.273 0.271 0.040
31 0.357 0.271 0.319 0.052
32 0.310 0.260 0.364 0.066
33 0.273 0.245 0.401 0.081
34 0.244 0.229 0.430 0.097
35 0.221 0.214 0.452 0.112
36 0.203 0.201 0.469 0.127
37 0.190 0.191 0.481 0.139
38 0.180 0.184 0.488 0.148
39 0.173 0.179 0.493 0.155
40 0.167 0.177 0.496 0.160
41 0.164 0.176 0.498 0.163
42 0.162 0.175 0.499 0.165
43 0.160 0.174 0.499 0.166
44 0.160 0.174 0.500 0.167
45 0.159 0.174 0.500 0.167

Waiting Time 15.052 4.901 7.960 2.086
Source: Own calculation based on table 3.

Table 7: Period Contributions of Tempo, Parity Composition and Generation Size to the Number of Births.
Sweden: Comparison of 1990 and 1998.

Parities
Year 0 1 2 3 + Total 0 1 2 3 + Total

Births 1990 45182 36273 16232 4696 102383 50487 48889 47020 46321 49141 Mean Generation
1998 30085 26645 9627 2462 68819 48074 48451 47805 46772 48133 Size

TFR 1990 0.895 0.742 0.345 0.101 2.083 12.4% 10.4% 10.1% 4.9% 11.0% Mean Tempo 
1998 0.626 0.550 0.201 0.053 1.430 21.4% 12.3% -2.5% -12.4% 14.2% Effect ( r ) %

Adjusted 1990 1.021 0.828 0.384 0.107 2.340 14.8% 8.2% 5.1% -23.1% 8.4% Parity Composition
TFR 1998 0.796 0.627 0.196 0.047 1.666 -5.3% -5.9% 17.7% 91.7% -1.9% Effect ( d ) %
Adjusted 1990 0.890 0.765 0.365 0.139 2.159
PATFR 1998 0.841 0.667 0.167 0.024 1.699
PATFR 1990 0.854 0.704 0.306 0.110 1.974 4.0% 8.1% 16.2% 20.6% 8.6% Mean Tempo Effect

1998 0.764 0.562 0.136 0.022 1.484 9.1% 15.8% 18.2% 10.4% 12.6% in PATFR %
Mean Age 1990 26.44 29.09 31.79 33.54 28.62 26.38 29.12 31.86 34.30 28.65 Mean Age
Stable Distr. 1998 28.08 30.38 32.69 34.42 29.84 28.22 30.93 33.50 35.11 29.90 Frequency Sched.
Adj. Mean 1990 3.54 4.45 3.64 4.40 Mean Birth 
Birth Interval 1998 3.71 4.68 3.82 4.56 Interval (Unadj.)
Source: Data from Andersson (2001), Own Calculations.


