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Diffusion Processes and Event History Analysis

Abstract

Several authors (e.g., Brüderl, Diekmann, Yamaguchi) derive hazard rate models of event

history analysis from social diffusion processes. This paper also focuses on the integration of

diffusion research and survival analysis. After a discussion of Diekmann’s flexible diffusion

model, we present an alternative approach which clarifies theoretical differences between

popular rate models (e.g., the exponential model, log-logistic model, sickle model).

Specifically, this approach provides a new rationale for the generalized log-logistic model in

the sense of a flexible infection process. In cases with bell-shaped duration dependence, it thus

allows a test for social contagion as a result of random contacts between actual and potential

adopters. An application to divorce data serves as an illustration.

1  Introduction

Techniques of event history modeling are finding increasing use in the social sciences.

The range of applications includes labor market studies, demographic analyses, mobility

studies, studies in organizational ecology, political science, and so on. Undoubtedly, the

availibility of panel and retrospective data sets (e.g., the German Socioeconomic Panel,

Family and Fertility Surveys), different introductory textbooks (e.g., Blossfeld and

Rohwer 1995; Courgeau and Lelièvre 1992; Diekmann and Mitter 1984; Lancester

1996) as well as suitable software (e.g., Rohwers TDA) has promoted the spreading of

these methods.

Parametric approaches to survival analysis have, however, at least one deficiency: a

theoretical explanation for the estimated statistical model is usually missing. Generally,

for any given event data the shape of the empirical transition rate is first deterimined by

using non-parametric procedures (e.g., the Kaplan Meier estimator). This empirical

evidence about the course of the so-called hazard rate or risk function is then used for

the selection of a suitable parametric model, which is then estimated above all by the

maximum likelihood method, taking account of covariates. Theoretical considerations

rarely refer to the selected hazard rate model, but rather to the selection and

interpretation of covariates for the explanation of the risk process by endogenization of

at least one process parameter. This is to a large extent unproblematic if the shape of the

empirical risk function suggests a unique parametric model for the statistical estimation.
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However, many social processes are characterized by similarly running rates, which

can be described (from a theoretical point of view) by different models. Such a situation

results for instance in the case of an approximately bell-shaped hazard rate. Such a form

is found more or less regularly in the investigation of marriage behavior, divorce risk or

mobility in firms. For its representation different non-monotonous hazard rate models

can be used. In addition to the gamma model, the log-normal model, or the log-logistic

standard model Diekmann and Mitter’s (1983, 1984a) sickle model and Brüderl and

Diekmann’s (1995) generalized log-logistic model can be applied to the data. A

theoretically justified selection between such alternative models would be desirable.

In order to obtain such a such theoretical foundation, some authors (e.g., Brüderl and

Diekmann 1995; Diekmann 1990, 1992; Yamaguchi 1994) link event history models

with models from diffusion research (e.g., Hamblin, Jacobsen and Miller 1973; Mahajan

and Peterson 1985; Rogers 1983). Here, the idea that the respective event history model

model can be interpreted in terms of a social diffusion process is fundamental. The

common starting point of these works is in each case a general differential equation

which covers a multiplicity of diffusion hypotheses as special cases and so supplies a

process-theoretical rationale for different hazard rate models. Similarly shaped rates may

also correspond to quite different diffusion processes, so that the knowledge of the

underlying process hypotheses can in principle be helpful in the selection of a suitable

rate model. Under similar conditions (e.g., goodness of fit) preference should be given

to that event history model which is accompanied by a theoretically more plausible

diffusion hypothesis for the application under consideration. If, on the other hand, there

exists a unique hazard rate model that is clearly preferable from a statistical point of

view, then the knowledge of the compatible diffusion process at least promotes an

understanding of the process under consideration.

The connection between diffusion research and event history analysis is the focus of

the present paper. After an introduction of central concepts we discuss Diekmann’s

(1990, 1992) flexible diffusion model (Section 2). Afterwards, we present a more

restrictive model (Section 3). This approach illustrates differences in the underlying

theoretical processes between established event history models (e.g., the exponential

model, log-logistic model, sickle model). Specifically, this approach provides a new

rationale for Brüderl and Diekmann’s (1995) generalized log-logistic model in the sense

of a flexible infection process. In cases with bell-shaped duration dependence, it thus

allows a test for social contagion due to random contacts between actual and potential

adopters. An application to divorce data serves as an illustration (Section 4). Especially

because it is unlikely that divorce has much to do with social contagion, the suggested

approach of connecting diffusion research and event history analysis can be tested to see

if it leads to plausible results.
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2  Foundations

2.1  Concepts

Under consideration is a social system with a large number of individuals who, in a

given period of time, are confronted with a binary and absorbing event, whose

occurrence can be interpreted as result of a decision (e.g., marriage, divorce, adopting

new technologies).2 Let T be a nonnegative continuous random variable representing the

duration until the occurrence of an event (arrival time or waiting time, depending upon

the viewpoint) with distribution function F(t) and density function f(t) = dF(t)/dt.

Because F(t) defines the proportion of  the population which had already experienced

the event up to time t, 1 − F(t) represents the complementary proportion without the

event up to this point in time. The hazard rate h(t) = f(t)/(1 − F(t)) then gives

(approximately) the conditioned probability of a change in status in the (very small)

time interval [t, t + �t], if the event has still not occurred before t.

These concepts were originally introduced and interpreted in the sense of event

history analysis. From the perspective of diffusion research, other terms can be used

which are at least partly borrowed from epidemiology (cf., e.g., Kramer 1988). Since

F(t) defines the proportion of prior adopters or those “infected” at time t, this quantity

indicates the period-specific prevalence rate. The derivative or density dF(t)/dt = f(t) can

thus be interpreted as the increase in prevalence during a (short) additional time

interval.3 Because 1 − F(t) defines the respective proportion of potential adopters

(population at risk) and h(t) = f(t)/(1 − F(t)) applies by definition, the hazard rate h(t)

can be interpreted as the “incidence rate”.4 It captures the (relative) influx to the group

of adopters during the brief time interval [t, t + � t].

                                                          
2 Biologically or technically caused events are thereby impossible, such as deaths or damage to a machine,
for instance.
3 Because dF(t)/dt = f(t) expresses the increase in the proportion of adopters per time unit,  f(t)/F(t)
indicates the respective growth rate of the prevalence.
4 According to Kramer (1988: 27-32) the prevalence rate defines the proportion of adopters in a certain
population at a fixed point in time. In contrast, the incidence rate always refers to a time interval. It
defines the proportion of non-adopters from this population who become adopters during a certain period.
In our context (ignoring absolute sizes) the incidence rate corresponds therefore to the hazard rate h(t),
while the respective prevalence rate is given by the distribution function F(t). For a very small prevalence
rate of a feature (e.g., the proportion of regular consumers of hard drugs in the total population) one can
capture the incidence rate by the density function f(t), because in this case f(t) and h(t) = f(t)/(1 − F(t)) are
approximately equal.
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Thus, a process of the spreading of behaviors (or the occurrence of events) takes

account of a connection between incidence and prevalence. In other words, a diffusion

process reflects a functional relationship between h(t) and F(t). Due to the large number

of possible relations and the definition of the hazard rate, the density f(t) should be

expressed as a sufficiently general function of the prevalence F(t). We now turn to such

an integration of diffusion research and event history analysis.

2.2  Flexible Diffusion Model

A general model for connecting the logic of diffusion and event history analysis is

suggested by Diekmann (1990, 1992). His model is based on differential equations.

Accordingly, the spread of the feature under consideration or the occurrence of the

relevant event can be thought of as a consequence of the information flow within the

system. The adoption of a behavior or the occurrence of the event are a result of

information that is passed on via interaction with adopters or by sources of influence

(e.g., the mass media) that are present throughout the system.

To capture different diffusion processes Diekmann makes the assumption that the

information transfer takes place by contacts between a subset of the already infected and

not infected portions of the population.5 The mixing assumption is p(t) = F(t)m (1 �

F(t))n, where m and n are arbitrarily selectable parameters not interpreted as to content.

Because this product indicates the proportion of interactions between sections of the

population at t, one can view p = p(t) as the probability of an informative and thus

potentially infectious contact for members of the risk population at time t. Its weighting

with an arbitrarily selectable adoption rate s(t) > 0 determines then the increase on the

proportion of the adopters per unit of time:

dF t

dt
s t F t F tm n( )
( ) ( ) ( ( )) .= −1 (1)

Therefore, the corresponding hazard rate is:

                                                          
5 The related assumption of a “homogeneous mixing” of the population concerning infection status
characterizes standard models in epidemiology as well (e.g., Anderson and May 1991; Bailey 1975). The
actors do not differ regarding age, education, sex etc. Research on socially structured diffusion expanded
enormously as a result of the AIDS epidemic. Morris (1994) presents an overview and a modeling
suggestion for dealing with non-homogeneous mixing in epidemiological models which is based on log-
linear methods. Strang (1991) discusses the role of event history analysis when introducing social-
structural features into models of social diffusion.
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h t s t F t F tm n( ) ( ) ( ) ( ( )) ,= − −1 1 (2)

such that very different connections between incidence and prevalence can be

illustrated.6 The type of diffusion process as well as the interpretation of the adoption

rate s(t) is determined to a large degree by the selection of the parameters m and n. In

particular, three process types can be differentiated:

•  The parameter combination m = 1 and n = 1 defines the probability of a potential

infection of potential adopters per unit of time through p(t) = F(t) (1 � F(t)).

Individual instances of adopting behavior or of events can thus be interpreted as

resulting from coincidental interactions between prior and potential adopters. This

scenario is based on the assumption of homogeneous mixing after contagion. Thus,

this illustrates pure infection processes. According to Diekmann s(t) represents the

contagion rate for interactions between actors with and without a given feature

(event).7

•  As a result of the parameter constellation m = 0 and n = 1, the probability of a

potentially influential contact for potential adopters per unit of time arises through

p(t) = 1 � F(t), the proportion of the population at risk. Adopting behavior can be

understood here as a result of contacts of this part of the population with the total

system. One can thus regard them as consequences of the influence of system-wide

sources (e.g., mass media), so that s(t) is interpretable in Diekmanns sense as a time-

dependent influence rate.8

•  The parameter combination m = 0 and n = 2 determines the probability of a

potentially influential contact for members of the risk population per unit of time

through p(t) = (1 � F(t))2. In this scenario interactions between potential adopters

play the crucial role. Diekmann (1990) speaks in this case of matching processes

(e.g., a sales contract, marriage), in which s(t) is to be understood as the time-

dependent matching rate.

Certainly, Diekmanns approach offers an elegant connection between diffusion-

theoretical logic and event-analytic methodology. However there are also arguments that
                                                          
6 Diekmann (1990, 1992), Yamaguchi (1994), and Brüderl and Diekmann (1995) present detailed
discussions of special cases of this approach for integrating diffusion research and event history analysis.
7 The example of such a infection process that is probably the most well-known is the logistic model
applied by Coleman, Katz and Menzel (1957), which results from (1) for m = n = 1 and s(t) = α.
8 The classical example of such an influence process is the exponential model, which was already applied
by Coleman, Katz and Menzel (1957). Instead of “influence by the system”, one speaks frequently of
“external influence” in the diffusion-theoretical literature (e.g., Mahajan and Peterson 1985), whereas
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justify the formulation of an alternative approach for the integration of diffusion

research and event history analysis:

•  First, the unlimitedness of the two parameters m and n is striking. According to the

logic of the diffusion approach one can interpret p(t) = F(t)m (1 � F(t))n as the

probability of an informative contact for potential adopters. Because F(⋅) is a

distribution function, however, p(t) = F(t)m (1 � F(t))n � 1 must apply. This condition

is possibly violated with unrestricted values of m and n (example: m = �1, n = 1 and

F = 0.4). It is fulfilled, for example, by the restrictions m � 0 and n � 0.

•  If one is limited to the scenario m � 0 and n � 0, then m and n determine the

interacting parts of the groups of the prior and potential adopters. It is unclear

whether and how the two parameters m and n can be interpreted contentwise. It is not

clear here for instance why m = n = 0 always means that p = 1, but m → � and/or n

→ � always leads to p = 0.

•  Apart from the selection of the respective interaction pattern by specification of m

and n, the approach also permits an arbitrary definition of the adoption function s(t).

In principle the number of parameters and the functional form of s(t) can be freely

determined. This flexibility is reflected in the fact that there are different diffusion-

theoretical explanations for one and the same hazard rate model. Thus, the log-

logistic standard model can be interpreted both as an infection process and a

matching process.9 For other standard models of event history analysis (e.g.,

exponential distribution, generalized log-logistic model, sickle model) ambiguous

diffusion-theoretical interpretations are also possible since one can freely choose m, n

and s(t)  (Braun 1998). In order to arrive at a unique derivative of individual event

models from (1), one could follow, e.g., Yamaguchi (1994) and concentrate on pure

contagion processes  (m = n = 1) with flexible selection of the adoption rate s(t).

In the following section we will focus on an alternative way to avoid such ambiguities

and interpretation problems. This approach deviates substantially from Diekmanns

approach in at least two aspects. The arbitrary adoption function s(t) is replaced by a

flexible function, and the parameters m and n, which are unclear as far as content is

concerned, are eliminated in favor of an interpretable quantity. Although fundamental

                                                                                                                                                                         
infection stemming from contacts between actors with and without the feature is referred to as “internal
influence”.
9 According to Diekmann (1992) one gets the infection-theoretical explanation for the log-logistic
standard model by the parameter selection m = n = 1 and the infection rate s(t) = s(t) = α/t  in (1), whereas
the interpretation of the model as a matching process results from the specifications m = 0, n = 2 and s(t)
= αγ (γt)α−1 with α, γ > 0 in (1).
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considerations and established concepts are maintained wherever possible, these

differences already find expression in the model assumptions we specify below.

3  An Alternative Model

3.1  Model Assumptions

Once again we assume that spreading processes result from appropriate information

about the characteristic or event under consideration and the respective willingness of

the actors to adopt them. Sources of information are interactions between actors in the

system. However, only a subset of all contacts is informative as regards the feature and

not every informative contact necessarily leads to the occurrence of an event. It therefore

makes sense to determine first the probability of an interaction with an adopter per unit

of time and then to specify accordingly the time-dependent adoption function of

potential adopters. A simple assumption for linking these quantities results finally in a

flexible hazard rate function and thus in a general diffusion model.

Probability of Informative Contacts

The quantities F(t) and  1 − F(t) represent the respective proportions of prior and

potential adopters in the system. If all actors (independent of their status concerning the

event) possess the same chance of beginning an interaction, F(t) determines probability

of an individual coincidentally meeting a prior adopter. On the other hand, (1 − F(t))

determines the probability that such a contact is not with an adopter and therefore

uninformative concerning the event. If one supposes now for each actor in the system k

statistically independent contacts per unit of time, then (1 − F(t))k gives the probability

that an individual has had no contact with an adopter. Thus,

w t F t k( ) ( ( ))= − −1 1 (3)

is the probability that at least one of k statistically independent contacts of any given

actor with an adopter will occur and is therefore informative concerning the event.10 The

                                                          
10 The quantity w(t) defines the probability of an informative contact for each actor in the system,
independently of his status concerning the feature. Thus, it differs conceptionally from p(t), the
probability of an informative contact for members of the risk population in Diekmanns approach.
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function w(t) increases ceteris paribus with k, the statistically independent contacts of

each actor in the system per time unit: for k = 0, w(t) = 0; for k = 1, w(t) = F(t); for k =

2, w(t) = F(t) (2 − F(t)); and k → � corresponds to w(t)  = 1. Under otherwise identical

conditions, w(t) increases along with the prevalence rate F(t). Because the latter usually

rises with time, the probability of a potentially influential contact also tends to rise with

time passed (since the beginning of the process). A positive or negative time

dependency often also characterizes the willingness of potential adopters to adopt the

characteristic in question.

The Adoption Function

In order to achieve a complete parameterization, a sufficiently general adoption function

r(t) > 0 is introduced, which determines the adoption rate per unit of time.11 This

function possesses the real-number parameters c > 0, δ and ε ≥ 0:12

r t ce tt( ) ,= −δ ε 1 (4)

where e defines the base of the natural logarithm and the scaling parameter c can be re-

parameterized if necessary.13  Thus, the adoption rate for δ = 0 and ε = 1 is a constant. In

all other cases it depends on the time t, though the effect is influenced substantially by

the combination of the respective parameters δ and ε. The elasticity function of  r(t)

gives a brief summary of all possibilities. The elasticity of the adoption rate is a linear

function of the time passed since the beginning of the process:

dr t

dt

t

r t
t

( )

( )
( ) .= − +ε δ1 (5)

An 1% increase in the time passed changes the adoption rate by approximately 100 (ε −
1 + δ t)%. In the definition of diffusion processes and the corresponding hazard models

assumptions about the time elasticity of the willingness of adoption are thereby

                                                          
11 The flexible function r(t) plays a role similar to that of the arbitrary function s(t) in Diekmanns
approach.
12 The function r(t) is elementarily integrable only for real numbers of e. It is a generalization of the
gamma density g = (b (bt)α−1 e−bt) / Γ(a), in which a and b are positive parameters and Γ(⋅) represents the
gamma function. Namely, r(t) = g(t) for ε = a > 0, δ = − b < 0 and c = ba / Γ(a). Due to the characteristics
of the gamma function, c = ba/(ε − 1)! if ε = a is a positive real number.
13 Typical re-parameterizations are c = αβ / γ  and c = αγ α, whereby α, β, γ  represent positive parameters.
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formulated. Before this can be made clearer, we first need to introduce an assumption

about the determinants of the hazard rate.

Hazard Rate

The hazard rate or risk function h(t) indicates the conditional probability of a status

change for ‘feature-free’ actors. If one assumes that a feature spreads as a result of

contacts between actors in the system, it is plausible that the risk of the occurrence of

the event will depend on the probability of an informative contact w(t) and the adoption

rate r(t). A high risk of occurrence might exist, in particular, when both the probability

of an interaction with an adopter and the willingness of adoption are high. Thus, the

following assumption for determinants of the hazard seems to makes sense:

h t r t w t( ) ( ) ( ).= (6)

The hazard rate arises then as a result of the product of the time-dependent adoption rate

and the probability of a contact which is informative and therefore potentially

consequential as regards the event or feature. We have now formulated a general

diffusion model on the basis of the postulates for r(t) and w(t) discussed above.

3.2  Model Conclusions

The assumptions (3), (4) and (5) determine a flexible risk function which itself implies a

general diffusion equation. The model prerequisites result in the hazard function

h t ce t F tt k( ) ( ( ( )) ).= − −−δ ε 1 1 1 (7)

Before the corresponding density function f(t) – and thereby the general diffusion

equation – it makes sense to discuss briefly the process-theoretical implications of (7).

Because h(t) = r(t) w(t), and w(t) rises with the number of the statistically independent

contacts k, h(t) increases with k, assuming otherwise identical conditions. If one assumes

0 < F(⋅) < 1, then diffusion processes can be differentiated according to the potential of

influence of interactions:
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Contact-dependent spreading: If k is not very large, then w(t) < 1 for the probability of

an informative contact. Thus, apart from the adoption function r(t), this

probability influences the hazard rate h(t) and interactions therefore play a rather

important role for the spreading process.

Contact-independent spreading: In the case of innumerable contacts per unit of time,

we have the opposite result. In the borderline case k → �, w(t) = 1, so that the risk

function h(t) is determined exclusively by the adoption function r(t). In this

scenario the occurrence of an event is independent of the probability of an

informative contact, which means that interactions between the system actors play

no role in the spreading process.

The distinction between contact-dependent and contact-independent diffusion is of

course also relevant for the density f(t) = dF/dt from (7). This results from combining

the definition h(t) = (dF/dt)/(1 − F(t)) with the hazard function (7):

dF

dt
ce t F t F tt k= − − −−δ ε 1 1 1 1( ( ( )) )( ( )). (8)

Like Diekmann’s differential equation this diffusion equation is explicitly solvable only

for certain parameter combinations. TABLE 1 presents a selection according to the

diffusion-theoretical interpretation of these special cases: for k = 1 infection processes

are present; for k = γ /β a flexible model arises in the sense of a generalized contagion

process; and for k → � we have contact-independent propagation processes. In addition

to a brief look at the exponential model and the logistic model, we will take a closer

look at the remaining special cases from TABLE 1 in the following. Because the latter

either exhibit or at least permit a bell-shaped hazard rate curve, this discussion serves

also in preparation for the application.

[Table 1 about here]

Exponential Distribution

One of the process types in TABLE 1 is based on the assumption of innumerable

interactions between system actors (k → �). In this scenario there is always an

informative contact concerning the feature per unit of time, so the spreading process
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occurs independently of the interaction pattern. Thus, the diffusion process does not take

place via contagion as a result by interactions between potential and prior adopters.

Rather, it is driven exclusively by the adoption function.

In TABLE 1 this type of process is represented by, among others, the exponential

model, which frequently serves as a reference model in event history analysis. Based on

(8), this classical model of a contact-independent spreading process results from

assuming, in addition, a constant adoption rate (cf., e.g., Coleman, Katz and Menzel

1957). Assuming c > 0, δ = 0 and ε = 1:

dF

dt
c F t F t e h t cct= − = − =−( ( )), ( ) , ( ) ,1 1 (9)

where the integration of the density f(t) = dF/dt yields the distribution function F(t), so

that the corresponding hazard rate h(t) = f(t)/(1 − F(t)) is determined by the constant c.

Sickle Models

In addition to the exponential model, TABLE 1 contains a further model for a spreading

process which does not rely on contagion by interactions between prior and potential

adopters. The constellation of the contact-independent spreading also characterizes the

sickle-shaped hazard function of Diekmann and Mitter (1983, 1984a). Using the

positive parameters c and λ the “defective” distribution function F(t) and the hazard rate

h(t) of the sickle model are given by

F t e h t ctec t e tt

( ) , ( ) ,( ( ) ) //

= − =− − + −−

1 λ λ λ λλ
(10)

so that in the long run “immunity” is present in the sense of F(�) < 1. The estimated

value of λ thereby determines the point in time of the highest transition risk (i.e., the

maximum of the rate function with tm = λ). Apart from k → � a diffusion-theoretical

explanation for the sickle hypotheses in the sense of (8) requires the parameter

specification c > 0, δ = − 1/λ and ε = 2:

dF

dt
cte F tt= −− / ( ( )).λ 1 (11)



13

If one views the sickle model on this basis, then two consequences result. On the one

hand, innumerable interactions per unit of time guarantee that only the adoption rate

plays a role in the spreading of the feature, i.e., the adoption function r(t) corresponds to

the hazard function h(t). On the other hand, the transition risk exhibits a linearly

decreasing elasticity of time (dr/dt)(t/r(t)) = 1 − (1/λ) t. A 1-% increase in time (passed

since the beginning of the process) results up to a certain point in time (at tm = λ) in a

proportional increase in the willingness of adoption, thereafter, however, in a

proportional decrease. After an initial acceleration, the adoption tendency is thus

retarded once again, though contacts do not play a role in the spreading process. This

contrasts with the logic of infection.

Logistic Models

Examples of social contagion processes are easy to find. The spreading of certain

modes, the acquisition of new technologies, or also the propagation of rumors can

always be understood as consequences of informative interactions. Assuming the

validity of (8), infection processes result if one supposes a statistically independent

contact per unit of time (k = 1), which means that the proportion of adopters determines

the probability of a given informative contact.

The logistic model indicated in TABLE 1 offers the classical description of infection-

like diffusion processes (e.g., Coleman, Katz and Menzel 1957). It results from (8), if

one assumes in addition a constant adoption rate and thus c > 0, δ = 0 and ε = 1:

dF

dt
cF t F t F t

F e

e F
h t cF t

ct

ct= − =
− −

=( )( ( )), ( )
( )

( ) ( )
, ( ) ( ).1

0

1 1 0
(12)

With F(0) we assume a positive initial value of the S-shaped distribution function F(⋅).
Because the adoption rate is determined by the constant c, the hazard function h(t)

represents only a parallel shift in the distribution function. Thus, the hazard rate of the

logistic model also indicates an S-shaped process, i.e., the risk of adoption rises with the

process duration. However, there are also infection processes that are accompanied by

an entirely different course of risk.
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Log-Logistic Models

The age-dependent taking up of criminal activities as a result of “bad” contacts or the

beginning of regular drug consumption due to interactions with friends who already take

drugs could be contact-dependent spreading processes with bell-shaped hazard

functions. If one concentrates first on pure infection processes (k = 1) and makes the

corollary assumption that the adoption function r(t) = c/t is constantly decreasing, then

the log-logistic standard model proves to be an example of a pure contagion process,

which can accompany with a bell-shaped hazard function.

As Brüderl and Diekmann (1995) show, the log-logistic model can be generalized by

introducing an additional parameter β. If we use the positive parameters α, β and γ the

distribution function F(t) and the hazard function h(t) of the generalized log-logistic

model are:

F t t h t
t

t
( ) ( ( ) ) , ( )

( )

( )
,/= − + =

+
−

−

1 1
1

1

γ
αβ γ

γ
α β γ

α

α (13)

which results in the log-logistic standard model for  β = γ > 0. For α > 1 we have a bell-

shaped curve for h(t), while α ≤ 1h(t) implies a constantly decreasing hazard rate.

Because the generalized log-logistic model contains the log-logistic standard model

as a special case and the latter is infection-theoretically explainable, the generalized

model should be interpretable as a generalized contagion process. In fact, (8) does

permit this interpretation of the generalized log-logistic model. If one combines the

assumption k = γ / β > 0 in (8) with the specifications c = αβ / γ > 0, δ = 0, and ε = 0,

then the density of the generalized log-logistic model can be written as a generalized

infection process:

dF

dt t
F t F t F t F t= − − − + −

β
γ

α γ β γ β( ( ) ( ( )) ( )( ( )) )./ /1 1 1 (14)

Thus, the generalized log-logistic model illustrates a further type of process in TABLE 1

− as a flexible model of a contact-dependent diffusion, it is situated between pure

infection processes and contact-independent spreading processes. Thus, the estimation

results for the generalized log-logistic model facilitate the choice between bell-shaped

hazard rate models that are based on different process-theoretical foundations. In

particular, they make it possible for us to test the infection hypothesis, which justifies

the log-logistic standard model: The sooner β = γ is fulfilled, the more appropriate is an
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interpretation of a bell-shaped risk process in the sense of a pure contagion process. This

reflects the fact that the infection-theoretical interpretation of the log-logistic model for

k = 1 results directly from (14), whereby a constant time elasticity of −1 is assumed for

the adoption rate r(t). In addition to the possible contagion-theoretical interpretation, it

is thus characteristic for log-logistic models that a 1% increase in time (passed since

beginning of the process) leads to a 1% reduction in adoption willingness.

These process-theoretical differences between the log-logistic models and the

similarly shaped sickle model serve to help in the selection of the suitable statistical

model. We will now show this with an investigation of duration data concerning

“divorce”.

4  An Illustration: Divorces

One can hardly view divorces as being the consequence of social contagion processes.

An analysis of divorce data can thus show whether our suggested approach of

connecting diffusion research and event history analysis leads to plausible results. Our

starting point is the well-known fact that divorce data can be adequately described by a

bell-shaped risk or hazard rate function (cf., e.g., Diekmann and Engelhardt 1999;

Brüderl, Diekmann and Engelhardt 1999). In the following we take a look at the sickle

model and the generalized log-logistic model, two parametric models that can illustrate

such a shape for the transition rate, although they are based on different process-

theoretical considerations. Although we orient ourselves throughout to the traditional

procedure for the employment of event-analytic methods in divorce research, the

substantial findings of the data analysis are neglected to a large extent.14 Our objective is

to prove that the process-theoretical considerations discussed above can be of use when

choosing between competitive hazard rate models. After a brief description of the data

and covariates we will also deal briefly with the statistical procedures that are usually

employed in model selection.

4.1  Data and Variables

This study is based on the West German Family Survey from 1988, which was

administered by the German Youth Institute (DJI).  The DJI study is a random sample of

                                                          
14 Detailed interpretations of the content of similar estimation results can be found in Brüderl, Diekmann
and Engelhardt (1997) as well as in Diekmann and Engelhardt (1999).
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the entire West German residential population between the ages of 18 and 55 living in

private households. A total of 10,043 people participated in a personal interview in

which detailed information on their partnership history was collected. Although the

response rate was relatively low (52%), comparisons of the distributions of the socio-

demographic variables with official statistics show that deviations are no greater than in

other national surveys. Women, married persons, and persons not in the labor force are

somewhat oversampled, while family and household type both correspond well with

official statistics (Bender et al. 1996). The data are available under code ZA-Nr. 2245

from the Zentralarchiv in Cologne. For the following analyses, we consider only first

marriages. There are 7,200 first marriages in the data, of which 12.6% had ended in

divorce at the time of inquiry.

Apart from the central variable “marriage duration” the data set allows us to control

for numerous characteristics of the respondents and the couples that are considered to be

central divorce determinants (cf., e.g., Engelhardt 2000). These characteristics can thus

be included in the analysis as covariables. In detail, the variables are constructed as

follows:

•  The key variable “marriage duration“ is measured in years until a legal divorce or

length of marriage until the date of the interview.

•   Three dummy variables were constituted for the 1961–70, 1971–80, and 1981–88

“marriage cohorts.” The reference category is the 1949–60 marriage cohort.

•  The denomination of marriage partners is coded with three dummies: both spouses

Catholic (“catholic couple”), neither partner with religious affiliation (“without

denomination”), couple with mixed denominations (“mixed denomination”). The

reference category embraces couples where both partners have the same

denomination (Protestant and other churches).

•  If the couple is of mixed nationality, a dummy variable (“partner is foreigner”) is

coded 1, otherwise it is 0.

•   If a couple founded a joint household before entering marriage, the dummy variable

“premarital cohabitation” equals 1, otherwise it is 0. 21.9 percent of our marriages

showed a premarital cohabitation.

•  If the birth of the first child occurred before entering into marriage, the “child born

before marriage” variable is 1, otherwise it is 0. Only children from the first marriage

are taken into account.

•  “Birth of first child” is a time-varying variable that is 0 up to the time the first marital

child is born, and 1 afterwards.

•  “Age at start of partnership” is measured in years for both partners.



17

•  “Education” of the respondents and their spouses is measured by the number of years

that it usually takes to obtain a qualification. Educational years are categorized as

follows: still attending school: 8 years; dropped out of primary/secondary school: 8

years; primary/secondary school: 9 years; middle school/ classical secondary school

completion: 10 years; trade school completion: 12 years; high school completion

(Abitur): 13 years. For the respondent, we know the highest qualification completed

at the time of interview. For the spouse we know the educational level at the

beginning of the partnership.

•  An educational difference of the marriage partners is covered by a dummy variable. If

the woman  indicates at least two years of education more than her husband, then the

variable takes the value 1.

•  Education of the respondent’s father is measured by a dummy variable that is

assigned a 1 if the “father completed high school” (Abitur). A father with Abitur

tends to be indicative of a higher social origin.

•  If the respondent has “no siblings”, the variable takes on the value 1, otherwise it is

0.

•  The parental family type is captured by three dummy variables: living up to the age

of 15 predominantly with “no parents,” “one parent,” or “divorced parents.” The

reference category is those who still lived with both parents at age 15.

4.2 Estimation and Testing Procedures

For estimation purposes covariables xj (j = 1, ..., q) are generally included in the

respective hazard rate model with an exponential link function through selected process

parameters. In the sickle model the parameters c and � are usually defined as follows

(e.g., Diekmann and Engelhardt 1999):

c b b bc c
x

j

q

j

j= =
=

∏
0 0

1

, ,λ λ (15)

where bc0 and b�0 represent coefficients to be estimated and bcj the coefficient of the jth

covariable, which enters the model through the process parameter c. Employing the

same notational logic, we follow the recommendation of Brüderl and Diekmann (1995)

and define for the generalized log-logistic model accordingly:
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α β γα β β γ= = =
=

∏b b b b
j

jx

j

q

0 0 0
1

, , . (16)

Thus, covariables are included in the model through the process parameter �.

Independently of whether we view the sickle model or the generalized log-logistic

model, the estimated coefficients of the covariables indicate the “relative risks”. The

proportional rate effect of the jth covariate is given by 100 (bcj � 1) %.

If the vector of covariates xi and the marriage duration ti are known for each

individual i, then the b-coefficients can be estimated (taking censored observations into

account) consistently and (asymptotically) normally distributed by means of he

maximum-likelihood method, which enables one to employ inference-statistical testing

methods (cf., eg., Blossfeld, Hamerle and Mayer 1989). The log-likelihood function

ln ( ; , ) ( ln ( | , ) ( | , ) ),L b t x d h t x b h v x b dvi i i i

t

i

N
i= −∫∑

= 0
1

(17)

which depends on the hazard function h(⋅) selected, is maximized. Here, N defines the

number of cases and di is a binary variable which takes on the value 1 for uncensored

observations. We obtain the maximum likelihood estimations using Rohwer’s program

TDA, though we used the technique of episode-splitting for the time-varying covariates

(cf., e.g., Blossfeld and Rohwer 1995).

To evaluate the degree of improvement in the estimation ensuing from the addition of

further parameters or covariates the Likelihood Ratio test is usually used. One compares

thereby the maximized likelihood of the interesting (or unrestricted) model, LU, with the

maximized likelihood of the reference (restricted) model, LR.  The Likelihood Ratio test

statistic LR = 2 (ln LU � ln LR) is asymptotically �2-distributed with the difference in

parameters or covariates of the models under consideration as degrees of freedom. If LR

exceeds the relevant critical parameter, then the restrictions can be rejected (e.g.,

Brüderl 2000). Roughly speaking, the interesting model turns out to offer a significant

improvement in the estimation.

In addition, the likelihood ratio statistic offers the basis for a comparison of nested

models (e.g., the sickle model and the generalized log-logistic model) using the

Bayesian Information Criterion BIC (Raftery 1995). One calculates for each model

considered:

ln( ) ,BIC LR N z− = − (18)

where z indicates the number of additional parameters in comparison to the selected

reference model (e.g., exponential distribution). Usually, one considers the model with



19

the highest −BIC value to be the relatively “best” model. In the context of a selection to

be undertaken on the basis of statistical criteria, this model would be selected.

4.3  Results and Model Selection

We compare now the sickle model and the generalized log-logistic model on this basis.

We first consider the results of an estimation of both models without taking covariates

into account (TABLE 2). The estimation results from the sickle model indicate that the

maximum divorce risk occurs at approximately seven years (λ = 7.223), while the

generalized log-logistic model fixes this point at somewhat over five years.15 In contrast

to the sickle model, the generalized log-logistic model reproduces approximately the

results of the non-parametric estimation (life table analysis and Kaplan Meier

estimations), according to which the highest risk of divorce occurs at 4-5 years

(Engelhardt 2000).

[Table 2 about here]

In addition to the estimated values for the process parameters, TABLE 2 also includes

information about the test statistics and goodness-of-fit measures we have discussed.

The exponential distribution without covariates serves in all cases as the reference

model.16 If one uses the Bayesian Information Criterion BIC for model selection, then

the generalized log-logistic model is to be preferred to the sickle model, judging from

the estimated results for the scenario without covariates.

[Table 3 about here]

However, if one includes the covariates in the analysis, this results in the opposite

conclusion, as can be seen in TABLE 3. Regardless of whether one carries out the

comparison with the exponential model with or without Kovariablen, the sickle model

presents itself as the “better” model due to the higher −BIC value for the analysis of the

                                                          
15 According to Brüderl and Diekmann (1995) the timing of the maximal divorce risk arises in the case of
the generalized log-logistic model as a result of tm = (1/γ)(α− 1)(1/α). When using the estimated results one
arrives at tm = 5.404.
16 The estimated value of the constant hazard rate in the exponential model is 0.008. In comparison to this
basic model with constant rate, the relative likelihood improvement achieved with the estimation from the
Sickle model as well as from the generalized log-logistic model is small. When using McFaddens Pseudo-
R2 (e.g., Brüderl 2000) as a conservative measure for the relative likelihood improvement one gets the
value 0.01 for both models. If one considers in addition the covariates mentioned, this results in a Pseudo-
R2 of about 0.06 for both models.



20

divorce data under consideration. So if one chooses among parametric hazard rate

models on the basis of statistical criteria, then the inclusion (or exclusion) of certain

covariates obviously plays a substantial role in the decision-making process.

Sociologists are particularly interested now in the effects of covariates. One could

take a pragmatic point of view and point out that the effects of covariates are practically

identical in both models. From this perspective the question of model selection appears

irrelevant in the case that the list of the covariates is fixed. However, this line of

argumentation is not entirely convincing. The covariates can be sooner compatible with

a certain type of the propagation than with another type. The covariates from TABLE 3

refer to individual and couple-specific characteristics, not, however, to relations with

further persons and their characteristics. In this application interactions with unmarried

or already divorced actors should therefore not be crucial components of the propagation

process, which is determined by the choice of estimate model. Given the list of

covariates, the assumption of a contact-independent propagation process seems

appropriate for this example.

Furthermore, covariate effects are frequently interpreted with the help of theories that

refer more or less explicitly to the individual decision behavior concerning the feature

under consideration (e.g., divorce). For reasons of consistency, this theoretically

founded micro-interpretation of covariate effects should not collide with the macro-

process, which is specified by the choice of parametric event model. Even if the

covariates are fixed, for an adequate interpretation of their effects a process model has to

be estimated that is compatible with the initial theoretical considerations.

Therefore, it seems useful to consider the process-theoretical implications discussed

above when choosing the model. It is well known that the generalized log-logistic model

illustrates a generalized infection process which is reduced to a pure infection scenario

(log-logistic model) given a certain parameter constellation (k = γ / β = 1). It thus offers

a test for whether the application under consideration can be interpreted as being a case

of social infection. The estimated values of the parameters β and γ for the scenario

without covariates in TABLE 2 then exclude an infection-theoretical interpretation of the

divorce data (k ≈ 15).

Instead, these values indicate, as expected, that the divorce risk depends less on

interactions with third persons than on the adoption function, which is substantially

determined by individual characteristics of the spouses and intra-couple processes.

Moreover, if one considers the estimated results from TABLE 3, then most covariates

exhibit significant and more or less strong effects on the risk of divorce. In all models

this risk increases in comparison to the reference category (see section 4.1) if the

interviewed person grew up in a broken home, has a father with Abitur, or grew up as an
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only child. The risk of divorce is also increased for couples without religious affiliation,

of mixed denomination, or with different nationalities.17 Furthermore, the risk of

divorce increases for younger marriage cohorts. In contrast, the affiliation of both

husband and wife to the Catholic Church and the birth of the first conjugal child, for

instance, decrease the risk.

Overall, these results are in agreement with the basic intuition that divorces result

mainly from characteristics of the couple and intra-couple processes. With increasing

time spent together, one acquires additional information about positive and negative

characteristics of one’s partner, and conflicts, boredom, or indifference can come about,

factors that manifest themselves in an increasing inclination on the part of at least one of

the partners to separate. These considerations are in keeping with existing theories of

divorce research which form the basis of interpretations of the covariate effects. For

example, according to Becker’s economic theory of divorce (1991) it is the information

about one’s spouse acquired in the course of time which increases the likelihood of

divorce. A general sense of disillusionment about one’s spouse can arise as a result of

additional experiences, or a mismatch can be diagnosed, so that an end to the

relationship ultimately appears as the lesser evil.

In the analysis of divorce data, the effects of covariates are frequently interpreted in

the sense of Becker’s family economics. From a process-theoretical perspective such an

interpretation is sooner compatible with the assumption of a contact-independent

propagation. Accordingly, if one considers the event “divorce”, then it makes sense to

use the sickle model. If the underlying propagation logic is unclear in some other

application with bell-shaped rate process, then such doubts might well be eliminated by

the estimation of the generalized log-logistic model. Indeed, according to the model for

connecting diffusion research and event analysis presented here, process-theoretical

considerations facilitate the choice among competitive hazard rate models if statistical

criteria do not offer us a clear basis for decision.

                                                          
17 The effects of the covariates need not necessarily be interpreted as causal effects. For example, the
divorce risk as portrayed in TABLE 3 increases with pre-marital cohabitation. A more exact analysis of the
connection between cohabitation and divorce indicates, however, that this positive relationship is due to a
selection effect (Brüderl, Diekmann and Engelhardt 1997).
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TABLE 1: Special cases of the diffusion model*

Logistic model (spreading through infection):
k = 1 as well as c > 0, δ = 0 and ε  = 1,
so that w(t) = F(t), r(t) = c and h(t) = cF(t)

Log-logistic model (spreading through infection):
k = 1 as well as c > 0, δ = 0 and ε = 0,
so that w(t) = F(t), r(t) = c/t and h(t) = (c/t)F(t)

Generalized log-logistic model (spreading through contacts):
k = γ/β > 0 as well as c = α β/γ > 0, δ = 0, ε = 0,
so that w(t) = 1 −(1 − F(t))γ /β, r(t) = αβ / γ t
and h(t) = (αβ / γ t) (1 − (1 −F(t)) γ /β)

Sickle model (contact-independent spreading):
k → � as well as c > 0, δ = −1/λ < 0 and ε = 2,
so that w(t) = 1 and r(t) = cte-t/λ = h(t)

Exponential model (contact-dependent spreading):
k → � as well as c > 0, δ = 0 and ε = 1,
so that w(t) = 1 and r(t) = c = h(t)

* Further model descriptions can be found in textbooks on event history analysis (e.g., Blossfeld, Hamerle
and Mayer 1989; Blossfeld and Rohwer 1995; Diekmann and Mitter 1984).
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TABLE 2: Maximum likelihood estimations of the divorce risk for two models without
covariates

Parameter and Sickle  Generalized log-
test statistics model logistic model
c 0.005*** −
λ 7.223*** −
α − 1.928***
β − 0.012***
γ − 0.178***
− Log-likelihood 4528.47 4523.42
LR 90.90 101.00
df 1 2
− BIC 82.16 83.52

Notes: *** significant for p ≤ .001. LR is the likelihood-ratio statistik with df degrees of freedom. BIC is
the Bayesian Information Criterion with the exponential model without covariates as reference model
(Log-Likelihood = -4573.92). N = 6247.
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TABLE 3: Maximum likelihood estimations of the divorce risk for two models with
covariates

Covariates, parameters Sickle Generalized log-
and test statistics model logistic model
Constant 0.037*** 0.131***
Married 1961-70 1.744*** 1.792***
Married 1971-80 2.383*** 2.417***
Married 1981-88 2.742*** 2.686***
Catholic couple 0.650*** 0.650***
Nonreligious couple 2.276*** 2.281***
Mix of religions 1.339*** 1.339***
Mix of nationalities 1.802*** 1.780***
Cohabitation 1.670*** 1.664***
Child before marriage 0.982 0.995
First child (time dependent) 0.438*** 0.447***
Age at marriage 0.920*** 0.920***
Male: years of education 0.961 0.960
Wife: years of education 0.952 0.952
Wife has 2+ years more educ. 0.956 0.957
No siblings 1.352** 1.352**
Father: Abitur 1.519** 1.519**
No parents 1.664** 1.660**
One parent 1.209 1.209
Divorced parents 1.973*** 1.972***
c par. −
λ 9.906*** −
α − 1.924***
β − par.
γ − 0.113***
− Log-likelihood 4310.47 4308.96
LR 126.54 129.56
df 20 21
− BIC 117.80 112.08

Notes:  ** significant for p ≤ .01, *** significant for p ≤ .001. Reported are the b-coefficients of the
covariates, which determine the “par.”-marked process parameters. LR is the likelihood-ratio statistic with
df degrees of freedom. BIC is the Bayesian Information Criterion with the exponential model without
covariates as reference model (Log-likelihood = -4373.74). A comparison with the exponential model
without covariates yields LR (-BIC) = 526.90 (518.16) for the sickle model and LR (-BIC) = 529.92
(512.44) for the generalized log-logistic model. N = 6247; number of splits  = 10791.


