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Abstract

A mixture model in multivariate survival analysis is presented, whereby heterogeneity

among subjects creates divergent paths for the individual's risk of experiencing an event

(i.e., disease), as well as for the associated length of survival. Dependence among compet-

ing risks is included and rendered testable. This method is an extension of the bivariate

correlated gamma-frailty model. It is applied to a data set on Danish twins, for whom

cause-speci�c mortality is known. The use of multivariate data solves the identi�abil-

ity problem which is inherent in the competing risk model of univariate lifetimes. We

analyse the inuence of genetic and environmental factors on frailty. Using a sample of

1470 monozygotic (MZ) and 2730 dizygotic (DZ) female twin pairs, we apply �ve genetic

models to the associated mortality data, focusing particularly on death from coronary

heart disease (CHD). Using the best �tting model, the inheritance risk of death from

CHD was 0.39 (standard error 0.13). The results from this model are compared with

the results from earlier analysis that used the restricted model, where the independence

of competing risks was assumed. Comparing both cases, it turns out, that heritability

of frailty on mortality due to CHD change substantially. Despite the inclusion of de-

pendence, analysis con�rms the signi�cant genetic component to an individual's risk of

mortality from CHD. Whether dependence or independence is assumed, the best model

for analysis with regard to CHD mortality risks is an AE model, implying that additive

factors are responsible for heritability in susceptibility to CHD. The paper ends with a

discussion of limitations and possible further extensions to the model presented.

1 Introduction

Many studies of genetic epidemiology focus on the analysis of binary phenotypic traits

such as the presence or absence of a particular disease. There is often, however, addi-

tional data such as information concerning the interval of time before the onset of the

disease that is not included in such studies. In order to successfully incorporate all such

useful information, it is necessary to combine models of survival analysis with models of

epidemiology. Survival analysis models enhance the researcher's ability to handle cen-

sored and truncated data. Recent papers treating genetic analysis of time periods of

events have been divided in their conclusions. One camp suggests the use of 'liability'

models of survival (Neale et al. 1989; Meyer et al. 1991) while another has focused on

'frailty' models (Clayton and Cuzick 1985; Hougaard et al. 1992; Vaupel 1988; Yashin

and Iachine 1995). Bivariate frailty models have provided an especially powerful analytic
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tool for managing identi�ability problems within univariate approaches (Tsiatis 1975).

All of the above-mentioned models are awed in that they do not take into account

speci�c causes of death. The problem with this is that the importance of genetic factors

varies with each disease. Genetic epidemiology seeks to discover the association between

genes and diseases. It might be useful to examine the genetic components of the suscep-

tibility to speci�c diseases and death rather than to longevity. For this purpose we have

extended the correlated gamma-frailty model of Yashin and Iachine (1995), which takes

into account the life-spans of related individuals in order to better estimate the e�ect

of genetic factors inuencing frailty and morbidity. This approach, in our case using

Danish twin females, allows us to combine lifespan data with morbidity data.

Recently, we analysed cause-speci�c mortality data using the correlated gamma-frailty

model, assuming independence among causes of death in a 'competing risk' scenario

(Wienke et al. 2000, 2001). In this paper, we investigate the e�ect of removing this

limitation. The model allows us to test the hypothesis on dependence between the com-

peting risks. The class of multivariate distributions presented is characterized by the

association parameters, using arbitrary marginal distributions. The multivariate distri-

bution is speci�ed in full by the association and variance parameters and the marginal

distribution functions.

We can empirically demonstrate the advantages of this new model, having revisited the

statistical analysis of the lifespan data previously explored in Wienke et al. (2000, 2001).

In this analysis, we focused on the mortality rates of coronary heart disease (CHD). To

simplify description, in this paper we consider models limited to two competing risks

(death as a result of CHD and death arising from other causes). The model can be

extended to the case of multiple competing risks or multivariate lifetimes. Results of

a simulation study are included. Both limitations and future uses for this model are

discussed.

2 Statistical Model

Identifying correlations of durations is a requirement for successfully analysing genetic

factors. In survival analysis there is a recurring problem of censored data, which compli-

cates observations far more than does complete data. Using a survival model to estimate

correlations among lifetimes can solve this problem. In this paper, instead of treating

life spans directly, we wish to analyse both genetic and environmental factors acting on

frailty for cause-speci�c mortality. The correlated gamma-frailty model can be used to

�t the lifetime data and provide a speci�c parameter for the correlation among frailties.
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Let (X11; X21); : : : ; (X1n; X2n) be independent and identically distributed (i.i.d.) non-

negative two-dimensional random vectors (pairs of lifetimes). The bivariate lifetimes

(X1j; X2j) (j = 1; : : : ; n) are censored from the right by i.i.d. pairs of non-negative

random variables (C11; C21); : : : ; (C1n; C2n) independent of the (X1j; X2j). Thus, instead

of (X1j; X2j) we observe (T1j; T2j;�1j;�2j) with Tij = minfXij; Cijg, �ij = 1(Xij � Cij)

(i = 1; 2; j = 1; : : : ; n) where 1(�) denotes the indicator function of the event in the

brackets.

Let us assume that the lifetimes follow a distribution given by the survival function

S(x1; x2) = P (X1j > x1; X2j > x2) and denote by C(c1; c2) = P (C1j > c1; C2j > c2) the

survival function of censoring times. Hence, the survival function of the four-dimensional

non-observable data is

S(x1; c1; x2; c2) = S(x1; x2)C(c1; c2): (1)

This form is a consequence of the independence between lifetimes and censoring times.

Furthermore, due to the structure of the data we will be using as an example, let us

assume that both lifetimes in each pair are left truncated at the same time wj, which is

common in twin studies. (Note that it is not a problem to deal with di�erent truncation

times in other pairs of relatives.) Consequently, observable data (T �

1j; T
�

2j;�
�

1j;�
�

2j; wj)

have a conditional distribution of the form

L(T �

1j; T
�

2j;�
�

1j;�
�

2j; wj) = L(T1j; T2j;�1j;�2jjT1j > wj; T2j > wj): (2)

Here L(X) denotes the distribution of the random variable X. With this model we

derive the likelihood function of the bivariate left truncated and bivariate right censored

data in (2), which is given by

L(t1; t2; �1; �2; w) =
�
�1�2St1t2(t1; t2)� �1(1� �2)St1(t1; t2)

� (1� �1)�2St2(t1; t2) + (1� �1)(1� �2)S(t1; t2)
�
=S(w;w): (3)

Here (t1; t2; �1; �2; w) denotes a realisation of the random vector (T �

1j; T
�

2j;�
�

1j;�
�

2j; wj).

Partial derivatives of the marginal survival functions are given by Sti(t1; t2) =
@S(t1;t2)

@ti
(i =

1; 2) and St1t2(t1; t2) =
@S(t1;t2)

@t1@t2
. Because of the independence of lifetimes (X1j; X2j) and

censoring times (C1j; C2j) (j = 1; : : : ; n) the distribution of the censoring times does

not enter the likelihood function. Assuming a correlated gamma-frailty model for the

survival times such that:

S(x1; x2) =
S(x1)

1��S(x2)
1��

(S(x1)��
2

+ S(x2)��
2 � 1)

�

�2

; (4)
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this model was used to describe total mortality in twins by Yashin and Iachine (1995)

and cause-speci�c mortality in twins under the assumption of independence between

competing risks by Wienke et al. (2000, 2001). Here, S(x) = S(x; 0) = S(0; x) denotes

the marginal survival functions, which are assumed to be equal for twins. However, the

assumption of independence between competing risks is questionable. Typically, in clin-

ical and epidemiological studies two di�erent types of censoring occur. The observation

of certain individuals are censored due to the fact that they are still alive at the end

of the study. Other individuals drop from follow-up for reasons not associated with the

disease under study, but through life-events beyond the control of the researcher, such

as migration.

If censoring can be assumed to be non-informative with regard to all di�erent causes, then

the model above may be applied with the censoring times (C1j; C2j) (j = 1; : : : ; n) taken

as the minimum of the hypothetical censoring times arising from the di�erent causes

of censoring. For estimating the marginal survival function S(x) in (4) the Kaplan-

Meier estimator is appropriate. However, the situation becomes much more di�cult if

the censoring arising from at least one of the di�erent causes can be assumed to be

informative.

In the following, we consider a case where two types of censoring occur, one non-

informative and the other informative. Let (X1j; Y1j; C1j; X2j; Y2j; C2j) (j = 1; : : : ; n)

be i.i.d. vectors of non-negative random variables. The variables (X1j; X2j) denote the

(usually non-observable) lifetimes (with respect to the cause of death of interest) of pairs

of individuals. The (Y1j; Y2j) are informative censoring times (which may be lifetimes

with respect to causes of death not under study) and the (C1j; C2j) are non-informative

censoring times (for example caused by end of study). Again, for j = 1; : : : ; n and

i = 1; 2 we observe Tij = minfXij; Yij; Cijg and

�ij =

8>><
>>:

1 : if Xij � minfCij; Yijg

0 : if Cij < minfXij; Yijg

�1 : if Yij < minfXij; Cijg

(5)

where �ij = 1 means no censoring, �ij = 0 is non-informative censoring and �ij = �1 is

informative censoring. Now we derive the six-dimensional survival function of the data.

Suppose that we use (X1; Y1; X2; Y2) as a shorthand for (X1j; Y1j; X2j; Y2j) (j = 1; : : : ; n).

Let (X1; Y1; X2; Y2) and (Z1; Z2; Z3; Z4) be the survival times of life- and (informative)

censoring times and the frailties of the two individuals with respect to two di�erent

causes of death; let their individual hazards be given by the proportional hazards model
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(without covariates)

X1 � �1(x1; Z1) = Z1�1(x1) X2 � �1(x2; Z3) = Z3�1(x2)

Y1 � �2(y1; Z2) = Z2�2(y1) Y2 � �2(y2; Z4) = Z4�2(y2); (6)

where X � � means, that � denotes the hazard function of X. Hence, the conditional

distribution of the lifetime of the �rst (X1) and second twin (X2) with respect to the

�rst cause of death are assumed equal (given by �1). The same is true for the lifetime

of the �rst (Y1) and second twin (Y2) with respect to the second cause of death (�2).

Note, that �i(x; Z) = Z�i(x) implies the relation Si(xjZ) = S0i(x)
Z (i = 1; 2) and

S0i are the survival functions related to the baseline hazard functions �i. We assume

that X1; Y1; X2; Y2 are independent given the vector of frailties (Z1; Z2; Z3; Z4). Let

V1; V8 � �(k1; �0), V2 � �(k2; �1), V3 � �(k3; �2), V4; V7 � �(k4; �2), V5; V6 � �(k5; �1)

independent gamma distributed random variables with parameters k1+k2+k5 := �1 =
1
�2
1

and k1 + k3 + k4 := �2 =
1
�2
2

. Now the frailties are given by the following construction:

cause of death 2

V2 + V6 +
�0

�1
V8 = Z3

V3 + V7 +
�0

�2
V8 = Z4

cause of death 1 Z1 =
�0

�1
V1 + V5 + V2

Z2 =
�0

�2
V1 + V4 + V3

??

twin 1

6 6

-

-�

�

�

twin 2

�

�1

�2

Figure 1: Cause-speci�c frailties and their correlations in a twin pair

Here Z1; Z3 denote frailties with respect to the �rst cause of death (cause under study)

and Z2; Z4 denote frailties with respect to the second cause of death of both individ-

uals. Furthermore, � describes variously the correlations between the frailties: �1 =

corr(Z1; Z3), �2 = corr(Z2; Z4) and � = corr(Z1; Z2) = corr(Z3; Z4). Now the six-

dimensional survival function can be derived by averaging over the conditional lifetimes,

using relation (6) and applying the laplace transform of gamma distributed random
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variables (for more detailed calculations see Appendix):

S(x1; y1; c1; x2; y2; c2) (7)

= ES1(x1)
Z1S2(y1)

Z2S1(x2)
Z3S2(y2)

Z4C(c1; c2)

= (S1(x1)
��2

1 + S1(x2)
��2

1 � 1)
�

�1

�2
1 (S2(y1)

��2
2 + S2(y2)

��2
2 � 1)

�
�2

�2
2

� (S1(x1)
��2

1 + S2(y1)
��2

2 � 1)
�

�
�1�2 (S1(x2)

��2
1 + S2(y2)

��2
2 � 1)

�
�

�1�2

� S1(x1)
1��1�

�1
�2

�
S1(x2)

1��1�
�1
�2

�
S2(y1)

1��2�
�2
�1

�
S2(y2)

1��2�
�2
�1

�
C(c1; c2)

with 0 � � � minf�2
�1
(1��1);

�1

�2
(1��2)g. In this model �1 denotes the correlation between

Z1 and Z3, the main parameter of interest. This parameter describes the correlation of

frailties of individuals in a pair with respect to the cause of death under study and is the

key �gure for genetic analysis of susceptibility to death from cause-speci�c mortality.

The second parameter �2 models the correlation between frailties with respect to all

other causes of death (combined to the second cause of death or informative censoring).

The parameter � is responsible for the association between causes of death in each

individual. With this parameter, it is possible to test the hypothesis of dependence

between competing risks in the above model.

S1 and S2 are the marginal survival functions with respect to the �rst and second cause

of death. Please note that it is impossible to use the Kaplan-Meier estimator to get

non-parametric estimates of the marginal survival functions because of the assumed

dependence between the two competing risks. To overcome this problem we used a

parametric approach by �tting a Gamma-Gompertz model to the data, e.g. Si(x) =�
1+s2

i

�i

�i
(e�ix�1)

�� 1

s2
i ; (i = 1; 2), where �i; �i; s

2
i
are parameters to be estimated. Again,

it is necessary to account for left truncation in the data. The likelihood function of this

model is given in the Appendix. Due to the assumption concerning non-informative

censoring with respect to the (C1j; C2j) the function C does not enter the likelihood

function.

3 Quantitative Genetics of Frailty

In twin studies, the intrapair-correlations of traits found in MZ and DZ twin pairs (we

use the notation �1(MZ); �1(DZ)) play a key role in the analysis of genetic and envi-

ronmental factors.

Using these coe�cients, we considered �ve genetic models of frailty that correspond to

�ve di�erent assumptions about structure. We followed the notation of Neale and Cardon

(1992) for these models. Resemblance in twins are caused by three factors (completely

for MZ twins and partly for DZ twins): additive genetic factors (A), genetic dominance
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factors (D) and shared environmental factors (C). Non-shared environment (E) (includ-

ing measurement errors) is (completely for MZ twins and partly for DZ twins) responsible

for intrapair di�erences in twins. Additive genetic factors contribute twice as much to

the correlation in MZ twins as DZ twins because MZ twins share all their identical genes

by descent, while DZ twins (like non-twin siblings) share on average only half of their

genes. Dominant genetic factors contribute four times as much to the correlation in

MZ twins than DZ twins according to Mendelian theory. A shared environment (with

environmental factors such as social class or parental behavior, common familiar habits

such as smoking, drinking, physical exercises and diet) contributes in equal measure to

the correlation between MZ and DZ twins. Higher intra-pair correlations in MZ twins

indicate how important a role genetic factors play. Readers unfamiliar with the use of

latent variables in structural equation modeling may wonder how it is possible to reach

conclusions about the role of genetic and environmental risk factors without actually

measuring them directly. As in all latent variable models, the impact of genes and en-

vironment on the susceptibility to the disease of interest is inferred from the pattern of

observed correlations in relatives, which are in turn predicted by Mendelian theory.

From the estimation point of view, only three parameters could be included in the model,

because there are only data about two di�erent groups of relatives (MZ and DZ twins).

More complex models need data about additional groups of relatives such as parents

or o�spring. Each additional group of relatives in the study allow for an additional

parameter, but this point is beyond the scope of the paper. The following biometric

models were �tted to the data: AE, DE, ACE, ADE and CE, the ACE model refers to the

decomposition of frailty Z=A+C+E; the CE model refers to the decomposition Z=C+E;

ADE, AE and DE models are de�ned similarly. We use the small letters a2; d2; c2; e2 to

refer to the respective proportions of variance. For example, the relation 1 = a2+ c2+ e2

corresponds to the decomposition of variance in the ACE model of frailty. Depending on

the best �tting model, the proportion of variance in susceptibility due to additive (a2)

or dominant (d2) genetic factors is termed heritability. Shared environmental factors

and dominance factors cannot be estimated simultaneously, because they are completely

confounded in the classical study where twins are reared together (Heath et al., 1989).

Standard assumptions about the quantitative genetics yields in the following relations:

�1(MZ) = a2 + d2 + c2

�1(DZ) = 0:5a2 + 0:25d2 + c2

1 = a2 + d2 + c2 + e2 (8)

This includes the assumption that MZ and DZ twins have the same correlation in en-

vironments (equal environment assumption). This standard assumption of the classical
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twin method is necessary for the identi�ability of parameters. To combine the approach

of quantitative genetics with the methods of survival analysis, we used the extended

correlated gamma-frailty model with genetic and environmental components of frailty.

In this approach the genetic and environmental parameters of frailty decomposition are

estimated directly by the maximum likelihood method. For more detailed information

about this point see Yashin and Iachine (1994). The analysis was made using the statis-

tical software package GAUSS.

4 Simulation

4.1 Simulation design

All simulations involve generating gamma-distributed frailties, bivariate lifetimes, de-

pendent and independent censoring times and truncation times. We will try to mimic

the characteristics of the Danish twin data which we analyse in the next section. A

total of 8000 twin pairs (3000 MZ and 5000 DZ pairs) are simulated, a number which is

reduced by the truncation process to a �nal sample size of around 4200-4300 twin pairs.

Samples are generated as follows:

� Generate frailty variables Z1; Z2; Z3; Z4 using independent gamma-distributed ran-

dom variables V1; : : : ; V8.

� Generate lifetimes with respect to the �rst (X1; X2) and second disease (Y1; Y2)

given the frailties using Si(x) =
�
1 + s2

i

�i

�i
(e�ix � 1)

�� 1

s2
i ; (i = 1; 2).

� The censored (bivariate) lifetimes Tij = minfXij; Yij; Cijg are generated by using

the lifetimes with respect to the second cause of death as dependent censoring times

and uniform distributed random variables on [40,100] as independent censoring

times.

� Birth years are generated by using a uniform distribution on [1870,1930] to mimic

the truncation pattern.

� Year of truncation is 1943.

The simulation program was written using the GAUSS language. We simulated 500 data

sets.
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4.2 Simulation results

The mean parameter estimates of the model are shown in Table 1, in comparison with

the true values used for simulation. Although there appears to be some bias in certain

parameter estimates, the magnitude does not appear to be of any practical signi�cance

and the overall performance is quite accurate.

Parameter true value Mean of estimates standard deviation of estimates

�1 1.000 1.010 0.278

�1 0.120 0.121 0.008

s1 2.000 1.992 0.202

�2 1.000 0.993 0.311

�2 0.120 0.122 0.009

s2 2.000 2.062 0.250

�1 2.000 1.956 0.287

�2 2.000 2.174 0.684

�1(MZ) 0.400 0.410 0.073

�1(DZ) 0.200 0.206 0.050

�2(MZ) 0.100 0.108 0.064

�2(DZ) 0.060 0.067 0.051

� 0.500 0.533 0.237

Table 1: Parameter estimation in the simulation study.

5 Example

In our example, we investigated how well the method performed when used to analyse

the respective inuence of genetic and environmental factors a�ecting risk of mortality

from coronary heart disease (CHD). In this example the second cause of death is all

other causes combined. The data we use for our analysis are the survival times of MZ

and DZ female twins sampled from the Danish Twin Registry, the �rst national twin

registry world-wide (established in 1954 by Bent Harvald and Mogens Hauge). This

population-based registry includes all twins born in Denmark during the period 1870-

1910 and all same-sex pairs born between 1911 and 1930. For detailed information about

the Danish Twin Registry see Hauge (1981). The data set contains records of female

twin pairs born between 1 January 1870 and 31 December 1930 and both individuals

were still alive on 1 January 1943. Consequently, the observations are left truncated.

Pairs with at least one death before 31 December 1993 and incomplete ICD information
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or unknown zygosity were excluded. Individuals were followed up to 31 December 1993,

and subjects identi�ed as deceased after that date were classi�ed here as alive. Total,

we sampled 1470 MZ twin pairs and 2730 DZ twin pairs.

In addition to the lifetime data, there is documentation regarding the cause of death for

all non-censored lifetimes. During the follow-up 369 deaths due to CHD occur among

MZ twins and 704 deaths among DZ twins. CHD was de�ned as ICD code 420 (revision

6 and 7) and 410 - 414 (revision 8). Death status, age at death, and cause of death

were obtained from the Central Person Register, the Danish Cause-of-death Register,

the Danish Cancer Register (founded in 1942), and other public registers in Denmark.

The validity of the twin register has been checked by comparing information about year

of death with the nationwide Danish Cancer Register. Both registers were independent,

but 99 % agreement was found (Holm, 1983). Further data corrections increased this part

to almost 100 %. Zygosity was determined by self reported similarities. Validations of

this zygosity classi�cation by comparing with laboratory methods (serological markers)

show a misclassi�cation rate of less than 5 % (Lykken, 1978; Holm, 1983). For more

detailed information about status, zygosity and cause of death in the population under

study see Table 2 and 3.

status monozygotic twins dizygotic twins

both twins dead 622 1072

one twin alive, cotwin dead 332 773

both twins alive 516 885

all pairs together 1470 2730

Table 2: Study population (number of pairs) by zygosity and life status.

cause of death monozygotic twins dizygotic twins

coronary heart disease 369 704

all causes together 1576 2917

alive (censored) 1364 2543

Table 3: Study population (number of individuals) by zygosity and cause of death.

First, we compared the ADE and DE as well as the ACE and CE models. The likelihood

ratio test prefers the DE and the ACE model (Table 4). The ACE model converges to the

AE model. Standard errors are not given in the ACE model since 0 is the boundary of the

parametric space. A comparison of the AE and the DE model is impossible with respect

to the likelihood ratio test because the models are not nested. According to the Akaike
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Information Criterion (AIC), the AE model �t the data best and gives a inheritance

estimate of 0.39, with standard error 0.13. Using the sub-model of independent causes

of death (� = 0, model (2) and (4)), the inheritance estimate was 0.58 (0.14).

� a
2

d
2

c
2

e
2

� Log-L

ACE 1.70 ( | ) 0.39 ( | ) 0.00 ( | ) 0.61 ( | ) 0.45 ( | ) 22268.06

AE 1.70 (0.21) 0.39 (0.13) 0.61 (0.13) 0.45 (0.12) 22268.06

ADE 1.63 (0.23) 0.28 (0.24) 0.13 (0.26) 0.59 (0.12) 0.49 (0.06) 22267.81

DE 1.63 (0.24) 0.44 (0.12) 0.56 (0.12) 0.49 (0.07) 22268.61

CE 1.80 (0.26) 0.22 (0.00) 0.78 (0.07) 0.54 (0.06) 22271.93

AE* 1.87 (0.41) 0.58 (0.14) 0.42 (0.14) 0.00 22269.24

Table 4: Results of genetic analysis of CHD. �2 - variance of frailty, a2 - additive genetic

e�ects, d2 - genetic e�ects due to dominance, c2 - shared environment, e2 - non-shared en-

vironment, � - correlation between frailties associated with competing risks, Log-L - value of

the Log-Likelihood function divided by number of observations, DE* - DE model with � = 0

(independent model)

6 Discussion

Frailty models are mixture models within survival analysis. In survival analysis, one

typically has to deal with censored observations. In most applications censoring is as-

sumed to be simply non-informative. This assumption is realistic for example in clinical

studies, where patients contribute censored observations because they are still alive at

the preassigned termination point of study. Some others get lost during the time of

follow-up for reasons that are not related to the event under study. In such cases cen-

soring can be assumed to be non-informative. However, in some cases this assumption is

questionable, especially in cases where there competing causes of death. This paper has

suggested using an extension of the bivariate correlated gamma-frailty model (Pickles

et al., 1994; Yashin and Iachine, 1995) in such cases, where only a part of the censored

observations is assumed to be non-informatively censored. Because competing risks can

also be correlated within families and may share unobserved dependencies with the cause

of interest, the standard approach, which treats competing risks as independent, could

lead to biased estimates of the variance components associated with the cause of interest.

Here, the frailties are modeled in terms of standard variance components for additive

and dominance genetic e�ects and shared and unique environmental e�ects. This thus

provides a rich class of models for analyzing this complex pattern of dependencies be-

tween family members and between causes of death. Furthermore, frailty models are
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well suited for inclusion of observed covariates into the analysis (Wienke et al., 2002).

Using cause-speci�c mortality data of relatives (here twins) it is possible to overcome

problems due to identi�ability in univariate censored lifetimes as stated in Tsiatis (1975).

The model we have evolved allows for dependencies among competing risks, and makes

it possible to test for such dependencies. Furthermore, combining methods from survival

analysis (especially from frailty models) and genetic analysis as we did, improves the

genetic analysis of time-to-event data in the case of informative and non-informative

censoring together as well as accounting for heterogeneity in the population. Our example

is an extension of the analysis in the case of independent causes of death (Wienke et al.,

2000, 2001), where deaths from other causes than the cause under study are treated as

non-informative and collapsed with censored observations caused by end of study. In both

cases (here called dependent and independent) the AE model is the best �tting model for

CHD. This shows a certain degree of consistency in the model. Comparing both cases, it

turns out, that the heritability of frailty on mortality due to CHD change substantially.

Fixing the correlation of 0.45 (0.12) between frailty on mortality from CHD and frailty on

mortality from other causes to zero has a impact on the heritability estimate - changing it

from 0.39 (0.13) to 0.58 (0.14). Both models detected the signi�cant inuence of genetic

factors. The parameter � can be used to test the hypothesis of dependence between the

competing risks. The likelihood ratio test indicates that the simpler independent model

is su�cient to describe the data.

The proof of consistency and asymptotic normality of the maximum likelihood estimators

is still an open problem, but our simulation results seem to point to the asymptotic

validity of the proposed method.

One important limitation of the presented model should be kept in mind, the correlation

coe�cient between the frailties are always non-negative by construction. This restriction

makes sense when comparing the lifetimes of relatives, but it is not clear that the same

holds for the competing risks in an individual. On one hand, many major diseases

have risk factors in common and consequently, the presence of any one of these risk

factors will increase the risk of death with respect to all diseases. On the other hand,

everyone dies eventually, so logically, if the risk of death from one cause is decreased

the risk from another cause must be increased. Furthermore, the parameter � is only

identi�able in a 'real' multivariate case. Pairs of unrelated individuals (e.g. �1 = �2 = 0)

implies the univariate case, which makes the parameter � non-identi�able. The nature

of dependencies among competing risks deserves further study.

Classical twin studies are based on the important assumption that MZ and DZ twins have

the same correlation in environments (equal environment assumption). This standard

assumption is necessary for the identi�ability of heritability i.e. so as to be able to
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interpret the di�erence in concordance between MZ and DZ twins as being explained in

full by their di�erence in genetic concordance. However, without doubt, the assumption

is also questionable: MZ twins are generally treated the same by their parents to a

much greater extend than DZ twins by their parents. This implies an overestimation of

heritability. The equal environment assumption seems to be acceptable with respect to

environmental factors related to CHD.

The suggested model gives a clear illustration of how the methods of survival analysis

and genetic epidemiology may be merged to improve the genetic investigation of time-to-

event data. Further extensions of the model to multiple causes of death and/or multiple

related lifetimes will be important in elucidating the properties of this strategy.
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Appendix

The following relations are used in the calculations: EZ1 = EZ2 = EZ3 = EZ4 = 1,

V(Z1) = V(Z3) =
1

k1+k2+k5
= �2

1, V(Z2) = V(Z4) =
1

k1+k3+k4
= �2

2.

The second moment of V2 is needed to calculate the mixed moment EZ1Z3:

EV 2
2 = V(V2) + (EV2)

2 =
k2

�21
+
�k2
�1

�2
=

k22 + k2

�21

Hence,

EZ1Z3 = E(
�0

�1
V1 + V2 + V5)(V2 + V6 +

�0

�1
V8)

= E

��0
�1
V1V2 +

�0

�1
V1V6 +

�20
�21
V1V8

+ V 2
2 + V2V6 +

�0

�1
V2V8 + V2V5 + V5V6 +

�0

�1
V5V8

�

=
k1k2

�21
+
k1k5

�21
+
k21
�21

+
k22 + k2

�21
+
k2k5

�21
+
k1k2

�21
+
k2k5

�21
+
k25
�21

+
k1k5

�21
=

k2

�21
+ 1

and consequently

cov(Z1; Z3) = EZ1Z2 �EZ1EZ2 =
k2

�21
:

Now we are able to derive the correlation:

�1 =
cov(Z1; Z3)p
V (Z1)V (Z3)

=
k2

�1
= k2�

2
1 (9)

Similar calculations imply �2 = k3�
2
2 and � = k1�1�2. Consequently, k1 + k2 + k5 =

1
�2
1

and k1 + k3 + k4 =
1
�2
2

imply the following relations:

k5 =
1

�2
1

� k2 � k1 =
1

�2
1

�
�1

�2
1

�
�

�1�2
and k4 =

1

�2
2

� k3 � k4 =
1

�2
2

�
�2

�2
2

�
�

�1�2
:

If Y � �(k; �), then Ee�sY = (1 + s

�
)�k. Now we are in the state to derive the survival

function in (7):
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S(x1; y1; x2; y2)

= ES1(x1)
Z1S2(y1)

Z2S1(x2)
Z3S2(y2)

Z4

= Ee
�V1(

�0
�1

H1(x1)+
�0
�2

H2(y1))e�V2(H1(x1)+H1(x2))

� e�V3(H2(y1)+H2(y2))e
�V8(

�0
�1

H1(x2)+
�0
�2

H2(y2))e�V4H2(y1)e�V5H1(x1)e�V6H1(x2)e�V7H2(y2)

= (1 +
1

�0
(
�0

�1
H1(x1) +

�0

�2
H2(y1)))

�k1(1 +
1

�1
H1(x1) +

1

�1
H1(x2))

�k2

� (1 +
1

�2
H2(y1) +

1

�2
H2(y2))

�k3(1 +
1

�0
(
�0

�1
H1(x2) +

�0

�2
H2(y2)))

�k1

� (1 +
1

�2
H2(y1))

�k4(1 +
1

�1
H1(x1))

�k5(1 +
1

�1
H1(x2))

�k5(1 +
1

�2
H2(y2))

�k4

= (S1(x1)
��2

1 + S1(x2)
��2

1 � 1)��1=�
2

1(S2(y1)
��2

2 + S2(y2)
��2

2 � 1)��2=�
2

2

� (S1(x1)
��2

1 + S2(y1)
��2

2 � 1)��=�1�2(S1(x2)
��2

1 + S2(y2)
��2

2 � 1)��=�1�2

� S2(y1)
1��2�

�2
�1

�
S1(x1)

1��1�
�1
�2

�
S1(x2)

1��1�
�1
�2

�
S2(y2)

1��2�
�2
�1

�

The likelihood function (of the truncated data) is of the following form:

L(t1; t2; �1; �2; w) =
�
1(�1 = 1; �2 = 1)Sx1x2(t1; t1; t2; t2)

+ 1(�1 = 1; �2 = 0)Sx1(t1; t1; t2; t2)

+ 1(�1 = 0; �2 = 1)Sx2(t1; t1; t2; t2)

+ 1(�1 = 0; �2 = 0)S(t1; t1; t2; t2)

+ 1(�1 = �1; �2 = �1)Sy1y2(t1; t1; t2; t2)

+ 1(�1 = �1; �2 = 0)Sy1(t1; t1; t2; t2)

+ 1(�1 = 0; �2 = �1)Sy2(t1; t1; t2; t2)

+ 1(�1 = 1; �2 = �1)Sx1y2(t1; t1; t2; t2)

+ 1(�1 = �1; �2 = 1)Sy1x2(t1; t1; t2; t2)
�
=S(w;w; w; w)
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The derivatives are given by

Sx1(x1; y1; x2; y2) = ��1(S1(x1)
��2

1 + S1(y1)
��2

1 � 1)
�

�1

�2
1

�1

� (S2(x2)
��2

2 + S2(y2)
��2

2 � 1)
�

�2

�2
2

� (S1(x1)
��2

1 + S2(x2)
��2

2 � 1)
�

�

�1�2

� (S1(y1)
��

2

1 + S2(y2)
��

2

2 � 1)
�

�

�1�2

� S1(x1)
1��1�

�1
�2

���
2

1�1(x1)

� S1(y1)
1��1�

�1
�2

�

� S2(x2)
1��2�

�2
�1

�

� S2(y2)
1��2�

�2
�1

�

�
�1

�2
�(S1(x1)

��2
1 + S1(y1)

��2
1 � 1)

�
�1

�2
1

� (S2(x2)
��

2

2 + S2(y2)
��

2

2 � 1)
�

�2

�2
2

� (S1(x1)
��2

1 + S2(x2)
��2

2 � 1)
�

�

�1�2
�1

� (S1(y1)
��

2

1 + S2(y2)
��

2

2 � 1)
�

�

�1�2

� S1(x1)
1��1�

�1
�2

���
2

1�1(x1)

� S1(y1)
1��1�

�1
�2

�

� S2(x2)
1��2�

�2
�1

�

� S2(y2)
1��2�

�2
�1

�

� (1� �1 �
�1

�2
�)�2

1(S1(x1)
��2

1 + S1(y1)
��2

1 � 1)
�

�1

�2
1

� (S2(x2)
��

2

2 + S2(y2)
��

2

2 � 1)
�

�2

�2
2

� (S1(x1)
��2

1 + S2(x2)
��2

2 � 1)
�

�

�1�2

� (S1(y1)
��

2

1 + S2(y2)
��

2

2 � 1)
�

�
�1�2

� S1(x1)
1��1�

�1
�2

�
�1(x1)S1(y1)

1��1�
�1
�2

�

� S2(x2)
1��2�

�2
�1

�
S2(y2)

1��2�
�2
�1

�



20 A. Wienke, K. Christensen, A. Skytthe, A.I. Yashin
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