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Abstract

This article extends Nathan Keyfitz’s research on continuous change
in life expectancy over time. A new formula for decomposing such
change is presented and proved. The formula separates change in life
expectancy over time into two terms. The first term captures the gen-
eral effect of reduction in death rates at all ages. The second term
captures the effect of heterogeneity in the pace of improvement in
mortality at different ages. The formula is extended to decompose
change in life expectancy into age-specific and cause-specific compo-
nents. The methods are applied to analyze changes in life expectancy
in Sweden and Japan.

Introduction
Methods to analyze change in life expectancy over time have been devel-
oped by various demographers. Pollard (1982, 1988), Arriaga (1984), Pres-
sat (1985) and Andreev (1982) (see Andreev et al. (2002)) focused on the
discrete difference in life expectancy at two moments in time. Keyfitz (1977,
1985) considered continuous change and derived a formula that relates the
time-derivative of life expectancy to the entropy of lifetable survivorship.
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Mitra (1978), Demetrius (1979), Goldman and Lord (1986), Vaupel (1986),
Hokkert (1987) and Hill (1993) further developed this approach.
In this article we present and prove a new decomposition of change in

life expectancy over time that generalizes Keyfitz’s results. In addition we
extend this new method to analyze age-specific and cause-specific effects.
We begin with some notation and the proof of the decomposition formula.
Then we provide a number of illustrative examples using data for Sweden
and Japan.

Preliminaries
The new decomposition relates the time-derivative of life expectancy to the
average pace of improvement in mortality, the average number of life-years
lost as a result of death, and the covariance between age-specific rates of
mortality improvement and age-specific remaining life expectancies. Before
presenting the decomposition it will be useful to briefly discuss each of these
quantities.
Life expectancy at birth at time � can be expressed as

��(0� �) =

Z �

0

�(�� �)��� (1)

where �(�� �) is the lifetable probability at time � of surviving from birth to
age �, and � is the highest age attained.
It is convenient to use a dot over a variable to denote the derivative with

respect to time,

�̇ ≡ �̇(�� �) ≡ 	

	�
�(�� �)� (2)

where �(�� �) is some demographic function. Hence, the time-derivative of
life expectancy at birth is expressed as �̇�(0� �).
The force of mortality at age � and at time � is denoted by 
(�� �). Us-

ing an acute accent over the variable to represent the relative derivative or
intensity with respect to �

�́ ≡ �́(�� �) ≡ �̇(�� �)

�(�� �)
≡

�
��
�(�� �)

�(�� �)
� (3)

we define �(�� �) as the rate of progress in reducing death rates,

�(�� �) = −
́(�� �)� (4)
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The acute accent notation, which reduces the clutter in many demographic
formulas, was originated by Vaupel (1992), and is used in Vaupel and Canudas
Romo (2000, 2002).
Let �̄(�) denote the average of �(�� �) over �

�̄(�) =

R∞
0
�(�� �)(�� �)��R∞
0
(�� �)��

� (5)

where (�� �) is some weighting function. We define the average improvement
in mortality as

�̄(�) =

Z �

0

�(�� �)�(�� �)��� (6)

where �(�� �) is the probability density function describing the distribution
of deaths (i.e., lifespans) in the lifetable population at age � and time �. Note
that in this average the denominator is one, because

R �

0
�(�� �)�� = 1.

Let ��(�� �) denote remaining life expectancy at age � and time �:

��(�� �) =

R �

�
�(�� �)��

�(�� �)
� (7)

Then the average number of life-years lost as a result of death is given by

�†(�) =
Z �

0

��(�� �)�(�� �)��� (8)

The covariance between functions �(�� �) and �(�� �), with weighting func-
tion (�� �), is

����(�� �) =

R∞
0
[�(�� �)− �̄(�)] [�(�� �)− �̄(�)](�� �)��R∞

0
(�� �)��

=

R∞
0
�(�� �)�(�� �)(�� �)��R∞

0
(�� �)��

−
R∞
0
�(�� �)(�� �)��R∞
0
(�� �)��

R∞
0
�(�� �)(�� �)��R∞
0
(�� �)��

≡ �� − �̄�̄� (9)

Hence, the covariance between age-specific rates of mortality improvement
and age-specific remaining life expectancies, weighted by the distribution of
deaths, is

����(�� �
�) =

Z �

0

[�(�� �)− �̄(�)]
£
��(�� �)− �†(�)

¤
�(�� �)��� (10)
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Note that formula (9) implies that the expectation of a product can be
decomposed as

�� = �̄�̄ + ����(�� �)� (11)

a result central to our derivation.

A New Decomposition of the Time-
Derivative of Life Expectancy
Change in life expectancy can be decomposed as follows:

�̇�(0� �) = �̄�† + ����(�� �
�)� (12)

�����
From the definition of life expectancy in formula (1) and the fact that

�(�� �) = �−
R
�

0 �(	
�)�	, it follows that the time-derivative of life expectancy is

�̇�(0� �) =

Z �

0

�̇(�� �)�� =

Z �

0

�(�� �)�́(�� �)�� = −
Z �

0

�(�� �)

Z �

0


̇(�� �)�����

(13)
In terms of the rate of progress in reducing death rates, �(�� �) = −
́(�� �)�
the derivative of life expectancy can be expressed as

�̇�(0� �) =

Z �

0

�(�� �)

Z �

0


(�� �)�(�� �)���� =

Z �

0


(�� �)�(�� �)

Z �

�

�(�� �)�����

(14)
See Goldman and Lord (1986) and Vaupel (1986) for further discussion of
the reversal of integration used to derive (14). Given formula (7) for the
remaining expectation of life at age � and time �, ��(�� �), and the probability
density function describing the distribution of deaths �(�� �) = 
(�� �)�(�� �),
formula (14) implies that

�̇�(0� �) =

Z �

0


(�� �)�(�� �)�(�� �)��(�� �)�� =

Z �

0

�(�� �)��(�� �)�(�� �)���

(15)
Formula (15) can be decomposed using (11), the formula for the expec-

tation of a product:
�̇�(0� �) = �̄�† + ����(�� �

�)�

Q.E.D.
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The decomposition in formula (12) expresses the change in life expectancy
at birth as the sum of two terms. The first term is the product of the average
rate of mortality improvement and the average number of life-years lost. This
term captures the general effect of a reduction in death rates and will be called
the “level-1 change” in this article. Note that �̄ can be interpreted as the
proportion of deaths averted (or lives saved) and �† can be interpreted as the
average number of life-years gained per life saved.
The second term, the covariance between rates of mortality improvement

and remaining life expectancies, increases or decreases the general effect,
depending on whether the covariance is positive or negative. If �(�� �) is con-
stant at all ages, then the covariance is zero. Hence, the covariance captures
the effect of heterogeneity in �(�� �) at different ages. If the pace of mortality
improvement tends to be greatest at ages at which remaining life expectancy
is long, then the covariance will be positive. The covariance term will be
called the “level-2 change” in this article. Another decomposition without
the covariance term can be seen in Note 4 in this article.
Formula (12) is analogous to the decomposition of Vaupel and Canudas

Romo (2002). That formula breaks the change in an average into a level-
1 term involving the average of age-specific changes and a level-2, covari-
ance term that captures the effect due to heterogeneity in age-specific or
subpopulation-specific changes.

An Illustration: Change in
Swedish Life Expectancy
Table 1 shows the application of formula (12) to the annual change in life
expectancy at birth for the Swedish population in 1903, 1953 and 1998.
Over the course of the 20�� century Swedish life expectancy increased

substantially. The average pace of mortality improvement, �̄, fluctuated from
about 1.9% at the turn of the century to 2.1% at mid century and 1.6% at
the end of the century. The average number of life-years lost as a result of
death, �†, dropped from 22 years in 1903 to around 12 years in 1950 and 10
years in 1998. The product �̄�† describes the increase in life expectancy due
to the general advance in survivorship. This level-1 component is positive
and is the main contributor to the increase in life expectancy.
The level-2 component is the covariance between age-specific improve-
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Table 1: Life expectancy at birth, ��(0� �), and the decomposition of the
annual change around the first of January of 1903, 1953 and 1998, in Sweden.

� 1903 1953 1998
��(0� �− 2�5) 52.239 71.130 78.784
��(0� �+ 2�5) 54.527 72.586 79.740
�̇�(0� �) 0.458 0.291 0.191

�̄ (%) 1.852 2.083 1.587
�† 22.362 11.988 10.053
�̄�† 0.414 0.249 0.159
����(�� �

�) 0.044 0.042 0.032
�̇�(0) = �̄�† + ���� (�� �

�) 0.458 0.291 0.191

Source: Authors’ calculations described in Note 1 and Note 2. Life table data is derived
from the Human Mortality Database (2002). Life table values for the years 1900 and
1905, 1950 and 1955, 1995 and 2000, were used to obtain results for the mid-points around

January 1, 1903, 1953 and 1998.

ments in mortality and remaining life expectancies. This term is positive
but relatively small. It is positive because relatively large reductions in mor-
tality were achieved at ages with relatively long remaining life expectancies.

Relationship to the Entropy of
the Survival Function
Following Keyfitz (1985), let H(�) denote the entropy of the survival function

H(�) = −
R �

0
�(�� �) ln [�(�� �)] ��R �

0
�(�� �)��

� (16)

Goldman and Lord (1986), and Vaupel (1986) show that this entropy can
also be expressed as

H(�) =
R �

0
�(�� �)

R �

0

(�� �)����R �

0
�(�� �)��
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=

R �

0

R �

0
�(�� �)
(�� �)����R �

0
�(�� �)��

=

R �

0

R �

	
�(�� �)
(�� �)����

��(0� �)

=

R �

0

(�� �)

R �

	
�(�� �)����

��(0� �)
=

R �

0

(�� �)�(�� �)��(�� �)��

��(0� �)
� (17)

Given formula (8) for �† it follows that

�†(�) = ��(0� �)H(�)� (18)

If �(�� �) is constant over age, �(�� �) = �(�) for all �, then (12) reduces to

�̇�(0� �) = �(�)�†(�)� (19)

Substituting (18) yields

�̇�(0� �) = �(�)H(�)��(0� �)� (20)

or

�́�(0� �) =
�̇�(0� �)

��(0� �)
= �(�)H(�)� (21)

which was Keyfitz’s (1985) main result. Note that in (20) the change depends
not only on mortality progress and the entropy H(�), but also on the level of
life expectancy ��(0� �).
If �(�� �) varies with age, then (18) implies that our main result (12) can

be re-expressed as

�̇�(0� �) = �̄(�)H(�)��(0� �) + ����(�� �
�)� (22)

or, alternatively, the relative change in life expectancy can be decomposed
as

�́�(0� �) =
�̇�(0� �)

��(0� �)
= �̄(�)H(�) + ���� (�� �

�)

��(0� �)
� (23)

This result generalizes Keyfitz’s result in (21).
If mortality follows a shifting Gompertz trajectory with changing level

but constant rate of increase,


(�� �) = 
(0� �)��� (24)

then Vaupel ((1986), see also Vaupel and Canudas Romo (2000)) proved that

��(0� �)H(�) ≈ 1
�
� (25)
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From formula (18) it follows that the average life expectancy lost due to
death is

�†(�) ≈ 1
�
� (26)

The value of � can be estimated from the slope of a regression line fitted
to the logarithm of age-specific death rates from age 30 to 95 years, the span
of life when mortality approximately follows a Gompertz trajectory. For
Sweden in 1900, 1950 and 2000, the values of 1


were around 13.803, 10.480

and 10.127, respectively. For the same years, the average number of life-years
lost as a result of death after age 30, �†30(�), are 12.382, 10.012 and 10.010.
(Note that even though all the formulas presented here are for life expectancy
at birth, they can also be used at any other age, by using a lifetable starting
at that age.)

Age Decomposition
Formula (15) can be decomposed by age category as follows

�̇�(0� �) =

Z �

0

�(�� �)��(�� �)�(�� �)��

=

Z 	1

0

�(�� �)��(�� �)�(�� �)��+ ���+

Z �

	�

�(�� �)��(�� �)�(�� �)��

=

R 	1
0
�(�� �)��(�� �)�(�� �)��R 	1

0
�(�� �)��

Z 	1

0

�(�� �)��+

��� +

R �

	�
�(�� �)��(�� �)�(�� �)��R �

	�
�(�� �)��

Z �

	�

�(�� �)��� (27)

The averages in this formula can be decomposed using (11), the formula for
the expectation of a product. For the age group �� to ��+1R 	�+1

	�

�(�� �)��(�� �)�(�� �)��R 	�+1

	�

�(�� �)��
= [�̄]	�+1

	�

£
�†
¤	�+1

	�

+ [���� (�� �
�)]	�+1

	�

� (28)

where [�̄]	�+1	�
is average improvement in mortality in the age group �� to ��+1,

[�̄]	�+1	�
=

R 	�+1

	�

�(�� �)�(�� �)��R 	�+1
	�

�(�� �)��
� (29)
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the number of life-years lost as a result of death
£
�†
¤	�+1

	�

in the age group ��
to ��+1 is defined as £

�†
¤	�+1
	�

=

R 	�+1
	�

��(�� �)�(�� �)��R 	�+1

	�

�(�� �)��
� (30)

and the component of the covariance in the age group �� to ��+1 is defined
as

[���(�� ��)]	�+1

	�
=

R 	�+1

	�

[�(�� �)− �̄(�)]
£
��(�� �)− �†(�)

¤
�(�� �)��R 	�+1

	�

�(�� �)��
� (31)

where �̄(�) and �†(�) are as defined in formulas (29) and (30).
If the age category is narrow enough, then �(�� �) and ��(�� �) will not

vary much within the age category. This implies that the covariance terms
will be close to zero. Hence we have the approximation

�̇�(0� �) ≈ [�̇�]	10 + ���+ [�̇�]�	�

= [�̄]	10
£
�†
¤	1
0
[� ]	10 + ���+ [�̄]�	�

£
�†
¤�
	�

[� ]�	�
� (32)

where [� ]	�+1

	�
denotes the distribution of deaths in the age group �� to ��+1

[� ]	�+1

	�
=

Z 	�+1

	�

�(�� �)��� (33)

For single years of age this approximation will be very good. It can be
written as

�̇�(0� �) ≈ [�̇�]0 + [�̇
�]1 + ���+ [�̇�]�

= �(0�5� �)��(0�5� �)�(0�5� �) + �(1�5� �)��(1�5� �)�(1�5� �) +

���+ �(� − 0�5� �)��(� − 0�5� �)�(� − 0�5� �)� (34)

with the understanding that �(� + 1�2� �) is the rate of progress in reducing
mortality, ��(� + 1�2� �) is the remaining life expectancy, and �(� + 1�2� �) is
the proportion of deaths, between exact age � and �+ 1.
The three age-specific components of formula (32) are shown in Figures

1, 2 and 3 for Sweden in 1903, 1953 and 1998. Figure 4 shows the value of
the resulting age-specific components of the change in life expectancy, the
[�̇�]� terms. Because the value of this component was so large at ages 0, 1
and 2 in 1903, the Figure is restricted to ages 5 and older. In 1903, fully 55%
of the change in life expectancy was due to mortality change at age 0-2.
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Figure 1: Five-year moving average of the improvement in mortality at ages
2 to 99 for Sweden in 1903, 1953 and 1998.

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1
2 10 20 30 40 50 60 70 80 90 99

Ages

A
ve

ra
ge

 im
pr

ov
em

en
t

1903
1953
1998

Figure 2: Remaining life expectancy at ages 0 to 99 for Sweden in 1903, 1953
and 1998.
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Figure 3: Distribution of deaths at ages 0 to 99 for Sweden in 1903, 1953
and 1998.
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Figure 4: Five-year moving average of the age contribution to the change in
life expectancy at ages 5 to 99 for Sweden in 1903, 1953 and 1998.
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Decomposing Life Expectancy by Cause of Death
Let 
�(�� �) be the force of mortality from cause of death � at age � and time
�. The chance of surviving, i.e., not dying from cause �, is then ��(�� �) =
�−

R
�

0 ��(	
�)�	. For competing, independent causes of death �(�� �) = �1(�� �)�����(�� �).
Hence,

��(0� �) =

Z �

0

�(�� �)�� =

Z �

0

�1(�� �)�����(�� �)��� (35)

and

�̇�(0� �) =

Z �

0

�̇1(�� �)�����(�� �)��+ ���+

Z �

0

�1(�� �)����̇�(�� �)��

=

Z �

0

�́1(�� �)�1(�� �)�����(�� �)��+ ���+

Z �

0

�́�(�� �)�1(�� �)�����(�� �)��

=

Z �

0

�́1(�� �)�(�� �)�� + ���+

Z �

0

�́�(�� �)�(�� �)��� (36)

Each of the terms in (36) can be reexpressed, using the same logic as ex-
plained above:Z �

0

�(�� �)�́�(�� �)�� = −
Z �

0

�(�� �)

Z �

0


̇�(�� �)����

= −
Z �

0


̇�(�� �)

Z �

�

�(�� �)���� = −
Z �

0


̇�(�� �)�(�� �)�
�(�� �)��� (37)

Thus

�̇�(0� �) = −
�X

�=1

Z �

0


̇�(�� �)�(�� �)�
�(�� �)���

This formula is the continuous version of the discrete difference formula pre-
sented by Pollard (1982, 1988).
Let ��(�� �) denote the pace of reduction of mortality from cause �, ��(�� �) =

−
́�(�� �). The proportion of deaths from cause � at age � and time � is
��(�� �) = 
�(�� �)�(�� �). It then follows from (37) that

�̇�(0) =
�X

�=1

Z �

0

��(�� �)�
�(�� �)��(�� �)��� (38)

Applying the decomposition in formula (11) yields

�̇�(0� �) =
�X

�=1

h
�̄��

†
� + �����(��� �

�)
i
��� (39)
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where

�� ≡ ��(�) =

Z �

0

��(�� �)��� (40)

�̄�(�) is the average pace of reduction of mortality from cause �:

�̄�(�) =

R �

0
��(�� �)��(�� �)��R �

0
��(�� �)��

� (41)

�†� (�) is the average number of life-years lost as a result of cause of death �,

�†� (�) =

R �

0
��(�� �)��(�� �)��R �

0
��(�� �)��

� (42)

and the covariance is between the rate of improvement in mortality from
cause of death � and the remaining life expectancy at various ages

�����(��� �
�) =

R �

0
[��(�� �)− �̄�(�)]

h
��(�� �)− �†� (�)

i
��(�� �)��R �

0
��(�� �)��

� (43)

Note that the averages (6) to (10) differ from those (41) to (43), because in the
latter equations the denominators do not add to one, ��(�) =

R �

0
��(�� �)�� 6=

1.

An Illustration: Change in
Japanese Life Expectancy
Take the case of Japan as an example: The lifetable distribution of deaths
due to the different causes of death in 1980 and 1990 is shown in Table 2.
This is a distribution of causes of death for a lifetable population in which
the proportion of people at each age is determined by lifetable probabilities
of survival.
Table 3 and Figure 5 present the results of applying the decomposition

formula in (39) to the Japanese data. Over the decade from 1980 to 1990,
Japanese life expectancy rose from 75�91 to 78�80 years, with an estimated
annual increase of �̇�(0� 1985) = 0�288. As shown in Table 3 and Figure 5,
three fifths of this increase in life expectancy can be attributed to a reduction
in mortality due to cerebrovascular disease and heart disease.
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Table 2: Lifetable distribution of causes of death for Japan in 1980 and 1990.

����� �� ����� 1980 1990
% %

����� ������� 21.4 23.7
����� � �  ��!���" 18.5 21.6
����������#���� ������� 24.3 16.1
$ ��#����� �������� 8.6 12.8
% ���� � ������ 4.6 4.5
&��"�#�� ����� � �
'�� �( ��������� 4.3 4.3
&� ����( ������ !�(#����� 7.4 5.0
)���� #����� 10.9 12.0
*�� #����� �� ����� 100.00 100.00

Source: Authors’ calculations described in Note 1 and 2, based on the Berkeley Mortal-

ity Database (2001). Heart disease includes hypertensive disease. Other causes of death
are those denoted in the Berkeley Mortality Database (2001) as Other Causes, plus con-
genital malformations and diabetes mellitus. Infectious diseases include pneumonia and

bronchitis.

On average, death rates from malignant neoplasms and infectious dis-
eases increased, yielding negative values of �̄ and negative level-1 changes.
As opposed to this, the level-2 changes for these causes of death had positive
values, because improvements were made at younger ages with high remain-
ing life expectancy. As a result of the balance between level-1 and level-2
change, the final column of Table 3 shows only positive contributions for all
the causes of death.

Relationship to the Cause-Specific
Entropy of the Survival Function
Keyfitz (1977) derived a formula to study the effects that health improve-
ments have on the change of life expectancy over time

�́�(0� �) =
�X

�=1

��(�) H�(�)� (44)
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Table 3: Cause of death decomposition for the annual change over time in
life expectancy, for Japan around January 1, 1985.

����� �� ����� �̄� (%) �†� �̄��
†
� �����(��� �

�) �� (%) �̇�� (0)
����� ������� 2.058 8.333 0.172 0.022 22.543 0.044
����� � �  ��!���" -0.098 13.276 -0.013 0.088 20.042 0.015
����������#����
������� 6.979 8.594 0.600 0.038 20.226 0.129
$ ��#����� �������� -0.703 7.942 -0.056 0.104 10.718 0.005
% ���� � ������ 1.608 23.384 0.376 0.058 4.516 0.020
&��"�#�� ����� � �
'�� �( ��������� 2.168 11.548 0.250 0.094 4.294 0.015
&� ����( ������
!�(#����� 9.379 4.294 0.403 0.040 6.200 0.027
)���� #����� 1.432 13.792 0.197 0.137 11.461 0.038
*�� #����� �� ����� 0.293

Source: Authors’ calculations described in Note 1 and 2, based on the Berkeley Mortality

Database (2001).

where ��(�) represents the pace of the improvement, which is assumed to be
the same at all ages, at time � for the �th cause of death, and H�(�) the
entropy of the �th cause of death,

H�(�) = −
R �

0
�(�� �) ln [��(�� �)] ��R �

0
�(�� �)��

� (45)

In Keyfitz’s words, this entropy is “a measure of the length of time from the
nondeath from the �th cause up to the time when the person dies from the
next thing that will hit him” (1977: 414).
The entropy of the �th cause of death and the average number of life-years

lost as a result of cause of death � are related by

�†�(�) =
H�(�)�

�(0� �)

��(�)
� (46)

This result can be derived in the same way as formula (23). Substituting
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Figure 5: Cause of death decomposition for the annual change over time in
life expectancy, for Japan around January 1, 1985.
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Figure 6: Note: The abbreviations correspond to: HD-Heart disease; MN- Malignant
neoplasm; CD-Cerebrovascular disease; ID-Infectious diseases; VD-Violent deaths; SLKD-
Stomach, liver and kidney disorders; SP-Senility without psychosis; OC-Other causes.

formula (46) in (39), and dividing by the life expectancy yields

�́�(0� �) =
�X

�=1

µ
�̄�H�(�) +

�����(��� �
�)��

��(0� �)

¶
� (47)

which generalizes Keyfitz’s formula (44) to the case when rates of reduction
in cause-specific mortality can vary from age to age.

Discussion
Over the past two decades decomposition of change in life expectancy has
been a mainstay of demographic analysis. Almost all the many applications
have concerned discrete changes in life expectancy, with Arriaga’s (1984) for-
mulation being particularly popular. Keyfitz’s research on time-derivatives
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of life expectancy has largely been of theoretical interest because of the re-
strictive, unrealistic assumption that the pace of mortality change is constant
at all ages.
Reality is continuous and calculus is elegant, but data are discrete. In

this article we derive decomposition formulas for time-derivatives of life ex-
pectancy: our formulas involve derivatives and integrals. Pollard (1982, 1988)
studied discrete differences in life expectancy between two points in time, us-
ing formulas that involve integrals over age. Arriaga (1984) analyzed discrete
differences in life expectancy using formulas that take sums over age. All
three approaches are closely related when applied to actual data pertaining
to time intervals of a few years. Depending on the approach, either the for-
mulas or the estimation procedures involve approximations or inelegancies.
Pollard (1988) explained the underlying similarly of his method to Arriaga’s
and his method can also be shown to be similar, in empirical applications, to
ours. Hence it is no surprise that Arriaga’s method for decomposing change
in life expectancy by age yields the same results as the Vaupel-Canudas
method for Sweden around 1998, as shown in Table 4. Similarly, decomposi-
tion of change in life expectancy by cause of death using traditional methods
will generally produce essentially the same results as our new method. Why,
then, should demographers consider the methods developed in this article?
There are three main reasons.
First, our method permits further decomposition of age-specific and cause-

specific effects into the effects–for each age category or for each cause of
death–of the pace of mortality improvement, remaining life expectancy, and
the frequency of deaths.
Second, our method permits decomposition of change in life expectancy

into the general impact of mortality improvement at all ages (our "level-1
effect") and the additional effect of heterogeneity in the age-specific rates
of improvement (our "level-2" effect). The general impact can be further
decomposed into the average rate of mortality improvement multiplied by
the average number of life-years saved. We conjecture that this kind of de-
composition will lead to more interesting demographic insights than Arriaga’s
distinction between the direct and indirect effects of mortality improvements.
Third, our formulas are both elegant and exact. It is necessary to use

approximations when applying them to data, which is a minor drawback.
Because the formulas are elegant, they aid understanding and permit deeper
comprehension of the demographic factors that are driving change in life
expectancy. The formulas are thus in the spirit of Nathan Keyfitz’s enduring
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Table 4: Age decomposition of the annual change over time in life expectancy
using Arriaga’s and Vaupel-Canudas’ decompositions, around the first of
January of 1998, in Sweden.

*�� ����! *������ % ��!�� − �� ����
0− 9 0.013 0.013
10− 19 -0.002 -0.002
20− 29 -0.001 -0.001
30− 39 0.014 0.014
40− 49 0.020 0.020
50− 59 0.021 0.021
60− 69 0.045 0.045
70− 79 0.050 0.050
80− 89 0.025 0.025
90 � � ����� 0.007 0.007
*�� ���� 0.191 0.191

Source: Authors’ calculations described in Note 1 and Note 2. Lifetable data are derived
from the Human Mortality Database (2002). Lifetable values from the years 1995 and

2000 were used to obtain results for the first of January, 1998.

contribution to demographic research.3
4
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Notes

1. If data are available for time � and � + �, then we generally used the
following approximations for the value at the mid-point � + ��2. For the
relative derivative of the function �(�� � + ��2), we used

�́(�� � + ��2) ≈
ln
h
�(�
�+�)
�(�
�)

i
�

� (48)

The value of the function at the mid-point � (�� � + ��2) was estimated by

�(�� �+ ��2) ≈ �(�� �)�(��2)�́(�
�+��2)� (49)

Substituting the right-hand side of (48) for �́(�� � + ��2) in (49) yields the
equivalent approximation

�(�� �+ ��2) ≈ [�(�� �)�(�� �+ �)]1�2 � (50)

This is a standard approximation in demography (Preston, Heuveline and
Guillot, 2001). The derivative of the function �(�� �+ ��2) was estimated by

�̇(�� � + ��2) = �́(�� �+ ��2)�(�� �+ ��2)� (51)

We used (48)-(51) wherever we thought that the rate of change was more
or less constant over the time interval. In some cases it seemed appropriate
to assume that change in the interval was linear. This was the case when we
estimated the change over time in the survivorship function �(�� �) and life
expectancy �(�� �). Then we used

�(�� �+ ��2) ≈ �(�� �+ �) + �(�� �)

2
(52)

and

�̇(�� � + ��2) ≈ �(�� �+ �)− �(�� �)

�
� (53)

2. The mid-ages were calculated for the survivorship function �(�� �) and the
remaining life expectancy for each age group �(�� �) following the formulas of
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Note 1. The period force of mortality in an interval, for all causes of death,
was calculated using a formula similar to (48)


(� + ��2� �) ≈
Z �+�

�


(�� �)�� = − ln
·
� (�+ �� �)

�(�� �)

¸
� (54)

In Tables 2 and 3 the force of mortality for the �th cause of death was
estimated by multiplying the result of formula (54) by the proportion of
deaths from cause �, ��(� + ��2� �), in the total deaths of the age group,
�(� + ��2� �),


�(� + ��2� �) ≈ 
(�+ ��2� �)

·
��(�+ ��2� �)

�(�+ ��2� �)

¸
� (55)

The lifetable distribution of deaths from cause � was calculated as

��(�+ ��2� �) ≈ 
�(�+ ��2� �)�(� + ��2� �)� (56)

3. This article is in honor of Nathan Keyfitz’s 90�� birthday. Nathan
Keyfitz was born on June 29, 1913 in Montreal, Canada.

4. Let �̃(�) denote the average value of the age-specific rate of progress in
reducing death rates, �(�� �), weighted by the the product of the remaining
life expectancy ��(�� �) and the probability density function �(�� �),

�̃(�) =

R �

0
�(�� �)��(�� �)�(�� �)��R �

0
��(�� �)�(�� �)��

� (57)

Then formula (15) implies that the change in life expectancy can be
decomposed as:

�̇�(0� �) = �̃�†� (58)

We are in the process of applying (58) to analyze the dynamics of life
expectancy.
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