
Max-Planck-Institut für demografische Forschung
Max Planck Institute for Demographic Research
Doberaner Strasse 114 · D-18057 Rostock · GERMANY
Tel +49 (0) 3 81 20 81 - 0; Fax +49 (0) 3 81 20 81 - 202; 
http://www.demogr.mpg.de

© Copyright is held by the authors.

Working papers of the Max Planck Institute for Demographic Research receive only limited review.
Views or opinions expressed in working papers are attributable to the authors and do not necessarily
reflect those of the Institute.

Age-structured optimal control 
in population economics

MPIDR WORKING PAPER WP 2002-045
SEPTEMBER 2002

Gustav Feichtinger (or@e119ws1.tuwien.ac.at) 
Alexia Prskawetz (fuernkranz@demogr.mpg.de)
Vladimir M. Veliov (vveliov@eos.tuwien.ac.at)



Age-Structured Optimal Control in Population
Economics1

Gustav Feichtinger2, Alexia Prskawetz3, and Vladimir M. Veliov4

Abstract

This paper brings both intertemporal and age-dependent features to a the-
ory of population policy at the macro-level. A Lotka-type renewal model of
population dynamics is combined with a Solow/Ramsey economy. By using a
new maximum principle for distributed parameter control we derive meaningful
qualitative results for the optimal migration path and the optimal saving rate.

1This research was partly supported by the Austrian Science Foundation under contract N0.
14060-OEK.
The authors are grateful for comments and suggestion by Thomas Lindh and Ross Guest and partic-
ipants at the session on Population and Macroeconomics at the PAA 2002 meeting in Atlanta. For
language editing, we would like to thank Renee Flibotte.

2Institute for Econometrics, Operations Research and Systems Theory, Vienna University of Tech-
nology, Argentinierstrasse 8/119, A-1040 Vienna, Austria, e-mail: or@e119ws1.tuwien.ac.at

3MPI for Demographic Research, Doberanerstr. 114, 18057 Rostock, Germany, e-mail:
fuernkranz@demogr.mpg.de; the views expressed in this paper are my own views and do not neces-
sarily represent those of the Max Planck Institute for Demographic Research.

4Institute for Econometrics, Operations Research and Systems Theory, Vienna University of Tech-
nology, Argentinierstrasse 8/119, A-1040 Vienna, Austria and Institute of Mathematics and Infor-
matics, Bulgarian Academy of Sciences, 1113 Sofia, Bulgaria, e-mail: vveliov@eos.tuwien.ac.at

1



1 Introduction

In this paper we present an approach for dynamic optimization in population eco-
nomics which is based on an optimal control model involving age-structured differen-
tial equations for the dynamics of both the population and the capital. In the qualita-
tive analysis and in the numerical solution of the problem we utilize the newly derived
maximum principle for age-structured systems (Feichtinger et al., 2000). It is shown
how the necessary optimality conditions may be used to derive interesting insights into
the structure of efficient age-dependent policies to cope with demo-economic problems
arising in ageing populations.

We mention that age or duration play an important role in many models in biology,
economics and in the social sphere, where one can apply the maximum principle from
Feichtinger et al. (2000) or its extension in Feichtinger et al. (2002) (concerning
systems that involve simultaneously age and duration). An extensive bibliography is
presented in Feichtinger et al. (2000).

Age is ubiquitous in demography. Virtually all demographic variables depend on age.
The core of population dynamics, stable population theory, is centered on age. In
economics, capital vintage models play a certain role (see, e.g., Solow, 1959), but age-
dependence of stocks and flows seems - for whatever reasons - to be not mainstream.

In an important early contribution, Arthur and McNicoll (1977) included age-dependent
features both of the population as well as of the capital stock. In their approach a
one-sex renewal-type population in the sense of Lotka is combined with a one-good
Solow-type economy. By assuming a capital vintage approach, a certain symmetry
arises between the population and the economic sector. Corresponding to the birth
rate and the birth trajectory are the savings rate and investment, with the fertility
level and the savings rate considered as control variables. The fact that these pro-
cesses evolve along a dimension of age as well as time makes the analysis difficult. To
investigate the resulting optimal control problems, Arthur and McNicoll utilize results
from control theory of integral equations, see Vinokurov (1969), which are applicable
for age-independent controls.

In the present paper the Arthur–McNicoll model is extended in several directions.
First we consider the savings control to be age-dependent. Second, (and this is related
to the age-dependency of the savings rate) we consider an age-dependent distribution
of the total output produced in the economy among the members of the society, defined
by a given income profile. Third, in contrast to the Arthur–McNicoll model, our model
is balanced: ”consumption” + ”investment” + ”control cost” = ”production”. Fourth,
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the more general form of the model, involving distributed differential and integral
equations (rather than Volterra integral equations) allows a number of extensions in
diverse directions. Here we include migration as an additional control inflow (which, in
fact is a most efficient control instrument for many countries, see Guest and McDonald
(2002). Unlike Arthur and McNicoll, we assume that fertility cannot be controlled.
Finally, stimulated by the paper by Cutler et al. (1990) we take into account the role
played by technological progress in mitigating the impact of an aging population.

The paper is organized as follows. In section 2 we present the model and its as-
sumptions. Section 3 summarizes the parameterization of our model and gives a first
insight into the system’s dynamics for alternative (age-independent) future scenarios
of technological progress. Initial age schedules of demographic and economic variables
are taken from Austria, except for the savings rate where we refer to German data
sources. By calibrating our model to current demographic and economic variables of
an industrialized country our paper adds to the growing literature on optimal eco-
nomic and demographic responses in an aging society (see e.g. Cutler et al., 1990,
Guest and McDonald, 2002). Necessary optimality conditions in the form of Pontrya-
gin’s maximum principle utilizing a recent general result in Feichtinger et al. (2000)
are obtained in Section 4. We mention that the earlier general maximum principle by
Brokate (1985) is formally not applicable due to the presence of boundary control in
the economic component of our model. In Section 5 we present numerical solutions
of the optimal age- dependent savings and migration rates applying the numerical
method and respective software for general age-structured systems developed recently
by the third author. We close with some conclusions and suggestions for further
research (Section 6).

2 Description of the Model

We describe both the dynamics of the population and of the physical capital stock
with the McKendrick equations (Keyfitz and Keyfitz, 1997)

Nt + Na = −µ(t, a)N(t, a) + ν(t, a), N(0, a) = N0(a), N(t, 0) = B(t),

Kt + Ka = −δ(t, a)K(t, a), K(0, a) = K0(a), K(t, 0) = I(t),

B(t) =
∫ ω

0
f(t, a)N(t, a) da.

Here the state variables are

3



N(t, a) – number of people of age a at time t,

K(t, a) – physical capital stock of age a at time t,

B(t) – newborn individuals at time t,

I(t) – investment in capital goods at time t.

Moreover, µ(t, a) and δ(t, a) are the mortality rate of individuals and the depreciation
rate of physical capital, respectively. The function f(t, a) represents the fertility rate
of a-year old individuals at time t.

The (net) migration ν(t, a) is considered as a control variable subject to the constraint
ν(t, a) ≥ 0. It is reasonable, however, to assume that the age-distribution of the
migration is fixed (at the present level, for example—see Figure 5, Section 3) and only
its magnitude can be actually controlled. That is, we suppose that ν(t, a) = ν(t)ν0(a),
where ν0(a) is a given function such that

∫ ω
0 ν0(a) da = 1, and ν(t) ∈ [0, ν̄(t)] is a

control, restricted by a given upper bound ν̄(t).

The number ω represents a maximal age. Presumably, the support of f(t, ·) is a
subinterval of [0, ω]. Similarly, the number κ below is the maximal age of the physical
capital goods: machines of age κ are scraped. We assume κ to be exogenously given.5

We take the control costs into account as one component of the total expenditures,
the other two being consumption and investment.

More precisely, the savings is split between investment in production capital and costs
of migration control.6

Let S̃(t) be the savings at time t, and G(t) be the part of it spent on migration
control. Assuming a closed economy, investment into new capital K(t, 0) is then
given by I(t) = S̃(t)−G(t). With m(t, ν) denoting the ‘adjustment’ costs for ν new
immigrants (distributed among ages as ν0(·)) per unit of time, then G(t) = m(t, ν(t)).

To ‘close’ the model one has to analyze the amount of savings.

Let y(t, a) be the per capita income of the a-year old individuals. The a-year old
individuals save a fraction σ(t, a) ∈ [0, σ̄(t, a)] of the income which will be considered

5Alternatively one may assume κ to be endogenously determined within the framework of a
putty-clay production technology (see Guest and McDonald, 2002 and Lindh, 2000).

6Other possibilities are to take the control costs from the total income, reducing in this way the
net income, or from the consumption. The corresponding models would be slightly different from
the one described below.
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as another control variable. Here σ̄(t, a) is an age-specific upper bound on the savings
rate. We do not associate control costs with the savings control since it has no
normative meaning.

We have
S̃(t) =

∫ ω

0
σ(t, a)y(t, a)N(t, a) da.

The total income at t equals the production Y (t):

∫ ω

0
y(t, a)N(t, a) da = Y (t). (1)

We suppose that the distribution of the product among the individuals is age (and
time) dependent. Let d(t, ·) be the income profile at t. That is, y(t, a)/y(t, ā) =
d(t, a)/d(t, ā) for every a and ā (cf. Figure 3, Section 3).7 If we fix some reference age
ā (say, ā = 45 years) we may express

y(t, a) = d(t, a)ȳ(t), where ȳ(t) = y(t, ā)/d(t, ā).

Then from (1) we obtain

ȳ(t)
∫ ω

0
d(t, a)N(t, a) da = Y (t)

and

ȳ(t) =
Y (t)

E(t)
,

where
E(t) =

∫ ω

0
d(t, a)N(t, a) da

is the aggregate relative income (so that E(t)ȳ(t) is the total income of the population).
Thus we obtain the following expression for the per capita income:

y(t, a) = d(t, a)
Y (t)

E(t)
.

Then for the savings we have

S̃(t) =
∫ ω

0
σ(t, a)N(t, a)d(t, a) daY (t)/E(t) = S(t)

Y (t)

E(t)
,

7In Figure 3 we assumed the normalization d(t, ā) = 1. However other normalizations like∫ ω

0
d(a)da = 1 are possible as well.
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where
S(t) =

∫ ω

0
σ(t, a)N(t, a)d(t, a) da

is the aggregate relative savings, so that S(t)ȳ(t) is the total savings S̃(t), and S(t)/E(t)
is the actual savings rate: S̃(t) = S(t)Y (t)/E(t).

Finally, the production is supposed to be a function of the total production capacity
P (t) and the labor stock L(t):

Y (t) = F (P (t), L(t), t),

where

P (t) =
∫ κ

0
p(t, a)K(t, a) da,

L(t) =
∫ ω

0
q(t, a)l(t, a)N(t, a) da,

p(t, a) is the productivity of a-year old machines at time t, l(t, a) is the fraction of
the employed individuals among all individuals of age a (cf. Figure 2, Section 3), and
q(t, a) is the qualification factor of the labor of age a. Notice that it makes sense
to take the function p(t, a) of the form p(t, a) = p(a)r(t − a) with p(a) decreasing
and r(h) increasing in its argument. The first factor reflects the drop of productivity
(depreciation) with age, while the second factor reflects the technological progress:
for machines at any fixed age, those of later vintage, t− a, are more productive. We
assume technological progress to be exogenously given.

Summarizing, we obtain the following dynamic control model:

Nt + Na = −µ(t, a)N(t, a) + ν(t)ν0(a), N(0, a) = N0(a), N(t, 0) = B(t),

Kt + Ka = −δ(t, a)K(t, a), K(0, a) = K0(a), K(t, 0) = S̃(t)−m(t, ν(t)),

B(t) =
∫ ω

0
f(t, a)N(t, a) da,

P (t) =
∫ κ

0
p(t, a)K(t, a) da,

L(t) =
∫ ω

0
q(t, a)l(t, a)N(t, a) da,

E(t) =
∫ ω

0
d(t, a)N(t, a) da,

S(t) =
∫ ω

0
σ(t, a)d(t, a)N(t, a) da

M(t) =
∫ ω

0
N(t, a) da,
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where the last equation is added since the total number of people, M(t), will be used in
the objective function. Here we consider N, K, B, P, L,E, S, M as state variables and
σ(t, a) ∈ [0, σ̄(t, a)] and ν(t) ∈ [0, ν̄(t)] as control variables. N0, K0, µ, δ, F, f, p, l, m, d
are exogenously given functions. The savings S̃(t) in the boundary conditions for K
is related to the state variables according to the formula

S̃(t) = S(t)
F (P (t), L(t), t)

E(t)
.

The objective function of the social planner is to maximize the social welfare

∫ T

0
e−rt

∫ ω

0
W (t, a, c(t, a))

N(t, a)

M(t)
dadt,

(the case T = +∞ is not excluded) where c(t, a) stays for the per capita consumption
at time t of the a-years old individuals:

c(t, a) = (1− σ(t, a))y(t, a).8

Remember that the income at age a is given by

y(t, a) = d(t, a)
F (P (t), L(t), t)

E(t)
.

Thus, in the objective function we maximize the discounted integral of the weighted
average per capita welfare, the latter being a function of the individual consumption.
The weights of the different ages are proportional to the percentage of people at the
given age.9

3 Parameterization and Numerical Simulations

For all subsequent numerical simulations we initialize the age structure of economic
and demographic variables referring to Austrian data as of 1999 (1998). The age-
specific savings profile is taken from Germany. The Austrian population is a valid

8The children’s income taken into account in the income profile does not include the transfer
from parents. Therefore the children’s welfare is underestimated, while that of the parents is overes-
timated. In fact, we implicitly assume that one unit of consumption yields the same marginal utility
for the family as a whole, independently of whether it is spent by the children or by their parents.

9If the weight d(t, a)N(t, a)/E(t) is used instead of N(t, a)/M(t), which means that not only the
percentage of the people of a given age is taken into account, but also their ”reputation”, represented
by their relative income d(t, a), then the variable M(t) is no longer in use and can be omitted.
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example of an aging society with the challenges and opportunities for demographic
and economic developments as discussed in e.g. Cutler et al. (1990) .

More specifically, we assume the following specification:

µ(t, a) = µ(a) data for Austria, 1999 (Figure 1),

δ(t, a) = δ = 0.06,

f(t, a) = f(a) data for Austria, 1999 (Figure 1),

ν0(a) data for Austria, 1999 (Figure 5),

σ(t, a) = σ(a) data for Germany, 1998 (Figure 4)10,

p(t, a) = q0 + gtt + gaa; q0 = 7.5, ga = −0.1, gt = 0.02,

l(t, a) = l(a) data for Austria, 1999 (Figure 2),

d(t, a) = d(a) data for Austria, 1998 (Figure 3),

q(t, a) = d(a) data for Austria, 1998 (Figure 3)11,

N0(a) data for Austria, 1999 (Figure 2),

K0(a) = K0e
−δa/

∫ κ

0
e−δt dt =

K0

13.912
e−δa, K0 = 100, 000,

F (P,L, t) = cP 0.34L0.66, c = 3.5,

W (t, a, C) = [c(t, a)/u(a)]α where u(a) is taken from Cutler et al. (1990, p.9) and

represents effective consumption needs (see Table 1), and

α ∈ (0, 1] is the consumption elasticity of the welfare.

The relative consumption needs u(a) are derived by considering three components
(private nonmedical expenses, public education expenses, and medical care), and rep-
resent the relative demands for consumption of different age groups. E.g. young
people consume less private consumption but more education whereas older people
consume more health services. By weighting consumption at age a and time t, c(t, a).
With these relative consumption weights we are taking care that the same level of
consumption gives different levels of utility across ages. Consequently, for a given
age schedule of consumption levels, a population with higher shares of people in ages
of higher relative consumption demands (as happens when the population ages) will
experience lower welfare. However, since consumption levels are determined by the

10On the German savings puzzle (savings rates are high and stable until the 40s and remain positive
in old age) see Börsch-Supan (2002).

11Our assumption that the age distribution of earnings reflect the age distribution of labor pro-
ductivity is similar to Guest and McDonald (2002, p. 8).
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Figure 1: Fertility rate f(a) (left) and mortality rate, µ(a) (right); Austria 1999.
The specific age schedule of fertility rates corresponds to a total fertility rate of 1.32
children, while the age schedule of mortality rates corresponds to a life expectancy of
e0 = 74 years.

macro-economic and demographic developments, aging does not need to imply lower
welfare if age specific levels of consumption change.

Furthermore, the current productivity of the capital q0 is determined in such a way
that if all exogenous factors do not change and if the current population stayed the
same at every age (that is, the population is at equilibrium), then the capital, therefore
the welfare, would be at equilibrium as well.

Table 1: Age profile of u(a).

Age group 0-19 20-64 >64
consumption weight 0.72 1.00 1.27

Before introducing the optimization w.r.t. savings and migration (Section 4) we briefly
present simulations of our model if current demographic and economic trends prevail
for the next 100 years. In Section 5 we shall refer to these benchmark simulations when
we discuss numerical solutions of the optimal time paths of savings and migration.
We assume that the agespecific fertility, mortality and migration schedules of Austria
in 1999 will stay the same in the future and we set costs of migration m(ν) equal to
zero. However, we allow for technological progress and plot two alternative scenarios
(gt = 0.02 and gt = 0.04) in addition to the baseline scenario where we assume zero
technological progress (gt = 0). In Figure 6, Figure 7 and Figure 8 we plot the level of
welfare12, population shares in three age groups, investment and productive capacity

12We disregard discounting and plot for each time step the level of welfare:
∫ ω

0
c(t,a)
u(a)

N(t,a)
M(t) da
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Figure 2: Distribution of the population and the economically active individuals (left)
and the labor force participation rate (right); Austria 1999.
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gross income of employees by age
groups.
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Figure 5: Migration ν(a); Austria 1999.

for the next 100 years.

The evolution of the welfare index is mainly driven by the ageing of the baby boom
generation. During the first two decades of the 21st century smaller cohorts will be
entering the labor force while the baby boom generation has not yet retired. Conse-
quently the share of people in their productive ages is still high (right panel of Figure 7)
while continued low levels of fertility imply a decrease in the share of young people
and an increase in the share of old people (left panel of Figure 7). For the subsequent
two decades, when the baby boomers start to retire, we will observe a pronounced
increase in the share of the population aged 65 and a drastic reduction in the share of
people in the labor force. This demographic development is mirrored in an increase
in the welfare during the first 20 years of our simulation which is followed by a de-
cline of the welfare (even if we allow for technological progress) for the subsequent 20
years (Figure 6). Obviously the retirement of the baby boom generation will lead to a
pronounced decline in aggregate savings (=investments, Figure 8)13 and consequently
the productive capacity will decrease if we neglect technological progress (Figure 8).
Note that, since the number of workers decreases, productive capacity per labor unit
will stay constant even when we assume no technological progress. Together, the fall
in the share of the labor force and the reduced production capacity will lead to a
lower level of income and hence consumption per capita will decline.14 The decline in

13Note that the decline in aggregate savings follows from the change in the population age structure
which becomes more concentrated towards people at higher ages who have lower savings. This result
is different from the ’Solow’ effect (see Cutler et al., 1990) which states that the slower labor force
growth reduces investment requirements and hence reduces the needs for savings and may therefore
increase consumption per capita.

14Similar to Cutler et al. (1990) the latter effect is identical to the negative dependency effect.
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welfare comes to a halt around the late 30s if we assume no technological progress.
In case of technological progress we observe an earlier leveling off for the welfare that
turns into an increase of welfare during the early 30s.15 The leveling off of the welfare
may be explained by the gradual decease of the baby boom generation which leads
to a stabilization of the share of old people at a value of about 24%. As evidenced in
Figure 8 , the potential of technological progress allows productive capacity to grow
even though investment continues to decline as the population ages. Hence, aging of
the population need not imply a reduction in welfare in the long run if we account
for technological progress. However, during the transition period when the cohort of
baby boomers retires, a reduction in welfare will most likely occur except for very high
levels of productivity growth. Since we keep fertility, mortality and migration flows
constant we approach a stable age distribution in the long run with the population
continuously declining from around 8 million in 1999 to 5 million within the time span
of our simulations.

As the numerical experiment illustrates, the dynamics of the welfare is rather complex
and it is difficult to predict the outcome of the combined effect of alternative migration
and savings policies. In particular, it is rather difficult to experiment as to what an
optimal control may look like, particularly if one allowed for age dependency as is
definitely imperative if we consider alternative migration and savings scenarios. We
therefore need to formalize the intertemporal optimization and apply the maximum
principle to find the optimal, age-dependent schedules of migration and savings. We
proceed with the economic interpretations of the maximum principle in the next
section and present numerical paths of the optimal migration and savings in Section 5.

4 Maximum Principle: Economic Interpretations

4.1 Formulation of the Maximum Principle

Below we apply the general result from Feichtinger et al. (2000) to obtain a necessary
optimality condition in the form of a maximum principle.

Let K̂, . . . , Ŝ, σ̂, ν̂ be an optimal solution. For convenience we denote

U(t, a, N, P, L,E,M, σ) = W (t, a, (1− σ)d(t, a)F (t, P, L)/E)N/M, (2)

Since our model does not allow for the positive Solow effect, the aging of the population will always
depress welfare if technological progress is not taken into account.

15These results are in accordance with the argument in Cutler et al. (1990) who states that ’a
decline in living standards caused by an increase in dependency would be fully reversed by a 0.15%
a year increase in productivity growth’ (Cutler et al., 1990,p.3).
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which is the instantaneous utility (weighted by the relative share of people in each
age group N(t, a)/M(t)) at time t of the a-year old individuals. Thus the objective
function can be written as

∫ T

0
e−rt

∫ ω

0
U(t, a,N(t, a), P (t), L(t), E(t),M(t), σ(t, a)) dadt.

In the considerations below we may assume this more general form for the objective
function, but occasionally we simplify the formulas using the particular form (2).

Below we use the following notational convention: in the functions F , W and U
we skip the arguments with ”̂ ”. For example, F (t) = F (t, P̂ (t), L̂(t)), U(t, a, σ) =
U(t, a, N̂(t, a), P̂ (t), L̂(t), Ê(t), M̂(t), σ).

Applying the maximum principle from Feichtinger et al. (2000) and changing the
dual variables as ”· −→ −ert·” (passing in this way to current value) we obtain the
following:

Maximum principle: there exist adjoint variables ξN(t, a), ξK(t, a) (corresponding
to the differential equations of N and K), and ζB(t), ζP (t), ζL(t), ζE(t), ζS(t), ζM(t)
(corresponding to the state variables B(t), P (t), L(t), E(t), S(t), M(t)) satisfying the
equations

ξN
t + ξN

a = (µ(t, a) + r)ξN(t, a)− f(t, a)ζB(t)− q(t, a)l(t, a)ζL(t)

− d(t, a)ζE(t)− σ̂(t, a)d(t, a)ζS(t) − ζM(t)− UN(t, a), ξN(t, ω) = 0,

ξK
t + ξK

a = (δ(t, a) + r)ξK(t, a)− p(t, a)ζP (t), ξK(t, ω) = 0,

ζB(t) = ξN(t, 0),

ζP (t) = ξK(t, 0)FP (t)Ŝ(t)/Ê(t) +
∫ ω

0
UP (t, a) da,

ζL(t) = ξK(t, 0)FL(t)Ŝ(t)/Ê(t) +
∫ ω

0
UL(t, a) da,

ζE(t) = −ξK(t, 0)F (t)Ŝ(t)/Ê(t)2 +
∫ ω

0
UE(t, a) da,

ζS(t) = ξK(t, 0)F (t)/Ê(t),

ζM(t) =
∫ ω

0
UM(t, a) da,

such that the optimal controls σ̂(t, a) and ν̂(t) maximize the function

(σ, ν) −→ (3)

U(t, a, σ) + σζS(t)d(t, a)N̂(t, a) +
∫ ω

0
ξN(t, a)ν0(a) da ν − ξK(t, 0)m(t, ν),
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which splits into two independent maximization conditions.

For brevity we denote

V P (t) =
∫ ω

0
UP (t, a) da, V L(t) =

∫ ω

0
UL(t, a) da,

V E(t) =
∫ ω

0
UE(t, a) da, V M(t) =

∫ ω

0
UM(t, a) da,

and also
S̃P (t) = FP (t)Ŝ(t)/Ê(t), S̃L(t) = FL(t)Ŝ(t)/Ê(t),

S̃E(t) = −F (t)Ŝ(t)/Ê(t)2, S̃S(t) = F (t)/Ê(t).

Note that S̃P , S̃L, S̃E and S̃S are exactly the corresponding derivatives of the total
savings S̃, which justifies the notations. Excluding all ζ-variables for ξK and ξN we
obtain the equations

ξN
t + ξN

a = (µ(t, a) + r)ξN(t, a)− f̂(t, a)ξN(t, 0) (4)

− ξK(t, 0)[q(t, a)l(t, a)S̃L(t) + d(t, a)S̃E(t) + σ̂(t, a)d(t, a)S̃S(t)]

− q(t, a)l(t, a)V L(t)− d(t, a)V E(t)− V M(t)− UN(t, a),

ξK
t + ξK

a = (δ(t, a) + r)ξK(t, a)− p(t, a)ξK(t, 0)S̃P (t)− p(t, a)V P (t) (5)

with zero side conditions at a = ω and t = T . The maximum condition (3) gives the
variational inequalities

[Uσ(t, a, σ) + ξK(t, 0)ŷ(t, a)N̂(t, a)](σ − σ̂) ≤ 0 ∀σ ∈ [0, σ̄(t, a)], (6)

[
∫ ω

0
ξN(t, a)ν0(a) da− ξK(t, 0)mν(t, ν̂)](ν − ν̂) ≤ 0 ∀ν ∈ [0, ν̄(t)]. (7)

Note that condition (6) simplifies if we take the specific form of the objective function
into account. We have

Uσ(t, a, σ) = −Wc(t, a, (1− σ)ŷ(t, a))ŷ(t, a)
N̂(t, a)

M̂(t)
, (8)

and (6) reduces to

[−Wc(t, a, (1− σ)ŷ(t, a))
1

M̂(t)
+ ξK(t, 0)](σ − σ̂) ≤ 0 ∀σ ∈ [0, σ̄(t, a)].
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4.2 Economic Interpretations

To give an economic interpretation of the maximum principle we first notice that

ξN(t, a) is the current marginal value of a single individual of age a at time t; that
is, the total change of welfare (discounted starting from t) due to a unit change of
N̂(t, a) at time t;

ξK(t, a) is the current marginal value of a unit of capital of age a at time t; that is,
the total change of welfare (discounted starting from t) due to a marginal unit change
of K̂(t, a) at time t;

Consequently, ξN(t, 0) and ξK(t, 0) are the marginal value of a new-born individual
and of a unit of investment, respectively. Notice that the above values are measured
in terms of units of welfare.

Then the maximization conditions (6) and (7) assert the following (wherever the
control constraints are not active):

(6): the direct marginal welfare cost (−Uσ(t, a, σ)) of an additional percent
of income allocated for savings by the a-year olds equals
the marginal welfare benefit if this percent is invested in new capital;

the latter value is represented by ξK(t, 0)ŷ(t, a)N̂(t, a) – the value of a unit
of a new capital times the total additional investments done by a-year old
people, if the savings rate is increased by one percent;

(7): the marginal opportunity cost of the spending necessary for an additional
immigrant of age a (that is, the additional welfare ξK(t, 0)mν(t, ν) that
could be obtained by investing this spending in new capital) equals the
value of an individual of age a.

To interpret the adjoint equations we shall clarify the meaning of the individual terms.
First of all

S̃P (t) – the additional savings per unit of time, resulting from an additional unit of
productive capacity at the margin;

S̃P (t)p(t, a) – the additional savings per unit of time, resulting from an additional
unit of capital of age a due to the higher productive capacity;

ξK(t, 0)S̃P (t)p(t, a) – value of the additional capital created by investing the additional
savings per unit of time, resulting from an additional unit of capital used a unit of
time at the margin.
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Similarly we obtain the meaning of the other terms:

p(t, a)VP (t) – additional welfare gained per unit of time, directly from the consumed
part of the additional production resulting from an additional unit of capital used a
unit of time at the margin;

ξN(t, 0)f(t, a) – value of the additional population created per unit of time, by an
additional member of the population of age a;

ξK(t, 0)q(t, a)l(t, a)S̃L(t) – value of the additional investment resulting from the ad-
ditional product produced per unit of time by an additional individual of age a;

d(t, a)S̃E(t) + σ̂(t, a)d(t, a)S̃S(t) = F (t)∂(S/E)
∂N(t,·) (t, a) – change of savings due to change

of the actual savings rate, resulting from one additional member of age a. Then
ξK(t, 0)(l(t, a)q(t, a)S̃L(t) + d(t, a)S̃E(t) + σ̂(t, a)d(t, a)S̃S(t)) is the additional value
obtained by investing the additional savings resulting from an additional member of
age a; it could be negative if σ̂(t, a) is small;

V Lq(t, a)l(t, a) – additional welfare directly gained per unit of time from an additional
worker who is employed. Notice that this gain comes from the directly consumed part
of the additional production resulting from this additional worker (see the expressions
for V L and U);

d(t, a)V E(t) – this term is negative: lost welfare per unit of time, caused by decrease
of the per capita consumption due to an additional member of age a (the other things
equal);

UN(t, a) + V M(t) – change of welfare resulting from one additional member of age a,
due to the change of the weights in the welfare function.

Then one can interpret the adjoint equations as well.

It is interesting to compare the marginal efficiencies of the two controls involved. Since
they are all expressed in different units, one first has to evaluate these efficiencies in
terms of money. Therefore we define the marginal efficiencies of the controls as:

Eσ(t) = additional welfare of the a-year old individuals,
if 1 additional EURO is spent by the a-year old for consumption,

Eν(t) = welfare value of the additional members of age a,
resulting from 1 additional EURO spent for migration.
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Then using (6)–(7) one can express

Eσ(t) =
−Uσ(t, a, σ̂(t, a))

ŷ(t, a)N̂(t, a)
= ξK(t, 0),

Eν(t) =

∫ ω
0 ξN(t, a)ν0(a) da

mν(t, ν̂(t, a))
= ξK(t, 0) if ξN(t, a) > 0.

The above equalities mean that:

the marginal efficiency of the two controls is age-independent. It is the same for
each of the controls, and equals the welfare value of a unit of capital. (Concerning
the migration control, the above holds for ages where the individuals have positive
values; otherwise the migration is zero, and the marginal efficiency of the migration
control can be smaller than that of the other controls since we do not allow negative
migration.)

4.3 Numerical approach

To solve the problem numerically we apply a gradient projection method for solving
the variational inequalities (6) and (7) (subject to the primal/dual system) in the
space of discretized control functions. This approach did work, despite the high
dimensionality of the discretized problem (about 200 000 for a discretization step of
half a year). In fact, we numerically observed the ‘mesh independence’ phenomenon
(see Alt, 1998, Dontchev et al., 2000 and Dunn, 2000), which means that the speed of
convergence in the discretized (mathematical programming) problem does not depend
on the size of the mesh. Thanks to this we obtained satisfactory approximations after
only 10 to 40 gradient iterations.

For discretization of the differential equations along the characteristic lines we apply a
second order Runge-Kutta scheme. We mention that higher order schemes would not
give higher accuracy of the optimal discrete solution, since the optimal control is non-
differentiable due to the constraints (which happen to be binding in all experiments).
On the other hand, the optimal controls are Lipschitz continuous and the variations of
their derivatives along each characteristic line is bounded. Then in view of the results
in Dontchev et al. (2000) one can expect that the optimal control of the discretized
problem provides a second order approximation to the optimal control of the original
problem, with respect to the uniform metric.
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5 Optimal savings and migration

The optimization horizon for all experiments below is T = 150 years. However, we
plot the results only for the first 100 years, since the behavior of the optimal paths is
increasingly influenced by the specific choice of the planning horizon when the time
approaches T .

For all numerical simulations we furthermore assume an upper bound on migration
ν̄(t) = 80.000, and technological progress to take place at the rate gt = 0.02. For the
social welfare function we assume a discount rate of r = 0.04 and assume utility to
be concave in its argument α = 0.5. All other demographic and economic parameters
and age schedules are set as outlined in Section 3.16

5.1 Optimal Migration

Figure 9 shows the optimal time path of total migration ν(t) setting the costs of
migration equal to m(ν) = 5ν +0.05ν2. The horizontal line at the point 20.000 repre-
sents the current annual inflow of migrants that has been assumed in the simulations
of Section 3. Given a fixed age schedule of migrants as represented in Figure 5 our
results suggest that it is optimal to have no migration roughly during the first 20 years
of our simulations, while it is optimal to have alternating levels of migration there-
after. A comparison with Figure 7 which plots the share of working age people for our
baseline simulations shows that it is optimal to increase migration during times where
the share of the labor force is a minimum and to decrease migration when the share
of the labor force recovers.17 Hence, it is optimal to choose migration countercyclical
to the damped oscillations of the labor force participation.

Technically speaking, the optimal migration is determined by the shadow price of
people ζN in comparison to the costs of migration. While the costs of migration are
exogenously fixed, the shadow price of people is endogenously determined and will
depend on the age structure of the prevailing economic and demographic variables.
In Figure 10 we plot the shadow price of people over time and age. Obviously, the
shadow price is negative for the dependent population (those of age less than 20 and

16Though the assumption of constant labor force participation rates, constant productivity levels,
etc. in the future is unrealistic, it poses a benchmark case to illustrate the time path of optimal
savings and optimal migration in an ageing society. More realistically, labor force participation rates
and productivities will adapt in the future and thereby influence optimal time paths of savings.

17We can refer to Figure 7 in our discussion since even under optimal migration damped oscillations
of the labor force will prevail.
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Figure 9: Optimal migration (point-wise curve) and present migration (solid
line).

higher than 60 years of age) while it is positive for the working age population. Note
that over time the absolute values of the shadow prices increase, i.e. the shadow price
becomes more positive for the working age population while it declines further for
the dependent population. Moreover we observe fluctuations of the maximum and
minimum values of the shadow price which then determine the optimal time path of
migration to be damped oscillations.

The choice of an optimal level of migration — compared to the baseline scenario
we presented in Section 3 — results in a lower level of the total population and a
lower level of the total capital stock. Figure 11 plots the optimal welfare disregarding
discounting (cf. footnote 12) in comparison to the level of welfare for the baseline
scenario of Section 3. Due to discounting it is optimal that utility will be increased in
the initial years even if this may result in lower utilities (as compared to the baseline
simulations) for later years.

5.2 Optimal Savings

To investigate the optimal response of savings to the aging of the population we set
migration to the present annual flow of 20.000 immigrants (cf. Section 3). In addi-
tion, we assume an upper bound on age-specific savings for each year 0 ≤ σ(t, a) ≤
min{0.9, σ(0, a)(1 + 0.05t)}. In Figure 12 and Figure 13 we plot the optimal average
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Figure 10: Shadow price of people if migration is chosen optimally. (The black
manifold at the intercept zero has been added to highlight the change in the
sign of the shadow price depending on the age of people.)
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Figure 11: Aggregate welfare if migration is chosen optimally (point-wise
curve) and for the present migration (solid line).
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savings rate18 and the optimal age schedule of savings rates for selected years. Ac-
cording to these results it is optimal to increase savings during the first 30 periods at
the maximum admissible rate and thereafter maintain savings around this obtained
level (Figure 12). The aging of the population implies a shift of optimal age-specific
savings rates towards older ages (Figure 13). Technically speaking, since the shadow
price of new capital (i.e. capital at age zero) is high during the initial years (Fig-
ure 14), it is optimal to increase savings during the first years. In turn, the shadow
price of capital is high during the first years of our simulation since the share of the
labor force in the total population is high during the first 30 years of our simulations.
More intuitively we may explain the optimal savings path as follows. Since savings is
a means to redistribute consumption over time and since the productive capacity of
the future population will be depressed by the aging of the population, it is optimal to
increase savings today in order for the future population to sustain their consumption.

The optimal time path of savings results in a higher level of capital and productive
capacity—compared to the baseline scenario we presented in Section 3—and con-
sequently in a higher level of welfare for almost all subsequent years (Figure 15).
Initially there will be a drop in the welfare due to the high savings.19 However this
initial sacrifice in terms of obtained utility is low in terms of the reward of increased
utility later on. In terms of welfare, the choice of optimal savings is more powerful as
compared to the choice of an optimal migration.

5.3 Optimal Migration and Optimal Savings

In Figure 16 we plot the optimal level of welfare if we choose the optimal time path of
migration together with the optimal rate of savings (solid line). As reference values
we choose the optimal level of welfare if we only optimize w.r.t. savings (dotted line)
or alternatively if we only optimize w.r.t. migration (dashed-dotted line) and the level
of welfare if we assume no optimization (bold-dotted line). In addition, we plot the
optimal values of migration (Figure 17), average savings (Figure 18) and the total
population (Figure 19) for all four(three in case of migration) alternatives.

From these results we may conclude that savings is the more powerful control variable
in terms of maximizing the social welfare. By introducing migration in addition to
savings as a control variable we obtain more pronounced fluctuations in the optimal

18The averge savings rate is defined as the weighted sum of the age specific savings rates with the
weights being the population shares in each age group, i.e.

∫ ω

0
σ(t, a)N(t, a)/M(t)da.

19A similar result of an immediate increase in savings that is followed by a drop in the welfare is
obtained in Guest and McDonald (2002).
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Figure 12: Optimal average savings (point-wise curve) and present average
savings (solid line).
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Figure 13: Optimal age specific savings for selected years.
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Figure 14: Shadow price of capital if savings are chosen optimally.
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Figure 15: Aggregate welfare if savings are chosen optimally (point-wise curve)
and for the present savings (solid line).
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Figure 16: Aggregate welfare if savings and migration are chosen optimally
(solid curve), if savings only are chosen optimally (dotted curve), if migration
only is chosen optimally (dashed-dotted curve) and for the present migration
and savings schedule (bold-dotted curve).

values of migration, population, savings and welfare. We may explain this result by
the fact that adding savings as a control variable introduces more flexibility in terms of
the age structure of the population as compared to the rigid assumption of a constant
age structure of immigrants. More specifically, the choice of an optimal age structure
of savings implies that the economy can better adjust to the inflow of immigrants
whose age structure is assumed to be constant.

6 Conclusions and Extensions

The aim of the present paper is to show the applicability of a newly derived maximum
principle for distributed parameter control and a corresponding numerical method to
solve age structured optimal control problems in population economics. For this pur-
pose we revisit and extend a demo-economic model analyzed by Arthur and McNicoll
(1977) and confront it with the recent literature on the optimal economic and demo-
graphic response of an aging society as outlined in Cutler et al. (1990) and Guest and
McDonald (2002).

A quarter of a century ago Arthur and McNicoll attempted to link two distinct tra-
ditions – intertemporal policy analysis and mathematical demography. The intention
was to bring an age structure into intertemporal analysis, and a normative structure
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Figure 17: Optimal migration if savings and migration are chosen optimally
(solid curve), if migration only is chosen optimally (dashed-dotted curve) and
for the present migration and savings schedule (bold-dotted curve).
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Figure 18: Optimal savings if savings and migration are chosen optimally (solid
curve), if savings only are chosen optimally (dotted curve), if migration only
is chosen optimally (dashed-dotted curve) and for the present migration and
savings schedule (bold-dotted curve).
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Figure 19: Optimal size of the population if savings and migration are chosen
optimally (solid curve), if migration only is chosen optimally (dashed-dotted
curve) and for the present migration and savings schedule (bold-dotted curve).

to population mathematics. It should be noted, however, that in economics such a
‘symbiosis’ has been standard since the 1960s. Overlapping-generations models deal
with dynamic optimization in age-structured models. While mostly only two or three
broad age groups are taken into consideration, the OLG framework is well suited
also for a more detailed age structure, see e.g., Auerbach and Kotlikoff (1987) and
Börsch-Supan (2001).

In the present paper we demonstrate the numerical solution for optimal age dependent
controls by choosing a demographic (level of migration) and an economic (age-specific
savings rate) control variable. While the age structure of migrants is held constant and
we only allow the level of migration to be optimally chosen, we allow for an optimal age
profile of savings rates. As the population ages our results indicate that it is optimal
for the savings profile to shift towards higher ages. By admitting a more flexible age
specific optimal control for the savings rates, a higher welfare can be sustained as
compared to the benchmark case of no optimization or an optimization with respect
to the level of migration only. Thus the age-specific savings control appears as a
more powerful instrument in terms of the aggregate intertemporal welfare than the
migration.

It is remarkable that optimization of the migration results in a higher consumption
in the short run and in a lower consumption in some future time intervals, leading in
this way to more fluctuations in the welfare. In contrast, the optimal savings result
in a higher consumption for all subsequent years, except an initial drop of welfare
due to high savings. This initial sacrifice allows sustaining of a higher welfare despite
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(according to the demographic data for Austria that we use) the productive capacity
of the population in the years 2020-2035 being depressed due to the aging. It is also
remarkable that the optimal level of migration is higher when the savings are chosen
in an optimal way, than for the present savings. Thus the economy with optimal
age-structure of the savings can better adjust to the inflow of immigrants.

We have deliberately refrained from using any feedback mechanisms from the demo-
graphic development on economic parameters to point out the optimal response of the
migration level and the savings rates given that today’s economic and demographic
parameters will prevail. In further work we need to verify the sensitivity of the optimal
control of migration and savings with respect to the initial age schedules of economic
and demographic variables, the underlying welfare function and various alternative
future scenarios of demographic (fertility, mortality and migration) and economic vari-
ables (labor force participation, age productivity, etc.). Alternatively to the scenario
based approach, one may introduce the general equilibrium response of various eco-
nomic variables. Furthermore, the production function should be adapted to allow for
a putty clay framework in which the age structure of the population directly impacts
the age structure of capital. Moreover, in further work one should allow for capital
flows in addition to labour migration. As several authors have recently shown (e.g.
Higgins and Williamson, 1996), the economic implications of demographic changes
will depend on whether we assume that the economy is closed or open.

References

Alt, W. 1998. Discretization and mesh-independence of Newton’s method for gen-
eralized equations, Lecture Notes in Pure and Appl. Math. 195, Dekker, New
York, 1–30.

Arthur, W.B. and McNicoll, G. 1977. Optimal time paths with age-dependence: a
theory of population policy, The Review of Economic Studies 44(1), 111–123.

Auerbach, A.J. and Kotlikoff, L.J. 1987. Dynamic Fiscal Policy, Cambridge Univer-
sity Press, Cambridge, MA.

Bakke, V.L., 1974. A maximum principle for an optimal control problem with integral
constraints, J. Optim. Theory and Appl. 13, 32–55.
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