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ABSTRACT: The mortality rates are steadily declining with time. The remaining
lifetime for e.g. 65 years old person even 20-30 years ago was substantially smaller
than nowadays. Therefore, the age correspondence problem for populations in differ-
ent mortality regimes is of interest. A simple solution, based on the equality of accu-
mulated mortality rates (or, equivalently, on the equality of probabilities of survival)
is considered. Furthermore, the mortality regime with a change point is defined and
the procedure of age re-calculation after the change point is suggested. Two age re-
calculation models (and their combination) are discussed: the first one accounts for
wear accumulation in the process of aging and the other is characterized by a kind of
memoryless property.

Keywords: Life span; Mortality regime; Change point; Age re-calculation. Sedjakin
Principle.

1. INTRODUCTION. AGE CORRESPONDENCE.

     Is sixty-five, which was regarded in developed countries for a long time as the
threshold for the definition of the entry into the “old age”, really a marker of the old
age nowadays? Given the steady decline in mortality rates for a number of decades,
the answer will be definitely negative. In order to define this marker age properly it is
reasonable to look at are more general problem of “recalculating” the age of popula-
tions at different times.
     Let, as usually, ),( txµ  denote the force of mortality (mortality rate) as a function

of age x  and time t .  Let btt =  be some reference (baseline) time, which defines the
baseline mortality regime. We shall consider the “real” or current regime defined
usually at a later point in time: br ttt >= . Without mentioning it further, we shall

deal with an adult mortality when mortality rates are increasing in x . For simplicity
of notation, however, assume also that the support of the corresponding lifetime (age
at death) distribution (Cdf) ),( txF  is ),0[: ∞R ).
     It is well-known that the demographic data shows the decrease in mortality rates in
time:

),0[,);(),(),()( ∞∈∀≥≡≥≡ xttxtxtxx brrrbb µµµµ ,                      (1)
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which leads to the following stochastic ordering (Shaked and Shantikhumar (1993))
of the corresponding Cdfs:

),0[);()( ∞∈∀≥ xxFxF rb

and therefore, to a weaker property of increasing life expectancy (as well as the re-
maining life expectancy) in t .
     The specific case of ordering (1) is the Gompertz mortality change model (Bon-
gaarts and Feeney, 2002) with a constant shift in x on a logarithmic scale for each
fixed t :

}exp{),0(),( bxttx µµ =                                                (2)
where 0>b  is a parameter. In the concrete example of this paper the corresponding
regimes were set by 1995;1951 == rb tt  for US females.

     Most of conventional approaches to defining in a comparative way the age of entry
into the old age for different regimes are based on the concept of remaining lifetime.
Thus, the commonly used criterion (e.g. Siegal, 1993) is given by the value rx  ob-
tained from the equation for remaining life expectancies:
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where bx  is the definition of the old age in a baseline regime (e.g., 65 years) and

),(),,( rb txltxl  are the life table probabilities (proportions of persons surviving to age

x ) for the baseline and real regimes respectively:

dututxl
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),(exp),( µ                                              (4)

 It is clear that equation (3) can be used as some age correspondence equation for ‘ar-
bitrary’ ages rx  and bx  and not only for the purpose of defining the old age. This cor-

respondence might be reasonable in actuarial applications for defining and comparing
retirement ages for different regimes, for instance. However, it is clear that condition
(3) definitely increases the proportion of old people in the less severe regime at time

rt , as compared with the regime at bt .

     On the other hand, the natural and very simple (maybe oversimplified) age corre-
spondence rule for two regimes is to find rx  for each 0≥bx  from the following

equation:

 � �=
b rx x

rb dxxdxx
0 0

)()( µµ .                                         (5)

Example 1. Let ),0( tµ  in relation (2) for simplicity be given as
.0};exp{),0( >−= ααµ tt

By direct integration in (5):
( )[ ]{ }

b
bbr

r x
b

bxtt
x >

+−−
=

11}exp{}(exp{ln α
.

Performing under obvious assumptions the expansion in the Taylor’s series:
)](1[ brbr ttxx −+≈ α

we arrive at the reasonable approximate relation. ♦
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     Due to exponential representation (4), equation (5) leads to equality of the corre-
sponding life table probabilities

)),((},( rbrbb txxltxl = ,                                            (6)

which means that the condition, stating equal probabilities of survival for different
mortality regimes is the basis for obtaining the re-calculation rule: rx  as a function of

bx : )( br xx .

Remark 1. The described procedure and, specifically, equation (6) defines, in fact,
the ‘life table analogue’ of the accelerated life model (Finkelstein (1998), Cox and
Oakes (1984)). Indeed, using the conventional for survival analysis notation for equa-
tion (4), we can write for the baseline regime ( FF −≡1 ):

)(},( xFtxl bb = ,

whereas for the lighter regime at rtt = :

))(()(),( xWFxFtxl brr == ,                                         (7)

which for monotone increasing )(xW defines the general ALM. The specific linear
model: WxxW =)( , where 0>W  is widely used in applications. Using exponential

representations for )(tFr  and )(xFb , the scale transformation function )(xW  can be
easily obtained from the equation similar to (5):

� �=
x xW

br duuduu
0

)(

0

)()( µµ                                             (8)

Comparing relations (5) and (7):
)(; xWxxx br ==

and eventually:
)()( 1

bbrr xWxxx −=≡ ,                                          (9)

where )(1 xW −  denotes the inverse function to )(xW , which is clearly also increasing.

It is also clear, that as rt  defines the lighter regime: 0;)(1 ≥≥− xxxW , whereas

0;)( ≥≤ xxxW . ♦

Denote )(
~

)(1 xWxW ≡− . In what follows it is more convenient to use the function

)(
~

xW  rather than )(xW . The age correspondence equation (8) can be equivalently
written as

� �=
x xW

rb duuduu
0

)(
~

0

)()( µµ .                                         (10)

Using definition of the force of mortality the following important relationship be-
tween the failure rates in two regimes can be obtained from equation (7)(Alternatively
via differentiation with respect to x  of both sides of equation (8)):

))(()()( xWxWx br µµ ′=                                          (11)

Remark 2. The suggested approach to defining the age correspondence for popula-
tions at different times is rather general and is based on the assumption of an ‘invari-
ant nature’ of the functional of the accumulated mortality rate
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The importance of this functional in age correspondence problems was first indicated
by Sedajakin (1966) and later was discussed and used by many authors (see, e.g., Nel-
son (1990), Liu and Makish (1996)) in the reliability-oriented publications. The main
assertion, which is known in Russian reliability literature as the Sedjakin Principle,
states:

If the functioning regime of an object had been changed at some point of time 0x , its

further trajectory of performance in ),[ 0 ∞x  does not depend on the whole history of

its performance in ),0[ 0x , but only on the value of accumulated rate ),( 0 txM .

 This is a specific, simple way of using the aggregated information on the history of
performance in stochastic modeling of the future performance of an object. There is a
lot of evidence in the literature on accelerated testing (Nelson (1990)) that this princi-
ple holds for rather mild reasonable assumptions. We shall use it in the next section.

Remark 3. Speaking strictly, the suggested age correspondence is working without
distortions only for the model case of closed stationary populations. The influence
of history of fertility and migration on the model should be investigated as a special
topic.

Remark 4. Using period tables in practice means that mortality rates are overesti-
mated from a cohort point of view, as ),( txµ  is declining in t . However the rates are

overestimated for both bt  and rt  which provides an offset to a certain extent  (Vaupel

(2002), Denton and Spencer (1997)).

     We end this section with the following interpretation of the age-recalculation (with
respect to life expectancy) results of Oeppen and Vaupel (2002). An astonishing fact
was stated in this paper: Female life expectancy in the record holding country (for the
last 40 years this country is Japan) has risen linearly with almost 3 months increase
per year. This linear pattern suggests that the phenomenon can be interpreted (mod-
eled) via the linear ALM. Indeed, let 

bt
X  and tX  be the population lifetime random

variables at bt  and tt ≥ , respectively. Let 0>k  be a constant. Assume that:

btbt XttkX ))(1( −+=                                                  (12)

which obviously define the specific linear case of ALM (7). Applying operation of
mathematical expectation to both sides of equation (12) results in the linear model of
Oeppen and Vaupel (2002)

][][)1(][))(1(][
bbb ttbtbt XktEXEktXEttkXE +−=−+= ,

where for the specific case considered in this paper: ]200,1960[,1960 ∈= ttb  and the

corresponding slope is 243.0][)1( =−
btb XEkt . It is clear that the ALM assumption

(12)  is stronger than the linear representation for life expectancy. Verification of re-
lation (12) for this specific case presents an interesting problem, although the avail-
able data could be insufficient for this task. It is worth mentioning that the general
form of (12) for the situation under consideration can be written as
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btbt XxttWX )),((ˆ1( −+= ,

where )),((ˆ xttW b−  is a function of time and age. The reasonable decomposition of

this function could be )()()),((ˆ xgttfxttW bb −=− . Model (12) is its specific, when

the function )(tf  is linear and 1)( ≡xg .

2. A MODEL OF MORTALITY WITH REGIME CHANGE POINT.

The decline in the force of mortality with t  shows some general pattern of human
mortality in time.  On the other hand, the influence of environment (by environment
we mean some general external characteristics describing external risks, quality of
life, lifestyle, etc) on population for the fixed t  is also of interest.
     The most popular in survival analysis and reliability way to deal with the influence
of environment is to describe it via the proportional hazards (PH) model:

),()( xzx br µµ =                                                 (13)

where 0>z   is a  parameter which describes the multiplicative impact of environ-
ment on the baseline hazard (mortality rate) )(xbµ , and )(xrµ  is the mortality rate in

the ‘real’ (under investigation) environment. In regression models usually
}exp{ yxz T= , where ),...,( 1 nxxx =  is a vector of time-independent covariates and

21,...,( yyy = ) is a vector of unknown parameters. Thus, environment can be charac-
terized by a large number of different covariates and it is important for analysis to de-
fine those, which are really important. In a more general form  (13) can be written
with a time-dependent )(xz .
     Consider a population in some reference (baseline) environment (regime) with the
corresponding mortality rate )(xbµ . Denote by )(xzb  the regime, which formally cor-

responds to the baseline mortality rate: )())(,( xxzx bbr µµ ≡ , whereas the mortality

rate in the arbitrary (real) regime )(xz  is denoted by ))(,( xzxrµ . Assume that the

initial baseline regime )(xzb  is switched to a lighter one )(xz  at 0xx = . There can be

numerous reasons for this model: e.g., radiation or pollution elimination in some area,
change in the lifestyle, etc. Denote by )(xzc  the resulting compound regime
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In accordance with the Sedyakin Principle of the previous section (see equations (9)
and (10)) the starting re-calculated population age in regime )(xz  (it can be also

called equivalent or virtual age  (Finkelstein (1997))) at 0xx =  is defined by

00 )(
~

xxW > . Therefore, the Cdf of age (at death) for the compound regime )(xzc  is:
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It is clear that the second line in the right hand side of (15) can be transformed to
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Denote for brevity: ))(,()( xzxx rr µµ ≡ . In accordance with (15), the survival function

of the remaining lifetime after the switch at 0x  is
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On the other hand, this function without the switch would be:
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 It was assumed that )(xz  is a lighter regime than the baseline )(xzb . This notion

should be specified. Let mortality rates under consideration be monotonically in-
creasing in x , which is a usual assumption for adult mortality.

Definition 1. The mortality regime )(uz  is lighter than the baseline mortality regime

)(xzb  in a weak sense, if the following mortality rates ordering holds:

),0[);()( ∞∈∀≥ xxx br µµ                                              (18)

This is a natural definition for comparing two different regimes without a change
point. Let 0),( ≥xxFr  denote the Cdf defined by the mortality rate )(trµ . It is clear
that in this case the following ordering for the remaining lifetimes:

0,),|()|( 000 ≥∀≤ xxxxFxxF br                                         (19)

holds, which trivially leads to the corresponding ordering of life expectancies at 0x  as

well. On the other hand, it is clear (see Example 2) that condition (18) does not guar-
antee that

)()(
~

( 00 xxW br µµ < ,                                              (20)

and, therefore, the mortality ordering at least for some 0≥′x :

),0[),()(
~

( 00 xxxxxxW br ′∈+<+ µµ ,                              (21)

is also not guaranteed, whereas it is natural to expect the opposite sign in inequalities
(20) and (21) upon switching to the lighter regime. Thus, the stronger definition, for a
lighter regime should be given, but, firstly, consider the following example:

Example 2: Let axxb =)(µ  be linear and let 0)( axr =µ  in ),0[ 1x  and then be again

linear with a slope aa >1 . For simplicity we can assume that 00 =a . Furthermore, let

for }/){( 1212 aaaxx −=≥  the slope of )(xrµ  is the same as for )(xbµ :  axxr =)(µ .

It is clear from equation (10) that in this case (for the not very large 0x ):

)()(
~

( 00010 xaxxaaxW br µµ =>=
and inequality (20) does not hold.

Definition 2. Let mortality rates ordering (18) holds for increasing mortality rates. Let
the regime be switched at 0xx = , as defined by relation (14) and the starting age in
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regime )(xz  is 0
~ xx ≥ . (We do not assume the concrete rule (e.g., )(

~~
0xWx = ) of time

re-calculation in this definition). Let:
0,0;0))~()( 00 ≥≥∀≥+−+ xxxxxx rb µµ .                            (22)

Then the mortality regime )(uz  is defined as a lighter than a baseline one in a strong
sense for an age re-calculation model with a regime change point at 0xx = .

Example 3.  Let: baxbxxax rb >== };exp{)(},exp{)( µµ . Thus, in accordance with

Definition 1, the mortality regime )(uz  is lighter than the baseline one in a weak
sense. For applying Definition 2 consider:

[ ]}~exp{}exp{}exp{))~()( 00 xbxaxxxxx rb −=+−+ µµ               (23)

It can be easily seen that this relation is positive (non-negative) when
)/ln(~

00 abxxx −≤≤ ,

which means that the starting point after the re-calculation x~  should not be too large
to guarantee that the rate )~( xxr +µ  is ‘lower’ than the baseline rate )( 0 xxb +µ .

The similar reasoning holds e.g., for babxxaxx rb >== };exp{)(},exp{)( µµ  or for

the power law for the mortality rate function.♦

The following important and simple result is a straightforward consequence of Defi-
nition 2:

Theorem. Let the real regime be lighter than the baseline in the strong sense

( )(
~~

0xWx = ). Then the remaining lifetime, defined by the Cdf (16) is stochastically

larger than the remaining lifetime, defined by the Cdf  (17):
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)(exp µ ; 0≥∀ x                        (24)

The proof  easily follows from the fact that )(
~

0xW  is the specific case of x~  and

equations (16), (17) and (22).

Remark 5. As it was mentioned before, the re-calculation condition (10) and inequal-
ity ),0[,);()( ∞∈∀≥ xxx rb µµ  does not guarantee inequality (20) (see Example 2). It

can be easily seen, however, that it holds e.g., for the setting of Example 3:
baxbxxax rb >== };exp{)(},exp{)( µµ . Applying the specific re-calculation rule

(10)  results in: 
b

bxa
xW

+−
=

]1}[exp{
ln)(

~ 0
0  and eventually:

)(}exp{]1}[exp{)(
~

( 0000 xxabxaxW br µµ =<+−= .

Thus, relation  (22) is also positive, which means that the real regime is lighter than
the baseline one in a strong sense.♦

Differentiating (10) (where 0xx = ) with respect to 0x  leads to a similar to equation

(11) relationship between the mortality rates in different regimes:

)(
~

()(
~

)( 000 xWxWx rb µµ ′= .                                      (25)

It follows from (25) that if
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1)(
~

0 <′ xW ,                                                 (26)

condition (20) does not hold and the corresponding regime cannot be qualified as a
lighter one in a strong sense. Thus inequality (26) presents a simple initial test for this
property.

Example 3 (continued).  It is clearly seen that (26) holds, as in this case:

1
]1}[exp{

}exp{
)(

~

0

0
0 >

+−
=′

bxa

xa
xW .

On the other hand, the mortality rates ordering (22) should hold for all values of 0≥x
and not only for 0=x  as in (25)-(26). It is clear that due to relation (23) in this spe-
cific case ordering (22) holds for all 0≥x  as well.♦

It is worth mentioning that, as the life expectancy at some age 0x  for an age at death

Cdf with mortality rate )(tµ  is defined by:

)( 0xe � �
∞ +
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)(exp dxduu
xx

x

µ ,

the corresponding inequality for life expectancies at 0x  (with and without the change

point, respectively)  trivially follows under assumptions of  the Theorem:
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Therefore, the switch to the lighter in a strong sense regime increases the life expec-
tancy.

3. ACCUMULATION AND PLASTICITY

The PH model (13) is a rather simple and widely used way of modelling an impact of
environment on the baseline mortality rate. Let 1<z , which means that )(xrµ  defines
a lighter in a weak sense mortality regime. The PH model was discussed in the previ-
ous section only as one of the specific methods of ordering the mortality curves. On
the other hand, similar to the accelerated life model (ALM), it can also define the al-
ternative way of age re-calculation for the mortality regime with a change point. The
corresponding rule can be interpreted as: no change in age.  Similar to relation (15)
the lifetime Cdf for the compound regime (14) is defined in this case as
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which means that age re-calculation function is zero: 0)(
~

0 =xW . In accordance with

(27), the survival function of the remaining lifetime after the switch at 0x  is

=)|( 0xxFR
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0

)(exp µ                                           (28)
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The re-calculation rule defined by relations (27) and (28) means that the population
mortality history (before 0x ) does not contribute to the mortality future (a kind of

simplified Markovian property). Alternatively, the re-calculation procedure of the
previous section, based on the ALM, takes into account accumulated wear in ),0[ 0x

defined by the corresponding functional (12) in this interval of time.
    What model (or combination of models) explains better the patterns of a ‘real life
mortality’ with a change point? The survival analysis literature on testing the data on
PH or ALM models is quite intensive, and the corresponding approaches can be used,
in principle, for demographic purposes as well. But firstly, and this is very important,
there should be at least some preliminary analysis of the corresponding aging proc-
esses. If, due to some reason, there is an evidence of the memoryless property, then
model (27)-(28) can present a suitable tool for analysis. Latest experiments on the diet
constraints for the fruit flies and other species support this idea (see Vaupel et al
(2003), Mair et al, and Kolata (2003)). If, on the other hand, it is clear that the wear
accumulation process governs aging, then the ALM and the Sedjakin Principle are
more likely to account for this.
     A useful for interpretation of the PH model can be found in the following shock-
based setting. Assume now that the only source of an object’s failure (death) is an en-
vironment, which is modeled by the Poisson point process of potentially harmful
events-shocks with rate )(tsλ . Each shock independently of previously survived

shocks leads to failure with probability )(tθ , which, e.g., shows an ability of an or-
ganism to survive the shock (repair capacity in Vaupel and Yashin (1987)). Thus, the
object does not experience wear-out in the traditional sense. Then the well known re-
sult, which follows from Block et al (1985) or Finkelstein (2000) states that the corre-
sponding lifetime survival function is defined by

�
�
�

�
�
�
−= �

x

s duuuxF
0

)()(exp)( λθ                                           (29)

Thus, the function
)()()( xxx sλθµ =                                                   (30)

is the mortality rate, defined by the Cdf (29). Applying this formula to the baseline
regime )(xzb  (baseline Poisson shock process with rate )(tsbλ  and the baseline prob-

ability )(xbθ ) and to a lighter regime )(xz :

0);()( ≥< xxx sbsr λλ , 0);()( ≥< xxx br θθ
it is easy to obtain the following expression

)()(
)()(

)()(
)()()()()( xxg

xx

xx
xxxtx b

sbb

srr
sbbsrrr µ

λθ
λθλθλθµ === ,                  (31)

where 1)( <xg  characterizes a lighter mortality regime, and there is no need in this
case two define two types of a lighter regime, as in the previous section. Relation (31)
defines a time-dependent version of the PH model (13).
     Thus the effect of the change in environment in the PH model results in immedi-
ate change in the mortality rate in accordance with relations (13) or (31). The age of
the object immediately after the change point is the same as it was just prior it (com-

pare with 0x  and )(
~

0xW , respectively for the model defined by equations (19) and

(20)). This memoryless model was called in Finkelstein (1998) “the absolute elastic-
ity model”, but the term “plasticity” is a more appropriate one (see Vaupel et al
(2003) and Scholtz and Mair (2003)).
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Remark 6. It follows from results of this and the previous sections that after switch-
ing to a weaker regime the mortality rate defined via the Sedjakin Principle is larger
than the one obtained via the PH model (for the same initial setting, of course):

0),)(
~

()( 00 ≥+<+ xxxWxx rr µµ .

4. COMBINED MODEL

It is reasonable to assume that the ‘real life model’ can be described by the combina-
tion of these two models.  By this we mean that the change in environment affects the
part of an object (which is somehow accounts for wear accumulation or aging in a
traditional sense) in accordance with the ALM and Sedjakin Principle. On the other
hand, the complement part of an object is affected in accordance with the PH model
(“elastic” part). Under the natural simplifying assumption of statistical independence
of both parts (for the random environment, for instance, this assumption does not hold
and the corresponding bivariate models should be considered), the survival probabil-
ity is defined by the product rule:

)()()( xFxFxF ALMPH=                                              (32)
or via the corresponding mortality rates:

)()()( xxx ALMPH µµµ +=                                            (33)

Remark 7. It is also reasonable to assume that there is another ‘stable’ part of an or-
ganism, which is not influenced by changes in environment. In this case relation (32)
turns to:

)()()()( xFxFxFxF ALMPHst= ,

where )(xFst denotes the survival probability of this part. The forthcoming relations

can be easily adjusted to this case.

     Consider for the model (32)-(33), as previously, the baseline and the lighter re-
gimes, respectively (for applying the Sedjakin Principle we must assume the lighter in
a strong sense mortality regime):

  )()()( xxx bALMbPHb µµµ += ; )()()( xxx rALMrPHr µµµ += .               (34)

Then the mortality rate after the change point at 0x  is given

0),())(
~

()(~
000 ≥+++≡+ xxxxxWxx rALMrPHr µµµ .                         (35)

Consider the following quotient:
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             (36)

Relation 1),( 0 ≈xxR  means that the “elasticity part” of an organism dominates. As

00 )(
~

xxW >  and we are dealing with increasing mortality rates, the sufficient condi-

tion for this is

)())(
~

( 00 xxxxW rALMrPH +<<+ µµ ,                                   (37)

(the condition )()( 00 xxxx rALMrPH +<<+ µµ  holds automatically in this case).
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On the other hand, it is obvious that ))(
~

()(~
00 xxWxx rPHr +≈+ µµ , when

)()())(
~

( 000 xxxxxxW rALMrPHrPH +>>+>+ µµµ .                      (38)

In this case:

)(

))(
~

(
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0

0
0 xx

xxW
xxR

rPH

rPH

+
+

≈
µ

µ

and the ‘accumulation part’ of an organism dominates.
   The mentioned above recent findings concerning the mortality plasticity of the fruit
flies and other species certainly agree with (37). The human mortality is likely to pos-
sess both of these parts. The accumulation (wearing-out) theory contributes to the cor-
responding age re-calculation rule based on the Sedjakin Principle.
     It is a well-known fact in demographic literature that the past (especially in-utero
phase, early childhood and adolescence) effects the future mortality patterns of hu-
mans (Doblhammer (2003)). On the other hand, there is evidence that with increasing
age of the change point 0x  the effect of the past decreases and humans start to be

more susceptible to environmental influence. For instance, the new technology and
methods in curing cardio-vascular diseases can have an immediate effect on the mor-
tality of especially the oldest-old group (the saving lives effect).  This effect can be
perfectly modelled by relations (29)-(31) (see also Vaupel and Yashin (1987)) as the
specific form of the PH model. The recent data on comparative mortality in East and
West Germany after unification supports this claim (Scholtz and Maier (2003)). The
corresponding mortality curves converge faster for those who were older at 1990=t .
For instance they practically coincide after 1990 for the cohorts born in 1895 (the fast
effect due to improvements in economic and social conditions and especially due to
the better health care in West Germany).  New data should be obtained and new re-
search should be conducted to verify this idea, but it seems rather reasonable from the
point of view suggested in this paper.
     As it was mentioned while discussing relation (13), environment (life style) can be
described by a large number of covariates (parameters). It is reasonable to assume that
change points in some parameters are more likely to be described by the plastic model
(as in the example of the previous paragraph), whereas change points in other pa-
rameters better fit in the framework of the accumulated wear model and the Sedjakin
Principle. This agrees with the formal description given by relations (34)-(38). The
corresponding generalisation to the multi-parameter case can be easily performed in
general but needs a thorough ‘experimental’ study in the future.

5. CONCLUDING REMARKS

We have discussed in this paper certain general approaches to age re-calculation for
different mortality regimes and to the choice of the appropriate model for the mortal-
ity curve when there is a change point in environment. These models, of course,
should be verified on demographic data, but the idea of classifying parameters of en-
vironment as leading to the elastic, wear-accumulation, or combined description
seems to be rather promising.
     It is important to understand that the age-recalculation method defined by the
Sedjakin Principle, is a simple rule for using the aggregated information on the past of
an object for modeling its future performance. As it was already mentioned, the ex-
tensive reliability literature shows that this approach can be reasonable under very
mild assumptions, which suggests that it can be used for age re-calculation for organ-
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isms as well. It is worth mentioning, however, that the analogies between stochastic
modeling of lifetimes of biological and technical objects should not be understood too
literally and the corresponding methods should be used very carefully.
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