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ABSTRACT 

 

If aging is understood as some process of damage accumulation, it does not necessar-

ily lead to increasing mortality rates.  Within the framework of a suggested generali-

zation of the Strehler-Mildwan (1960) model, we show that even for models with 

monotonically increasing degradation, the mortality rate can still decrease. The de-

cline in vitality and functions, as manifestation of aging, is modeled by the monotoni-

cally decreasing quality of life function. Using this function, the initial lifetime ran-

dom variable with ultimately decreasing mortality rate is ‘weighted’ to result in a new 

random variable which is already characterized by the increasing rate. 
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1. INTRODUCTION 

 

Mortality rates of most species increase with time at least after the start of reproduc-

tion. For advanced ages they sometimes also tend to level off or even to decrease, 

which among other reasons, can be due to population heterogeneity (Vaupel et al, 

1979). In this note, however, we will focus only on a homogeneous case. Does a pos-
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sible deceleration in mortality mean a deceleration in aging? This certainly depends 

on a definition of aging and we show under certain assumptions that when overall ag-

ing of an organism is understood as some accumulation of damage (additive degrada-

tion), and this is our assumption, it does not always lead to increasing mortality rates. 

Therefore, we distinguish between the deterioration per se and its manifestation in the 

form of increasing mortality rate which is likely but not always to occur. In this way 

we partially argue with Finch (1990), where he defines senescence as “age-related 

changes in an organism that adversely affect its vitality and functions, but most im-

portant increase the mortality rate…” (see also Vaupel et al (2004) for the correspond-

ing discussion). We, on the contrary, emphasize the fact that accumulated damage of 

some kind, eventually defines these age related changes in an organism and, com-

bined with other factors, determines the shape of the mortality rate. This approach is 

definitely not a new one, and was recently supported in a rather general setting by 

Aalen and Geising (2001) in their path breaking paper with a speaking for itself title: 

Understanding the shape of the hazard rate: a process point of view. 

     Consider an organism in a post-reproductive phase of life, when the accumulated 

damage already noticeably results in negative age related changes. On the other hand, 

assume that the mortality rate is leveling off or even decreasing at sufficiently ad-

vanced age, which is observed in humans and some other species. How can these, at 

first sight, contradictory properties coexist?  Firstly, we show that under certain as-

sumptions this can still be the case, and, secondly, we suggest how, at least formally, 

to deal with and to interpret the stated contradiction. 

     Apart from the shape of mortality rate, the following question can be asked:  is the 

‘value’ of a unit of a lifetime of humans at sufficiently advanced ages the same as at 

previous phases of life? Humans at advanced ages usually have restrictions of various 

kinds, showing a substantial decrease in vitality and functions and therefore in some 

sense decreasing a quality of life at this stage. It should be noted, however, that al-

though formally vitality and functions of humans decrease at all adult ages, the no-

ticeable decline in the corresponding quality of life due to these processes occurs usu-

ally only at relatively advanced ages.  

     In Section 2, using a generalization of the Strehler-Mildwan (1960) model, we 

show that even for models with monotonically increasing degradation, the mortality 

rate can still decrease. In Section 3 we suggest the weighting of a lifetime random 

variable based on a quality of life index. A new ‘weighted’ lifetime random variable 
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can already posses a more natural for degradable objects property of increasing ‘mor-

tality’ rates.  

 

2. DEGRADATION AND MORTALITY RATE 

 

Let T  denote the lifetime, described by the Cdf )(tF  and mortality rate )(tµ . Does 

increasing mortality rate )(tµ  really describe aging?  In fact, this is a matter of a defi-

nition: in reliability theory (Barlow and Proschan, 1975), e.g., the simplest and most 

popular class of aging distributions is the class of distributions with increasing fail-

ure rate (IFR). The other option is the IFRA (increasing failure rate in average) when 

t

duu

t

∫
0

)(µ
 

is increasing in t . Another weaker class is the class of distributions with decreasing 

function )(tm -life expectancy at age t , which is defined via )(tµ  as:  

∫ ∫
∞ +
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
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It follows from (1), that )(tm  is decreasing when )(uµ  is increasing. The inverse is 

generally not true (Finkelstein, 2002).  Therefore, the decreasing in t  life expectancy 

at age t  may be, in fact, a better characteristic of aging. 

     The foregoing expresses a statistical (black box) point of view, when the only in-

formation at hand is the mortality data. When we speak about biological aging, an un-

derlying biological process (processes) of aging should be taken into account. Most 

researchers agree that aging can be described by accumulation of some kind of dam-

age which leads to “age-related changes in an organism that adversely affect its vital-

ity and functions”, and in the current note we shall follow this interpretation.        

     Does damage accumulation lead to increasing mortality rates? General progressive 

models (Aalen and Geising, 2001) described by monotonically increasing stochastic 

processes of wear or degradation, often result in increasing mortality rates.  But this is 

not a rule. The following generalization of the Strehler-Mildvan (1960) model shows 

that a decreasing shape of the mortality rate is also possible.  

     Consider a univariate first passage-type model with killing events (Singpurwalla, 

1995; Aven and Jensen, 1999; Finkelstein 2003a): Let 0, ≥tDt  denote an increasing 
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stochastic process of damage accumulation (e.g. the gamma process) and )(tB  be a 

function that defines a corresponding boundary. A death (failure) occurs when tD  ex-

ceeds )(tB  for the first time. Let )(td  denote the increasing sample path of this proc-

ess. 

     Assume that 0, ≥tPt  is an orderly (without multiple occurrences) point process of 

external harmful events (external stresses) with rate )(tλ . Assume also that this proc-

ess is independent from 0, ≥tDt . Following reliability terminology, we will call 

these events for convenience “shocks”. Let ),( baN denote the number of shocks in 

),[ ba . Each shock, independently from the previous ones, results in death with prob-

ability )(tθ  and is ‘survived’ with the complementary probability θ−1 . This can be 

interpreted in the following way: each shock has a random magnitude ,...2,1, == iYYi  

with a distribution function )(yΨ . The death at age t  occurs when this magnitude 

exceeds the margin: )()( tdtB − . Therefore:  

))()((1))()(Pr()( tdtBtdtBYt −Ψ−=−>=θ . 

     In the original Strehler-Mildvan (1960) model, which was widely applied to human 

mortality data, our )()( tdtB −  has a meaning of vitality. It was also supposed that this 

function linearly decreases with age and that the distribution function )(yΨ  is expo-

nential (Yashin et al, 2000).  We do not need these stringent assumptions for the 

forthcoming considerations. 

     It is worth noting that the rate (intensity) )(tλ  does not define an arbitrary point 

process. However, it can be defined via its complete intensity function (Cox and 

Isham, 1980): 

t

HtttN
Ht t

t
t ∆

=∆+
=

→∆

}|1),(Pr{
lim);(

0
λ , 

where tH  specifies  the point process up to time t  (history). For orderly point proc-

esses dtHt t );(λ  can be interpreted as a probability of a shock occurrence in 

),[ dttt + , given the process history up to t . Therefore, the conditional mortality rate 

is: 

dtHtttHTHdtttTdtHt ttttc ),()(})(,|),[Pr{),( λθµ =≥+∈= ,           (2)      
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where condition tHT t ≥)(  means that all shocks in ),0[ t  were survived (for the spe-

cific configuration of shocks given by the history 
t

H ). It is important to keep in view 

that conditional mortality rate is based on the internal ‘individual’ information and in 

general bears no usual exponential relationship with the corresponding survival func-

tion: )Pr()(1)( tTtFtF >=−≡ . However, only for the specific case of the Poisson 

process (unfortunately Strehler-Mildwan (1960) did not make this crucial assump-

tion) equation (2) reduces to the conventional, not history-dependent mortality rate 

)(tµ ,  

)()()(),( tttHt tc µλθµ == .                                              (3) 

Therefore, the conventional exponential representation for the corresponding survival 

function is  


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t

duuutF
0

)()(exp)( λθ                                                  (4) 

and this completes the proof for the specific case of the Poisson process of shocks. 

     Coming back to our setting, equation (4) can be obviously modified to: 
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where rt  is defined as the minimal solution of equation )()( tdtB = . If the curves 

)(tB  and )(td  does not cross, then ∞=rt . Humans and other organisms do not usu-

ally dye directly from accumulated damage, which is a slowly increasing process. 

Therefore, we can assume that formally ∞=rt  and relations (3) and (4) hold.  

     We have derived equations (2) - (4) for the sample path )(td . A general case of the 

process 0, ≥tDt  can be considered by obtaining expectation of the right hand side of 

(3) with respect to 0, ≥tDt , whereas the mortality rate in this case is given by obtain-

ing conditional expectation of the right hand side of (4) (Yashin and Manton, 1997; 

Finkelstein 2003a). This conditioning can only result in additional deceleration or de-

crease of the observed mortality rate.   

     Equation (3) states that the resulting mortality rate is just a simple product of the 

rate of the Poisson process and of the probability )(tθ . Therefore, its shape can be 

easily analyzed.  When )()( tdtB −  is decreasing, the probability of death )(tθ  is in-
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creasing with age, which goes in line with the accumulation of degradation reasoning. 

If, additionally, the rate of harmful events )(tλ  is not decreasing, or decreasing not 

faster than )(tθ  is increasing, the resulting mortality rate )(tµ  is also increasing. In 

conventional settings )(tB  is usually assumed to be a constant, therefore )()( tdtB −  

is decreasing automatically. On the other hand, the following properties and their ob-

vious combinations can result in the decreasing  mortality rate )(tµ : 

 

     a. )(tθ  is decreasing, as the boundary function )(tB  is increasing faster than )(td : 

additional vitality is additively ‘earned’ by an organism with age (some relevant gen-

eral models for this case can be considered, which is a topic for a special study). 

     b. )(tθ  is decreasing, as the magnitude of harmful events tY  is stochastically de-

creasing with age t .  

     c. )(tθ  is decreasing, as a resistance (or defense) of an organism to shocks is in-

creasing with age. (It is not clear how this property go together with the general de-

cline of vitality and functions, but probably some explanation can be found). 

     c. The rate of harmful events )(tλ  is decreasing. This assumption can be quite re-

alistic, e.g., for human populations in developed countries when the exposure to 

stresses of different kinds decreases at advanced old ages.  

 

     Thus the case of negative aging can still occur within the framework of the sug-

gested generalized Streller-Mildwan model. This supports our claim that in general 

the shape of mortality rate alone is not sufficient for defining aging properties, 

whereas the accumulated damage, which is responsible for age related changes in an 

organism, combined with other factors, eventually determines the shape of the mortal-

ity rate. On the other hand, it seems intuitively unnatural that a degradable object is 

characterized by the decreasing mortality rate. Therefore, in the next section a regu-

larization procedure will be suggested which can eventually boil down in the increas-

ing ‘mortality’ rate for a supplementary lifetime random variable. 

 

3. QUALITY OF LIFE FUNCTION 
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Denote by 1)( ≤tq -a quality of life index  at age t . In fact, this should be an individ-

ual stochastic function of degradation ))(( tDq ), but we restrict ourselves to some 

general averaged characteristic. The function )(tq  defines a weight which is given to 

a unit increment of life at age t . As it was stated in the Introduction, humans at ad-

vanced ages usually have restrictions of various kinds, showing a substantial decrease 

in vitality and functions, which decrease a quality of life at this stage. Although for-

mally vitality and functions decrease at all adult ages, the noticeable decline in the 

corresponding quality of life due to these processes occurs usually only at relatively 

advanced ages.  

     These considerations are somehow similar to the starting point of the Quality Ad-

justed Life Years (QALYs) approach (see, e.g., Humnik et al, 2001), but the goal is 

different. This approach is focused on solving individual health care decision prob-

lems, when, for instance, an operation with probability p can add a number of quality 

years ( 1=q ), but can result in death ( 0=q ) with probability p−1 .  Without an op-

eration a patient lives with a lower quality of life: 1<q . Our interest is not in a spe-

cific decrease in abilities of individuals with concrete health problems, but rather in 

modeling a general population trend, which shows the decline in quality of life as the 

manifestation of senescence. Therefore, we will assume that ),0[,1)( stttq ∈=  and 

that this function monotonically decreases for stt ≥ , where st  is the starting point of 

senescence: a noticeable decline in ‘abilities and possibilities’.    

    Consider the remaining lifetime at some stx ≥ , Denote this random variable by xT  

and the corresponding Cdf by xtxxtF ≥− ),|( . Thus: 

.)(exp)(exp

)(1

)(1
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
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=−−
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duuxduu
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Denote by qT  a ‘weighted lifetime’: random variable weighted in accordance with the 

quality of life function )(tq : 

)()(
0

TQduuqT

T

q ≡= ∫ ,                                               (5) 

where )()( tqtQ =′ . We must also assume for simplicity that  



 8 

∞=∞→ )(lim tQt ,                                                         (6) 

although the situation for a non-proper case, when this limit is less than ∞ , can be 

also considered. 

     It is clear that, when 1)( ≡tq , the lifetimes are equal: TTq = . Thus, qT  already 

reflects in a certain way not only the length of life but its quality as well. The corre-

sponding distribution function is easily derived: 

))(())(Pr())(Pr()( 11 tQFtQTtTQtG −− =≤=≤= ,                       (6) 

where )(1 tQ −  is the inverse function to )(tQ , which exists and increases due to defi-

nition (5). Relation (6) defines the accelerated life model (Finkelstein, 1999) with a 

scale transformation depending on age t . 

     It can be shown that the ‘mortality rate’ defined by the distribution )(tG  is: 

))((
))((

)( 1
1

tQ
dt

tQd
tq

−
−

= µµ .                                                (7) 

   

   Our intention is to show that, for instance, in cases of ultimately decreasing mortal-

ity rate )(tµ , which are usually qualified as negative senescence, the function )(tqµ  

can increase, which is somehow more intuitively acceptable for models with degrada-

tion. It is natural to model )(tq  as a decreasing power function for large .t  A gener-

alization to the regularly varying functions (Bingham et al, 1987) is rather straight-

forward. Let: 10,~)( <<− ααttq . By this notation we mean proportionality. The 

case: 1=α  will be considered separately, whereas the range 1>α  is not allowed by 

relation (6). Then: 

k

n

n

k

ttQnktttQ ~)(,;~)( 11 −+− <=α . 

Therefore, as follows from definition (7), e.g, for a constant mortality rate )(tµ , the 

rate qµ  is already increasing and 
1

~)(
−

k

n

q ttµ . It is easy to see that it will be still in-

creasing even for decreasing mortality rates: Btt −~)(µ , if 
n

k
−<< 10 β . Thus, under 

some reasonable assumptions a ‘regularization’ procedure had been performed result-

ing in the increasing rate )(tqµ .  The following example deals with the case: 1=α . 
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Example. Let  }exp{1)( ttF µ−−=  and : 


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where 0>k , which means that for sufficiently large t : tktq /~)( . Then:  
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It is easy to see that the inverse function )(1 tQ −  is linear in ],0[ st  and is exponentially 

increasing for stt > . It follows from equations (7) and (8) that )(tqµ  is also increas-

ing for stt >  (~exponentially) and is constant in ],0[ st . This shape already reflects 

degradation in the model. The same, in accordance with relation (7), is true for the 

case when )(tµ  is decreasing but slower than ))'(( 1 tQ −  is increasing.  

 

     The quality of life approach is probably more natural to be used for considering the 

corresponding life expectancy at time t  than for mortality rate itself. Similar to defini-

tion (1)  

∫ ∫
∞ +











−=

0

)(exp)( dxduutm

tx

t

qq µ                                             (9) 

which means that )(tmq  can decrease when )(tm  is constant or increasing. 

 

4. CONCLUDING REMARKS 

 

Usually mortality rates increase with age as the consequence of age-related changes in 

an organism that adversely affect its vitality and functions. Within the framework of 

the generalized Strehler-Mildwan model, we show that theoretically different shapes 

of mortality rate functions are possible even with degradation. Modeling of probabil-

ity )(tθ is crucial for this approach. The assumption that the process of shocks is the 

Poisson one is important for obtaining the mortality rate in the closed simple form (3). 

We can generalize the approach to the renewal process of shocks (Finkelstein, 2003 b) 

and also can incorporate in the model the fact that after the successfully survived 
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shock the level of accumulated damage increases on a random amount, but the corre-

sponding technical derivations are rather cumbersome. 

     The suggested change of variables from  T  to qT , defined by relation (5), captures 

a natural degradation at old age, which is crudely characterized by the function )(tq . 

It should be noted, however, that from probabilistic point of view the random variable 

qT  should be treated very carefully. 
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