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ABSTRACT. Mixtures of increasing failure rate distributions (IFR) can decrease at 

least in some intervals of time. Usually this property is observed asymptotically as 

∞→t , which is due to the fact that a mixture failure rate is ‘bent down’, as the 

weakest populations are dying out first. We consider a survival model, generalizing a 

very well known in reliability and survival analysis additive hazards, proportional 

hazards and accelerated life models. We obtain new explicit asymptotic relations for a 

general setting and study specific cases. Under reasonable assumptions we prove that 

asymptotic behavior of the mixture failure rate depends only on the behavior of the 

mixing distribution in the neighborhood of the left end point of its support and not on 

the whole mixing distribution. 

 

Keywords: mixture of distributions, decreasing failure rate, increasing failure rate, 

proportional hazards model, accelerated life model. 

 

1. INTRODUCTION 

 

Mixtures of decreasing failure rate (DFR) distributions are always DFR (Barlow and 

Proschan, 1975). On the other hand, mixtures of increasing failure rate distributions 



(IFR) can decrease at least in some intervals of time, which means that the IFR class 

of distributions is not closed under the operation of mixing. (Lynch, 1999). As IFR 

distributions usually model lifetimes governed by aging processes, it means that the 

operation of mixing can change the pattern of aging, e.g., from the positive aging 

(IFR) to the negative aging (DFR). These important facts should be taken into account 

in applications. 

     One can hardly find homogeneous populations in real life and mixtures of distribu-

tions usually present an effective tool for modeling heterogeneity. A natural specific 

approach for this modeling exploits a notion of a non-negative random unobserved 

parameter (frailty) Z  introduced by Vaupel et al (1979) in a demographic context. 

This, in fact, leads to considering a random failure rate ),( Ztλ . As the failure rate is a 

conditional characteristic, the ‘ordinary’ expectation )],([ ZtE λ  with respect to Z  

does not define a mixture failure rate )(tmλ  and a proper conditioning should be per-

formed (Finkelstein, 2004).  

     A convincing ‘experiment’, showing the deceleration in the observed failure rate is 

performed by nature. It is well-known that the human mortality follows the Gompertz 

lifetime distribution with exponentially increasing mortality rate. Assume that hetero-

geneity can be described by the proportional Gamma-frailty model:  

}exp{),( tZZt βαλ = ,                                                    (1) 

where α  and β  are positive constants, defining a baseline mortality rate. Due to the 

computational simplicity, the Gamma-frailty model is practically the only one used in 

applications so far. It can be shown (see, e.g., equation (29) in the current paper) that 

the mixture failure rate )(tmλ  in this case is monotone in ),0[ ∞  and asymptotically 

tends to a constant as ∞→t . It is monotonically increasing, however, for the real 

values of parameters of this model. This fact explains recently observed deceleration 

in human mortality for oldest old (human mortality plateau, as in Thatcher (1999)). A 

similar result is experimentally obtained for a large cohort of medflies by Carey et al. 

On the other hand, in engineering applications the operation of mixing can result even 

in a more dramatic effect: the mixture failure rate is increasing in 0),,0[ >mm tt  and 

decreasing asymptotically to 0  in ),[ ∞mt , which, e.g., was experimentally observed 

in Finkelstein (2005) for the heterogeneous sample of miniature light bulbs. This fact 

is easily explained theoretically via the gamma frailty model with a baseline failure 



rate increasing, in accordance with a Weibull law, as a power function (Gupta and 

Gupta, 1996; Finkelstein and Esaulova, 2001a). 

     In Block et al (2003) it was proved that if the failure rate of each subpopulation 

converges to a constant and this convergence is uniform, then the mixture failure rate 

converges to the failure rate of the strongest subpopulation: the weakest subpopula-

tions are dying out first. (For convenience from now on we shall use where appropri-

ate the term “population” instead of “subpopulation”)  These authors generalize a case 

of constant in time failure rates of populations, considered by Clarotti and Spizzichino 

(1990) and present a further development of Block et al (1993) (see also Lynn and 

Singpurwalla, 1997; Gurland and Sethuraman,1995).  In Block and Joe (1997) the fol-

lowing asymptotic result, which also addresses the issue of ultimate monotonicity, 

was obtained: let 0z  be a realization of a frailty Z , which corresponds to the strongest 

population. If ),(/),( 0ztzt λλ  uniformly decreases as ∞→t , then ),(/)( 0zttm λλ  

also decreases. If, in addition, ),(lim 0ztt λ∞→  exists, then this quotient decreases to 1. 

Although the lifetime model in these findings could be rather general, analytical re-

strictions, e.g., uniform convergence, are rather stringent. Besides, the strongest popu-

lation is not always identifiable. 

     The goal of the current paper is to try to find a balance between the generality of a 

model and a possibility of obtaining explicit asymptotic results for the mixture failure 

rate )(tmλ . We suggest a class of distributions, which hopefully meets this require-

ment and develop a new for this kind of applications approach, related to the ideol-

ogy of generalized convolutions, e.g., Laplace and Fourie transforms and, especially, 

Mellin convolutions (Bingham et al, 1987).  For proving our asymptotic results we 

use a standard technique similar to the one used for obtaining Abelian, Tauberian and 

Mercerian-type theorems, although our theorems are not the direct corollaries of re-

sults in this field (Bingham and Inoe, 1999, 2000). In line with this relationship it 

turns out that asymptotic behavior of mixture failure rates for the suggested class of 

lifetime distributions depends only on the behavior of the mixing distribution in the 

neighborhood of }0)({inf >zz π  and not on the whole mixing pdf )(zπ . 

     After defining a survival model in Section 2, we formulate our main theorems in 

Section 3 and consider important for applications examples in Section 4. As the 

proofs are more technical than we hoped them to be, they are deferred to a special 

Section 5. 



 

2.  THE SURVIVAL MODEL 

 

Let  0≥T  be a lifetime random variable with the Cdf )(tF  ( )(1)( tFtF −≡ ). As-

sume that )(tF  is indexed by a non-negative random variable Z with a pdf )(zπ  and 

support in ),0[ ∞ :  

),()|()|( ztFztTPzZtTP =≤≡=≤  

and that the pdf ),( ztf  exists. Therefore the corresponding failure rate for every fixed 

z  is ),(/),(),( ztFztfzt =λ . The support ∞≤> baba ,0],,[  can be also considered. 

Thus, the mixture Cdf  and pdf  are defined by  
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Denote, as usually, the cumulative failure rate by: 

duzuzt
t

∫=Λ
0

),(),( λ . 

We will define a class of lifetime distributions ),( ztF  and will study asymptotic be-

havior of the corresponding mixture failure rate )(tmλ . It is more convenient at the 

start to give this definition in terms of the cumulative failure rate ),( ztΛ , rather than 

in terms of the failure rate ),( ztλ . The basic model is given by the following relation: 

)())((),( ttzAzt ψφ +=Λ .                                          (2) 

 

General assumptions for the model (2): 

 

Natural properties of the cumulative failure rate of the absolutely continuous distribu-

tion ),( ztF  (for ),0[ ∞∈∀ z ) imply that the functions: )(),( tsA φ  and )(tψ  are differ-

entiable, the right hand side of (2) is non-decreasing in t  and tends to infinity as 



∞→t  and that 0)0())0(( =+ψφzA . Therefore, these properties will be assumed 

throughout the paper, although some of them will not be needed for formal proofs.  

     An important additional simplifying assumption is that  

),0[),();,0[),( ∞∈∞∈ ttssA φ  

are increasing functions of their arguments and 0)0( =A , although some generaliza-

tions (e.g., for ultimately increasing functions) can be easily performed. Therefore, we 

will view 0)),((exp{1 ≠−− ztzA φ   in this paper as a lifetime Cdf.  

 

      It should be noted, that model (2) can be also easily generalized to the form 

)()())()((),( zttzgAzt ηψφ ++=Λ  for some properly defined functions )(zg  and 

)(zη . However, we cannot go generalizing further (at least, at this stage) and the 

multiplicative form of arguments in ))()(( tzgA φ  is important for our method of deriv-

ing asymptotic relations. It is also clear that the additive term )(tψ , although impor-

tant in applications, gives only a slight generalization for further analysis of )(tmλ , as 

(2) can be interpreted in terms of 2 components in series (or, equivalently, via 2 com-

peting risks). However, this term will be essential in Section 3, while defining the 

strongest population. 

     The failure rate, which corresponds to the cumulative failure rate ),( ztΛ  is  

)())(()(),( ttzAtzzt ψφφλ ′+′′=                                          (3) 

Now we are able to explain, why we start with the cumulative failure rate and not with 

the failure rate itself, as often in lifetime modeling. The reason is that one can easily 

suggest intuitive interpretations for (2), whereas it is certainly not so simple to inter-

pret the failure rate structure in the form (3) without stating that it just follows from 

the structure of the cumulative failure rate. 

     Relation (2) defines a rather broad class of survival models which can be used, 

e.g., for modeling an impact of environment on characteristics of survival. The widely 

used in reliability, survival analysis and risk analysis proportional hazards (PH), addi-

tive hazards (AH) and accelerated life (ALM) models, are the obvious specific cases 

of our relations (2) or (3): 

 

PH (multiplicative) Model: 

Let  



0)(),()(,)( ≡Λ=≡ tttuuA ψφ . 

Then 

)(),(),(),( tzzttzzt Λ=Λ= λλ ,                                       (4) 

 

Accelerated Life Model: 

Let 

0)(,)(),()( ≡=Λ≡ tttuuA ψφ . 

Then 

∫ ==Λ
tz

tzzztduuzt
0

)(),(,)(),( λλλ                                   (5) 

 

AH Model: 

Let 

)(,)(,)( tttuuA ψφ =≡  is increasing, 0)0( =ψ . 

Then 

)(),(),(),( tztzttzzt ψψλ +=Λ′+=                            (6) 

 

     The functions )(tλ  and )(tψ ′  play the role of baseline failure rates in equations 

(4), (5) and (6), respectively. Note that in all these models, the functions )(tφ  and 

)(sA  are monotonically increasing. 

     Asymptotic behavior of mixture failure rates for PH and AH models was studied 

for some specific mixing distributions, e.g., in Gurland and Sethuraman (1995) and 

Finkelstein and Esaulova (2001a). On the other hand, as far as we know, the mixture 

failure rate for the ALM was considered only at a descriptive level and only in Ander-

son and Louis (1995).  

 

3. GENERAL RESULTS 

 

The next theorem derives an asymptotic formula for the mixture failure rate )(tmλ  

under rather mild assumptions. The proof of this and other theorems can be found in  

Section 5. 

 



Theorem 1.  Let the cumulative failure rate ),( ztΛ  be given by the model (2) and the 

mixing pdf )(zπ  be  defined as 

)()( 1 zzz ππ α= ,                                                   (7) 

where 1−>α  and 0)0(),( 11 ≠ππ z  is a bounded in ),0[ ∞  and  continuous at 0=z  

function. 

     Assume also that )(tφ  is  increasing to infinity: 

∞→)(tφ    as ∞→t                                            (8) 

and 

   ∫
∞

∞<−
0
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By relation (10) we, as usually, mean asymptotic equivalence and write )(~)( tbta  as 

∞→t , if .1))(/)((lim =∞→ tbtat  

 

     It is easy to see that assumption (7) holds for the main lifetime distributions such 

as Weibull, Gamma, lognormal etc. Assumption (8) states a natural condition for the 

function )(tφ , which can be often viewed as a scale transformation.  Condition (9) 

mean that the Cdf ))(exp{1 sA−−  should not be ‘too heavy tailed’ (as e.g. the Pareto 

distribution β−− s1 , for 1,1 >−≥ αβs ) and in our assumptions equivalent to the 

condition of existence of the moment of order 1+α  for this Cdf. Examples of the 

next section will clearly show that these conditions are not stringent at all and can be 

easily met in most practical situations. 

     A crucial feature of this result is that asymptotic behavior of the mixture failure 

rate depends only (omitting an obvious additive term )(tψ ) on the behavior of the 

mixing distribution in the neighborhood of zero and on the derivative of the logarithm 

of the scale function )(/)())((log:)( tttt φφφφ ′=′ . When 0)0( ≠π  and )(zπ  is 

bounded in ),0[ ∞ , the result does not depend on the mixing distribution at all , as 

0=α !  



     Theorem 1 can be formally generalized to the case when the mixing random vari-

able Z  does not necessarily posses an absolutely continuous Cdf in ),0[ ∞ : it is suffi-

cient that it should be absolutely continuous (from the right) at 0=z . 

 

     We can formulate a more general result, which states a similar dependence on the 

behavior of the mixing distribution at zero in terms of asymptotic comparison of two 

mixture failure rates:  

 

If, under some assumptions, the two mixing distributions are equivalent at 0=z , then 

the mixture failure rates are equivalent for ∞→t . 

 

Formally: 

 

Theorem 2. Let ),( txf and )(zπ be the lifetime and mixing pdf’s in a general  mixing 

model (1), respectively. Assume that there exists a positive function )(tα , which is 

ultimately decreasing to 0  as ∞→t  and that 

1
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     Denote another mixing pdf by )(1 zπ  and assume that )(/)(1 zz ππ  is bounded in 

),0[ ∞ , continuous at 0 , and .0)(/)(lim 10 ≠→ zzz ππ  

      Then: 
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as ∞→t . 

  

      It is worth noting that if 0)( ≡tψ  and all other conditions of Theorem 1 hold, 

condition (8) of this theorem guarantees assumption (11).  



     It is important, that for applying Theorem 2 we do not need a specific form of a 

survival model. As it will be seen from the proof, )(zπ  and )(1 zπ  also need not nec-

essarily be probability density functions (local integrability, in fact, is sufficient). The 

following corollary exploits the latter fact for the case when 1)( ≡zπ : 

 

Corollary.  Let ),( txf  be the lifetime pdf in a general  mixing model (1).  Assume 

that there exists a positive function )(tα , which is ultimately decreasing to 0  as 

∞→t  and that 

1
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 Let )(1 zπ be a bounded in ),0[ ∞ , continuous at 0  function,  and 0)0(1 ≠π  Then: 
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as ∞→t . 

 

     Theorems 1 and 2 consider the case when the support of a mixing distribution in-

cludes 0 : ),0[ ∞∈z . If the support is separated from 0 , the situation changes signifi-

cantly and we can observe a well-known principle that the mixture failure rate tends 

to the failure rate of the strongest  population (Block and Joe, 1992; Block et al, 2003; 

Finkelstein and Esaulova, 2001a). 

 

Theorem 3. Let the class of lifetime distributions be defined by equation (2), where 

∞→)(tφ  and )(sA  is twice differentiable Assume that as ∞→s : 

0
))((

)(
2

→
′
′′
sA

sA
                                                   (15) 

and 

∞→′ )(sAs .                                                       (16) 



     Let the mixing pdf )(zπ be defined in 0),,[ >∞ aa , bounded in this interval, con-

tinuous at az = , and 0)( ≠aπ .  

     Then 

)).(()(~)()( taAtattm φφψλ ′′′−                                             (17) 

 

     It is clear that conditions (15) and (16) trivially hold for specific multiplicative and 

additive models of the previous section. We will discuss them within the framework 

of the accelerated life model later. More generally, these conditions hold, if )(sA  be-

longs to a rather wide class of functions of smooth variation (Bingham et al, 1987). 

     Assume additionally that the family of failure rates (3) is ordered in z , at least, 

ultimately: 

0,0],,[,,),,(),( 0212121 ≥≥∞∈∀<< tzzzzzzztzt λλ . 

Then, as it was mentioned, Theorem 3, can be interpreted via the principle that the 

mixture failure rate converges to the failure rate of the strongest population. (Note that 

the right hand side in (17) also can be interpreted in this case as the failure rate of the 

strongest population for a survival model, defined by a random variable with the Cdf 

)}((exp{1 tzA φ− ). An interesting question arises: whether this principle is a ‘univer-

sal law’, or a consequence of sufficient assumptions of Theorem 3?  Theorem 1 gives 

us an idea for creating counter-examples: 

 

Example 1. Assume that all conditions of Theorem 1 hold and additionally: )(sA′  is 

increasing in ),0[ ∞∈s . Then an ordering of failure rates in the family (3) with re-

spect to z  (for each fixed 0>t ) holds resulting formally in the strongest population 

defined as )()0,( tt ψλ ′= . Note, however, that )}((exp{1 tzA φ− ), 0=z  cannot be 

viewed as a Cdf. Therefore, the principle under question implies that: )(~)( ttm ψλ ′ .  

On the other hand, it follows from (10) that  

))()(log1()(~)( ′++′ tttm φαψλ  

and if the second term in the right hand side of this relation is increasing ‘sharper’ 

than )(tψ ′  as ∞→t , then this term defines asymptotic behavior of )(tmλ . It is clear 

that it is possible for the sharply increasing functions )(tφ (e.g., for 1},exp{ ≥nt n ). 

Thus, if ),))(((log)( ′=′ tot φψ  then   



))()(log1(~)( ′+ ttm φαλ , 

whereas the Principle holds only when ))(())((log tot ψφ ′=′ .  

 

4. SPECIFIC MODELS 

 

4.1.  Multiplicative (PH) model 

In the conventional notation the baseline failure rate is usually denoted as )(0 tλ  (or 

)(tbλ ) . Therefore model (4) reads: 

∫=Λ=
t

duuttzzt
0

000 )()(),(),( λλλ                                     (18) 

and the mixture failure rate is given by 
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As 0)(),()(,)( 0 ≡Λ=≡ tttuuA ψφ  in this specific case, theorems 1 and 3 simplify to: 

 

Corollary 1.  Assume that the mixing pdf ),0[),( ∞∈zzπ  can be written as  

)()( 1 zzz ππ α= ,                                                  (20) 

where 1−≥α  and  )(1 zπ  is bounded in ),0[ ∞ , continuous at 0=z  and 0)0(1 ≠π .  

     Then the mixture failure rate for the multiplicative model (18) has the following 

asymptotic behavior: 

∫
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Corollary 2.  Assume that the mixing pdf ),[),( ∞∈ azzπ ( ),0[,0)( azz ∈=π ) is 

bounded, continuous at az = and 0)( ≠aπ .  

     Then, in accordance with relation (17), the mixture failure rate for the model (18) 

has the following asymptotic behavior:  

)(~)( 0 tatm λλ .                                                  (22) 

 



     Corollary 1 states a remarkable fact: asymptotic behavior of the mixture failure 

rate )(tmλ  depends only on the behavior of the mixing pdf in the neighborhood of 

0=z  and the baseline failure rate )(0 tλ .  

     Corollary 2 describes the convergence of a mixture failure rate to the mixture fail-

ure rate of the strongest population. In this simple multiplicative case the family of the 

failure rates is trivially ordered in z  and the strongest population has the failure rate 

)(0 taλ . 

     The next theorem generalizes the result of Corollary 2 

 

Theorem 4. Assume that the mixing pdf )(zπ in model (18) has a support in 

∞≤> baba ,0],,[ , and for az ≥  it can be defined as  

)()()( 1 azazz −−= ππ α ,                                         (23) 

where 1−>α , )(1 az −π  is bounded in ],[ baz ∈  and 0)0(1 ≠π . 

     Then 

)(~)( 0 tatm λλ .                                                   (24) 

 

     It is quite remarkable, that asymptotic result in this theorem does not depend on a 

mixing distribution even in the case of a singularity at az = . This differs from the 

case 0=a  in Corollary 1. Relation (24) also describes the convergence to the failure 

rate of the strongest population, which differs dramatically from the convergence de-

scribed by (21). Explanation of this difference is quite obvious and is due to the 

multiplicative nature of the model: the behavior of )(0 tzλ  in the neighborhood of 

0=z  for the pdf (20) is different from the behavior of this product in the neighbor-

hood of az =  for the pdf  (23). 

     The mixture failure rate given by equation (19) can be obtained explicitly when the 

Laplace transform of the mixing pdf )(~ tπ  is easily computed like in Example 2. As 

the cumulative failure rate is monotonically increasing in t , the mixture survival func-

tion is written in terms of the Laplace transform as: 

))((~)(})(exp{ 0
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0 tdzztz Λ=Λ−∫
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Therefore, equation turns to: 
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and the corresponding inverse problem can be also solved: given the mixture failure 

rate and the mixing distribution, obtain the baseline failure rate (Finkelstein and Esau-

lova, 2001b). 

 

Example 2. Let the mixing distribution be the Gamma distribution with the pdf 
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where 0, >cb . 

     The Laplace transform of )(zπ  is ctbct −+= )1()(~π  and therefore the mixture fail-

ure rate is given by the following expression: 

∫+
=

tm

duub

tbc
t

0

0

0

)(1

)(
)(

λ

λλ                                               (26) 

The expected value of a random variable Z with a pdf  (25) is bc  and the variance is 

.2cb  Thus for the fixed expectation 1][ =ZE  the variance b=2σ  and equation (26) 

turns into 
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which first appeared in Vaupel et al (1979) in a demographic context. This form al-

lows to compare different mixtures for the fixed baseline distribution. We can see that 

when the variance of the mixing distribution increases, the mixture failure rate de-

creases.  

     Obviously, asymptotic behavior can of )(tmλ  be explicitly analyzed. Consider 2 

specific cases: 

     If the baseline distribution is Webull with 0,)(0 ≥= βλλ βtt , then the mixture 

failure rate (26) is (see also Gupta and Gupta, 1996): 
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which as ∞→t  converges to 0  as 1)1(~ −+ ctβ  exactly as prescribed by our formula 

(21) of Corollary 1 ( 1+= αc ). 

     If the baseline distribution is Gompertz with }exp{)(0 tt βµλ = , then simple trans-

formations result in  
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If µβ /=b , then ctm βλ ≡)( , if µβ />b , then )(tmλ  increases to µβ / , and if 

µβ /<b , it decreases to µβ / . 

     Coming back to a discussion of convergence of the mixture failure rate to the fail-

ure rate of the strongest population in Example 1 of Section 3, it is reasonable to com-

pare asymptotic behavior in (28) and (29) for the same mixing distribution (25). In 

case of the Weibull Cdf, the mixture failure rate is converging to 0 . This means that 

within the framework of the multiplicative model (18), where the family of failure 

rates is ordered in z , we still can speak in terms of convergence to the failure rate of 

the strongest population, defining the case 0=z  as some ‘generalized’ (or formal) 

strongest failure rate: 0)0,( =tλ . As it was mentioned, )}((exp{1 tzA φ− ) cannot be 

viewed as a Cdf in this case, which formally violates our general assumptions in Sec-

tion 2. But the failure rate for a Gompertz Cdf does not converge to 0 , it converges to 

a constant, thus violating the principle of converging to the failure rate of the strongest 

population even formulated in a ‘generalized’ form! The reason for that, and this goes 

in line with our discussion in Example 1, is in the sharp increase in the function )(tφ , 

which is proportional to }exp{ tβ in the latter case. 

 

4.2. Accelerated life model 

In a conventional notation this model is written as: 

∫=Λ=
tz

duutztzzzt
0

000 )()(),(),( λλλ                                        (30) 

Although the definition of the ALM  is also very simple, the presence of a mixing pa-

rameter z  in the arguments make analysis of the mixture failure rate more complex 

than in the multiplicative case. Therefore, as it was already mentioned, this model was 

not practically studied before. The mixture failure rate in this specific case is  



∫

∫
∞

∞

Λ−

Λ−
=

0

0

0

00

)())(exp{

)())(exp{)(

)(

dzztz

dzztztzz

tm

π

πλ
λ                                    (31) 

     Asymptotic behavior of )(tmλ  can be described as a specific case of Theorem 1 

with )()( 0 ssA Λ= , tt =)(φ  and 0)( ≡tψ : 

  

Corollary 3. Assume that the mixing pdf ),0[),( ∞∈zzπ  can be defined as 

)()( 1 zzz ππ α= , where 1−>α ,  )(1 zπ is continuous at 0=z  and bounded in ),0[ ∞ , 

0)0(1 ≠π . 

     Let the baseline distribution with the cumulative rate )(0 tΛ  have a moment of or-

der 1+α . Then 

t
tm

1
~)(

+αλ                                                    (32) 

as ∞→t . 

 

     The conditions of Corollary 3 are not that strong and are relatively natural. The 

most of the widely used lifetime distributions have all moments. The Pareto distribu-

tion will be discussed in the next example. 

     As it was already stated, the conditions on the mixing distribution hold, e.g., for 

the Gamma and the Weibull distributions which are commonly used as mixing distri-

butions. 

     Relation (32) is really surprising, as it does not depend on the baseline distribu-

tion, which seems striking at least at the first sight. It is also dramatically different 

from the multiplicative case (31). It follows from Example 2 that both asymptotic re-

sults coincide in the case of the Weibull baseline distribution, which is obvious, as 

only for the Weibull distribution the ALM can be re-parameterized to end up with a 

PH model and vise versa.  

 

     The following example shows other possibilities for the asymptotic behavior of 

)(tmλ  when one of the conditions of the Corollary 3 does not hold.  

 



 Example 3.  Consider  the Gamma mixing distribution )1(/}exp{)( +Γ−= απ α xzz .     

Let the baseline distribution be the Pareto distribution with the density 1
0 /)( += ββ ttf   

0,1 >≥ βt .  

     For 1+> αβ  the conditions of Corollary 3 hold and relation (32) takes place. Let 

1+≤ αβ , which means that the baseline distribution doesn't have the th)1( +α  mo-

ment. Therefore, one of the conditions of Corollary 3 does not hold. In this case it can 

be shown by direct derivations (see Section 5) that 

t
tm

βλ ~)(  

as ∞→t , whereas for the general case: 

t
tm

)1,min(
~)(

+αβλ . 

It can be shown that the same asymptotic relation holds not only for the Gamma-

distribution, but also for any other mixing distribution )(zπ  of the form 

)()( 1 zzz ππ α= . If 1+> αβ , the function )(1 zπ should be bounded and 0)0(1 ≠π .  

 

     As )()( 0 ssA Λ= , tt =)(φ , Theorem 3 simplifies to 

 

Corollary  4.  Assume that the mixing pdf ),[),( ∞∈ azzπ is bounded, continuous at 

az = and 0)( ≠aπ . Let  

0
))((

)(
2

0

0 →
′
t

t

λ
λ

,     ∞→)(0 ttλ                                      (33) 

Then, in accordance with relation (17), the mixture failure for the model (30) has the 

following asymptotic behavior:  

)).(~)()( 0 atattm λψλ ′−                                            (34) 

 

     Conditions (33) are rather weak. E.g., the marginal case of the baseline failure rate 

of the form 0,)( 1
0 >= − ccttλ  does not comply with (33), but in mixing we are pri-

marily interested in increasing, at least ultimately, baseline failure rates. 

 



     Asymptotic behavior of )(tmλ  in the additive hazards model (6) due to its sim-

plicity does not deserve special attention. As ssA =)(  and tt =)(φ ,  conditions (8) 

and (9)  of Theorem 1, for instance, hold  and  asymptotic result (10) simplifies to: 

t
ttm

1
~)()(

+′− αψλ . 

 

5. PROOFS 

 

5.1. Proof of Theorem 1. 

Firstly, we need a simple lemma for the Dirac sequence of functions: 

 

Lemma 1. Let )(),( zhzg  be nonnegative functions in ),0[ ∞  satisfying the following 

conditions: 

∫
∞

∞<
0

)( dzzg ,                                                     (35) 

and )(zh  is bounded and continuous at 0=z . 

     Then, as ∞→t : 

∫ ∫
∞ ∞

→
0 0

)()0()()( dzzghdzzhtzgt                                  (36) 

 

Proof.  Substituting tzu = : 

∫ ∫
∞ ∞

=
0 0

)/()()()( dutuhugdzzhtzgt . 

The function )(uh is bounded and 0)/( →tuh  as ∞→t , thus convergence (36) 

holds by the dominated convergence theorem. 

 

     Now we prove Theorem 2. The proof is straightforward as we use definition (1) 

and Lemma 1. 

     The survival function for the model (2) is  

)}())(((exp{),( ttzAztF ψφ −−= . 

Taking into account that ∞→)(tφ  as ∞→t , and applying Lemma 1 to the function 

αuuAug )}(exp{)( −= :  



,)}(exp{
)(

)0()}(exp{
~

)(})())(((exp{)(),(

0
1

1

1
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dsssA
t

t

dzzzttzAdzzztF

∫

∫ ∫
∞

+

∞ ∞

−
−

−−=

α
α

α

φ
πψ

πψφπ
                    (37) 

where the integral is finite due to condition  (9) 

The corresponding probability density function is: 

)}())((exp{))()())(((),( ttzAttztzAztf ψφψφφ −−′+′′=  

).,()()}())((exp{)())(( ztFtttzAtztzA ψψφφφ ′+−−′′=  

Similarly, applying Lemma 1: 
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∫

∫

∫∫

∞
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∞
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1
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~

)())}((exp{))(()}(exp{)(
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α
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φ
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πφφψφ
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               (38) 

It can be easily seen using the mean value theorem and assumption (9) that  

0)}(exp{ 1 →− +αssA as   ,∞→t : 

Integrating by parts: 

dsssAdsssAsA ∫∫
∞∞

+ −+=−′
00

1 )}(exp{)1()}(exp{)( αα α .                 (39) 

Combining relations (37)-(39), finally: 
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0
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t
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φ
φαψ

π
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∫

∫
∞

∞

. 

 

5.2. Proof of Theorem 2 

Lemma 2. Let ),0[),,({ ∞∈zztg  be a family of functions, satisfying the following 

conditions: 

(i) for every ),0[ ∞∈z  the function ),( ztg  is integrable in t  and for every ),0[ ∞∈t  

it is integrable in z . 



(ii) there exists a function 0)(),( →tt αα  as ∞→t , and  

1

),(

),(

0

)(

0 →

∫

∫
∞

dzztg

dzztg
tα

                                               (40) 

as ∞→t . 

(iii) a function )(xh is bounded in ),0[ ∞∈z  and continuous at 0=z .  

     Then, as :∞→t  

)0(

),(

)(),(

0

0 h

dzztg
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→

∫

∫
∞

∞

. 

 

Proof.  Let ),0[,)( ∞∈≤ zMzh . Then: 
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∫

∫

∫

∫

∫
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And the second term as ∞→t is majorized by  

0

),(

)(),(

0

)( →

∫

∫
∞

∞

dzztg

dzzhztg

M tα , 

which is due to condition (40). The first term converges to )0(h  due to the same con-

dition and the fact that )(zh  is continuous at 0=z . 

 

     For proving Theorem 2 we, firstly, show in a direct way that for ),( ztF  there 

holds a condition similar to (11). For every 0>ε  we choose εt  such that for εtt >  

the function )(tα  already decreases and  

∫ ∫
∞

−>
)(

0 0

)(),()1()(),(
t

dzzztfdzzztf
α

πεπ . 

Since )(tα  decreases: 



∫ ∫>
)(

0

)(

0

)(),()(),(
t u
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for εttu >> . Thus: 
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                                                               ∫ ∫
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                                                                 ∫
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Now we apply Lemma 2 with )(/)()( 1 zzzh ππ=  and )(),(),( zztfztg π= , which 

results in 

)0(

)(),(

)(),(

0

0

1

h

dzzztf

dzzztf

→

∫

∫
∞

∞

π

π
. 

In a similar way )(),(),( zztFztg π=  with the same )(zh  gives: 

)0(

)(),(

)(),(

0
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dzzztF

dzzztF

→

∫

∫
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∞

π

π
 

 

as ∞→t , and relation (12) follows immediately. 

 

5.3. Proof of Theorem 3 

This theorem is rather technical and we must prove, firstly, 3 supplementary lemmas, 

which present consecutive steps on a way to asymptotic relation (17). 

 



Lemma 3.  Let )(xh  be a twice differentiable function with an ultimately positive de-

rivative, and ∫
∞

∞<−
0

)}(exp{ dyyh . Let also: 

0
))((

)(
2

→
′
′′
xh

xh
                                                       (41) 

as ∞→x . Then 

∫
∞

′
−−

x xh
xhdyyh

)(

1
)}(exp{~)}(exp{                                   (42) 

as ∞→x . 

 

Proof.  Let 0x  be such that 0)( >′ xh  for 0xx > . Then there exists an inverse function 

)(xg  defined in ),[ 0 ∞x : .1))(()(( ≡≡ xghxhg  The function )(xg  is also twice dif-

ferentiable and ))((/1)( xghxg ′=′ . Integrating by parts for 0xx > : 

∫ ∫
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x xh

duugudyyh
)(

)(}exp{)}(exp{  

   ∫
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)(}exp{))(()}(exp{
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as 0→u , the right hand side integral is vanishing compared with the one in the left 

hand side. Therefore, eventually 

∫
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x xh
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1
)}(exp{))(()}(exp{~)}(exp{ . 

 

Lemma 4. Let assumptions of Lemma 3 hold. Assume additionally that 

∞→′ )(xhx                                                           (43) 

as ∞→x .  Let )(uµ  be a positive, bounded and integrable function in ),[ ∞a , con-

tinuous at au = , and 0)( ≠aµ . 

Then 



∫
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~)()}(exp{

µµ  

as ∞→x . 

 

Proof.  As a first step we prove that: 

∫ ∫
∞ ∞

−−=
a a

duuxhaduuuxhxI )(exp{)(~)()}(exp{)( µµ . 

As )(uµ  is continuous at au = , for 0>ε  there is δ  such that εµµ <− |)()(| au , if 

δ<− || au . The function )(uµ  is bounded. Therefore ),0[,)( ∞∈∀< uMuµ . Then 
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                                     (44) 

Using Lemma 3: 
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It follows from condition (43) that exponential term in this relation vanishes as 

∞→x , because 

δ
δδδ
+

′>′=−+
a

shsshxaxhxaxh )()()()(                               (45) 



for some xaxsax δ+<< .  

     Thus the right hand side quotient in (44) tends to 0 , whereas the first summand 

can be made as small as possible. This yields to:  

∫
∞

−
a

duuxhaxI )}(exp{)(~)( µ  

as ∞→x . Applying Lemma 3 to this integral completes the proof.  

 

Lemma 5.  Under assumptions of Lemma 4 the following asymptotic relation holds as 

∞→x  
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Proof. We first show that 
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Simple derivations give: 
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By the previous lemma: 
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and also: ∞→′ )(axhax  as ∞→x , thus 
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which is the same as (46). 

     The next step is to prove that 
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As in Lemma 4, we use the same M,,δε  and the similar reasoning to get 
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Applying (46) and using (45): 
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as ∞→x  and )(/ aµε  can be made arbitrary small. Combining relations (47) and 

(46) completes the proof.  

 

     Now we are ready to prove Theorem 3 itself. Applying Lemma 4 as ∞→t  results 

in: 
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Similar to the proof of Theorem 1: 
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Using Lemma 5: 
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Combining the last three statements, we arrive at (17): 
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5.4. Proof of Theorem 4. 

As in Theorem 1, we consider the numerator and the denominator in (19) separately. 

Changing the variables and applying Lemma1: 
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The first integral in the right hand side as ∞→t  is equivalent to 
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And finally substituting relations (48) and (49)  in (19), we arrive at (24). 

 

5.5. Proofs for Example 3 

Calculating directly: 
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As ∞→t , the first integral in the right hand side is equivalent to: 
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and the second integral is equivalent to βαβα t)1(/)1( +Γ+−Γ , which in case αβ ≤  

decreases slower; therefore the sum of two integrals is βαβα t)1(/)1( +Γ+−Γ . 
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6. CONCLUDING REMARKS 

 

Two types of results on the mixture failure rates modeling were primarily considered 

in the literature. On one hand, general asymptotic results of Clarotti and Spizzichino 



(1990), Block and Joe (1997) and Block et al (1993), where under rather stringent 

conditions a general asymptotic behavior of the mixture failure rate was studied, on 

the other hand, specific proportional (additive) hazards-type models of Gurland and 

Sethuraman (1995), Lynn and Singpurwalla, (1997), Finkelstein and Esaulova 

(2001a) to name a few, where some more detailed convergence properties were de-

scribed. It is worth noting, however, that asymptotic behavior of the mixture failure 

rate for the accelerated life model was not studied before, as approaches used for pro-

portional hazards and additive hazards models, did not work in that case.  

     The survival model (2) of the current paper generalizes all three conventional mod-

els and creates possibility of deriving explicit asymptotic results. Theorem 1, e.g., de-

fines asymptotic mixture failure rate for the case when the mixing variable is defined 

in ),0[ ∞ , whereas Theorem 2 does so for 0),,[ >∞ aa . 

      Some of the obtained results can be generalized to a wider than (2) class of life-

time distributions, but it looks like that the considered class is, in a way, ‘optimal’ in 

terms of the trade-off between the complexity of a model and tractability (or applica-

bility) of results. 
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