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ABSTRACT
Tooth Cementum Annulation (TCA) is an age estimation
method carried out on thin cross sections of the root of
human teeth. Age is computed by adding the tooth erup-
tion age to the count of annual incremental lines that are
called tooth rings and appear in the cementum band. Algo-
rithms to denoise and segment the digital image of the tooth
section are considered a crucial step towards computer-
assisted TCA. The approach pursued in this paper relies
on modelling the images as hidden Markov random fields,
where gray values are assumed to be pixelwise condition-
ally independent and normally distributed, given a hidden
random field of labels. These unknown labels have to be
estimated to segment the image. To account for long-range
dependence among the observed values and for periodicity
in the placement of tooth rings, the Gibbsian label distri-
bution is specified by a potential function that incorporates
macro-features of the TCA-image (a FRAME model). Es-
timation of the model parameters is carried out by an EM-
algorithm that exploits the mean field approximation of the
label distribution. Segmentation is based on the predictive
distribution of the labels given the observed gray values.

KEY WORDS
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field, mean field approximation, TCA

1 Introduction

Tooth Cementum Annulation ([1]) is an age estimation
method based on annual incremental appositions in the ce-
mentum of mammalian teeth. A 90-110 �m thick cross
section, polished or unpolished, is photographed with a Le-
ica DC350F camera system under bright-field and 200 or
400 times magnification. TCA-images are then 8 or 16 bit
gray scale pictures of size 1030x1300 or 1016x1300 pixels.
The dark parts of the annual lines, often called tooth rings,
are empirically 1 to 3 �m thick and result roughly in 5 to
20 pixel thin lines under 400 times magnification.

Figure 1 displays a typical good quality TCA-image
of the unpolished section extracted from a person aged 41.
It is expected to find 34 horizontal tooth rings in the marked
cementum band. Additionally, the image contains diago-

nal saw cuts and artifacts (for example on the right). The
marked rectangle delimits the area that is used for the ap-
plication in Section 5.

Paleodemographers at the Max Planck Institute for
Demographic Research use large databases of images like
the one depicted in Figure 1 to identify mortality profiles
of past human populations. Hence algorithms are needed
to denoise and segment these images automatically.

Standard methods like singular value decomposi-
tion, Fourier transform and regression smoothing mea-
sure texture features and are for this reason not flexible
enough to fulfill the above task. In the course of this
paper, TCA-images are therefore described by a statisti-
cal model, specifically a Hidden Markov Random Field
(HMRF) model. Section 2 introduces these models and the
distribution of the hidden field is specified by a FRAME
model ([2]). With this Markov random field (MRF),
macro-features of TCA-images such as long-range auto-
correlation among observed gray values and periodic place-
ment of tooth rings can be modelled. Section 3 describes
the estimation of the model parameters via an EM algo-
rithm that exploits the mean field approximation of the
hidden field distribution. Section 4 specifies the FRAME
model for the application to TCA-images and describes the
Gibbs sampler that is used to simulate from this prior dis-
tribution. The sensible results of fitting the hidden FRAME
model to real images like the one depicted in Figure 1 by
using the EM algorithm are discussed in Section 5.

2 The Hidden FRAME Model

HMRF modelling allows us to address both denoising and
segmentation by means of a labelling problem ([3]). To
illustrate, let S = f1; : : : ; NMg be the set of pixels form-
ing a rectangular lattice of size N �M . In the course of
this paper a pixel will interchangeably be denoted by i, or
(x; y) when the two dimensions of the lattice need to be
emphasized. The observed image is represented by an ar-
ray Y , where Yi 2 R is the gray value observed at pixel
i. The value Yi is assumed to be drawn from the ith con-
tinuous random variable Yi, belonging to the random field
Y = (Y1; : : : ;YNM ). Analogously, we define the array �
of labels �i 2 G = f0; 1; : : : ; Gg that need to be estimated
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Figure 1. A typical unpolished TCA-image of good quality (IS-0000666 from the TCA database of the MPI DR)

at each pixel and assume that �i is sampled from the dis-
crete random variable �i, defined as the ith coordinate of
the random field � = (�1; : : : ;�NM ).

In the setting of a HMRF, the joint distribution of Y
is modelled according to the mixture

f(Y ) =
X

�2GN�M

P (�)
Y
i2S

f(Yij�i)

where P (�) is the distribution of a Markov random field
and f(Y j�) is called cost function or emission density. The
choice of both depend on the application. For TCA-images
we have chosen a Gaussian cost function

f(Yij�i;�) = 1p
2���i

e

�
(Yi���i)

2

2�2
�i ;

where the parameters � = f�g; �2g jg 2 Gg are unknown.
The MRF P (�) may model spatial dependencies by means
of specifying a neighborhood structure. More precisely,
let’s define

• a neighboring relationship as a binary relationship on
the lattice S that is anti-reflexive and symmetric;

• the neighborhood N(i) of pixel i as the set

N(i) = fj 2 Sjj neighbor of ig; and

• the neighborhood system N as the set of all neighbor-
hoods N = fN(i)ji 2 Sg:

Under this setting, the random field � is a MRF with re-
spect to the neighborhood system N if for all � 2 GN�M

1. P (�) > 0 (positivity)

2. P
�
�ij�Sni

�
= P (�ij�N(i)) (Markovianity).

The specific form of the MRF model that shall be uti-
lized for TCA-images is called FRAME, which stands for
Filters, Random Fields and Maximum Entropy and was
mainly developed in [2], [4] and [5]. In the FRAME model,
prior knowledge about the image is efficiently modelled by
convolving the label image � with suitable filters and by
evaluating these filter responses. In its simplest version,
the FRAME distribution is a Gibbs distribution

P (�) =
1

Z
e

P

i2S

�[(FT ��)(i)]

; (1)

where Z is the normalizing constant. The energy function
involves one filter FT that is known up to the parameter T .
The filter responses (FT ��)(i) to � at pixels i are evaluated
pixelwise by the potential function �. The choice of the
parametric family FT and the function � is driven by the
application (Section 4). The hidden FRAME model hereby
elegantly combines two important areas of texture analysis:
HMRF modelling and filtering theory and it can be applied
to a wide variety of even large scale textures.



3 Parameter Estimation and Segmentation

In order to estimate � and T , the maximum likelihood es-
timates (MLE) �̂ and T̂ can in principle be found by maxi-
mizing the likelihood function

L(�; T jY ) =
X

�2GN�M

P (�jT )
Y
i2S

f (Yij�i;�) : (2)

However, this maximization is intractable because of the
size of the label space GN�M .

The EM algorithm is a widely used technique to solve
this kind of problem. The algorithm depends on the predic-
tive probability that is usually computed via MCMC. In our
application this is again not feasible because of the size of
TCA-images. We suggest to use mean field approximation
to make the EM tractable.

To illustrate, let us recall that the EM algorithm starts
with preliminary estimates �(0) and T (0) of the parameters
� and T , and then proceeds iteratively by alternating two
steps. In the E-step of the t-th iteration the conditional ex-
pectation of the complete log-likelihood, with respect to the
unknown labels �

E

h
logP (Y; �j�; T )jY;�(t�1)

; T
(t�1)

i

=

Z
�2GN�M

P

�
�jY;�(t�1)

; T
(t�1)

�
logP (�; Y j�; T )d�

is calculated, where �
(t�1) and T

(t�1) are the estimates
from the previous iteration. The M-step of the EM algo-
rithm maximizes this expectation to update � and T :
�
�
(t)
; T

(t)
�
= argmax

f�;Tg

E

h
logP (Y; �j�; T )jY;�(t�1)

; T
(t�1)

i

Since each iteration is guaranteed to increase the (incom-
plete) log-likelihood (2) under mild assumptions, the EM
algorithm will converge to a local maximum ([6]).

In the case of a Gaussian random field, the EM algo-
rithm reduces to the three updating formulas ([6])

�
(t)
g =

P
i2S

YiP

�
�i = gjY; �N(i);�

(t�1)
; T

(t�1)
�

P
i2S

P

�
�i = gjY; �N(i);�

(t�1)
; T (t�1)

� (3)

�
�
(t)
g

�2
=

P
i2S

�
Yi � �

(t)
g

�2
P

�
�i = gjY; �N(i);�

(t�1)
; T

(t�1)
�

P
i2S

P

�
�i = gjY; �N(i);�

(t�1)
; T (t�1)

�

(4)

T
(t) = argmax

fTg

X
i2S

GX
g=0

P

�
�i = gjY; �N(i);�

(t�1)
; T

(t�1)
�

� logP ��i = gj�N(i); T
�
: (5)

The conditional probabilitiesP
�
�i = gjY; �N(i);�; T

�
are

not available in closed form and could be evaluated by an

MCMC algorithm ([7]). This would require to generate a
Markov chain at each pixel which is not feasible. The alter-
native approach we suggest is based on the approximation

P (�) �
Y
i2S

P

�
�ij~�N(i)

�
: (6)

In this paper, the configuration ~� is chosen according to the
theory of mean field approximation theory ([8]) where ~� is
set to the expected values of the label image:

~�j = E[�j ] for all j 2 N(i):

The product
Q
i2S

P (�ijE[�N(i)]) is then a valid probabil-

ity distribution and minimizes the Kullback-Leibler diver-
gence to the true prior distribution P (�) among all prod-
ucts of this kind. The E-step of the EM algorithm hereby
changes to

E

h
logP (�; Y j�; T )jY;�(t�1)

; T
(t�1)

i

�
X
i2S

GX
g=0

log
�
P

�
�i = gj~�N(i);�; T

�
f(Yij�i;�; T )

�

�P
�
�i = gjYi; ~�N(i);�

(t�1)
; T

(t�1)
�

=
X
i2S

GX
g=0

�
logP

�
�i = gj~�N(i); T

�
+ log f (Yij�i = g;�)

�

�
P

�
�i = gj~�N(i); T

(t�1)
�
f

�
Yij�i = g;�

(t�1)
�

GP
g=0

P

�
�i = gj~�N(i); T

(t�1)

�
f

�
Yij�i = g;�

(t�1)
�

The parameter estimates can therefore be updated by the
Equations (3) to (5) and replacing �N(i) therein by ~�N(i),
that are computed iteratively. Our EM algorithm then takes
the following form:

EM algorithm using MFA for fitting a hidden FRAME model

1. input TCA-image Y
Initialization
2. initialize label configuration �(0) by thresholding
3. initialize parameters
Updating
4. for t = 1 : tmax

update label image �(t) by
5. h�i = �(t�1)

6. for each site i (randomly permuted)
7. for g = 0 : G

8. calculate the conditional probability

f
�
Yij�i = g; �

(t�1)
; �

(t�1)
�
/ e

�

�
Yi��

(t�1)
g

�2

2

�
�
(t�1)
g

�2

9. approximate the prior energy and probability

U
�
�i = gj�N(i); T

(t�1)
�
�
X

j2C(i)

�

��
F
T
(t�1)

j

� �

�
(j)

�

P
�
�i = gj�N(i); T

(t�1)
�
�

eU(�i=gj�N(i);T
(t�1)

)

GP
g=0

eU(�i=gj�N(i);T
(t�1))
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Figure 2. 3-D surface and image of a Gaborcosine function
with T = 16 and � = 0

10. calculate the posterior probability

P
�
�i = gjYi; �N(i); �

(t�1)
; T

(t�1)
�

/ f
�
Yij�i = g; �

(t�1)
; �

(t�1)
�
P
�
�i = gj�N(i); T

(t�1)
�

11. calculate the expected label

h�ii =

GP
g=0

g � P
�
�i = gjYi; �N(i); �

(t�1); T (t�1)
�

GP
g=0

P
�
�i = gjYi; �N(i); �

(t�1); T (t�1)

�

12. set �(t) = h�i

update parameters
13. for g = 0 : G

14. update �g according to Equation (3)

15. update
�
�
(t)
g

�2
according to Equation (4)

16. update T according to Equation (5)

The initialization of � and the sequential updating of
the true labels were chosen according to the recommenda-
tions in [8]. The number of iterations tmax was chosen
according to the last gain in the likelihood

L(�(t�1)jY ) =
X
i2S

GX
g=0

P

�
�i = gjYi; �N(i);�

(t�1)
; T

(t�1)
�
:

Segmentation can finally be carried out by exploiting

P

�
�i = gjYi; �N(i); �̂; T̂

�
by means of thresholding.

4 Application

This Section is devoted to specifying the filter family FT

and the potential function � that we have used for TCA-
image analysis and to describe a simulation algorithm for
generating a typical image from this model.

Filtering theory is well recognized in texture analy-
sis at least since [9]. Marčelja ([10]) has shown that two-
dimensional Gabor functions closely conform to the recep-
tive field profiles of simple cells in the striate cortex.

We define the filter F�;T on the basis of the real val-
ued, even-symmetric Gabor function:

GcosT;�(x; y) = c � e
�(rx02+y02)

2T2 cos

�
2�

T
x
0

�
; (7)

Figure 3. A typical image of size 128x128 pixels simulated
by the Gibbs sampler using the FRAME model (1) with the
filter displayed in Figure 2, � = j:j and 8 gray levels.

with x0 = x cos�+y sin�; y0 = �x sin�+y cos�, r = 4

being the aspect ratio and c being a normalizing factor. The
Gaborcosine function above is an elongated Gaussian bell
multiplied by a cosine wave, where parameter T changes
the wavelength and � determines the orientation of the co-
sine wave. For example, Figure 2 shows the Gaborcosine
function for T = 16, � = 0 and x; y 2 [�13; 13]. This
filter can capture waves or lines of width 16 and orientation
0°.

In the application for TCA-images we fix � = 0

which is the main direction of tooth rings. In order to
cover the range of possible tooth ring widths we chose
T 2 f2; 4; 6; 8; 10; 12; 14; 16; 18g. We remark that our
approach is different to that in [2], because we are inter-
ested in reconstructing tooth rings, that resemble only one
feature of interest. We do not want to synthesize percep-
tional equivalent images, including noise. Besides simpli-
fying the FRAME model to incorporate only one filter (one
feature), the potential function � that evaluates this filter
response is assumed to be known and chosen to be the sim-
plest among the upright curves, namely the absolute value
� = j:j.

Figure 3 displays a typical image drawn from the
FRAME model using the Gaborcosine filter with param-
eters T = 16 and � = 0 and the absolute valued potential
function. This image comes very close to the ideal TCA-
image that one could have in mind about parallel running
tooth rings. Orientation and width of these lines are deter-
mined by both parameters of the Gaborcosine filter.

The image in Figure 3 was generated by Gibbs sam-
pling. (See e.g. [3].) The single site Gibbs sampler for
example initializes �(0) at time t = 0 and then updates
each pixel by repeatedly sampling a candidate � (t+1)

i from

the full conditional P
�
�
(t+1)
i j�(t)

Sni

�
. The transition prob-

abilities P (�(t)j�(t�1)) are then guaranteed to converge to
the stationary distribution P (�).

We remark that the Gibbs sampler can be applied
in the present case because the FRAME model is a MRF
model. This can be proven by the application of the
Hammersley-Clifford theorem ([11]).

When choosing a random initial image and a random
updating order of the pixels, the Gibbs sampler consists of



Figure 4. The mean field approximation of the cementum
band of TCA-image 1

the following steps for the FRAME model:

Gibbs sampling algorithm for the FRAME model

1. input initial white noise image �(0) and filter F
2. precompute the filter response F � �(0)

3. repeat sufficiently often
4. repeat N �M times (N �M = jSj size of the image)
5. randomly select site (x; y)
6. for all (x0; y0) 6= (x; y)

7. set �(t+1)(x0;y0) = �
(t)

(x0;y0)

8. for each gray value g of label �(t+1)(x;y)

9. for all (x0; y0) 2 fN(x; y); (x; y)g
10. calculate the new filter responses�

F � �(t+1)
�
(x

0

; y
0

) =

�
F � �(t)

�
(x

0

; y
0

)

+F (x� x
0

; y � y
0

)

�
�
(t+1)

(x;y)
� �

(t)

(x;y)

�

11. for each gray value g of label �(t+1)(x;y)

12. set �(t+1)(x;y) = g with (conditional) probability

P
�
�
(t+1)

(x;y)
= gj�

(t)

N(x;y)

�
=

e

0
@ P
(x0;y0)2N(x;y)

j(F��(t+1)
)(x

0
;y
0)j

1
A

GP
g=0

e

0
@ P
(x0;y0)2N(x;y)

j(F��(t+1))(x0;y0)j

1
A

13. update the filter response F � �(t+1)

If the computer precision is not enough to calculate the

conditional probabilityP
�
�
(t+1)

(x;y)
= gj�(t)

N(x;y)

�
in step 12,

one can easily insert a nourishing one.
To detect convergence, the Gelman-Rubin multi-

variate convergence statistic R ([12]) is used on every
(20x20)th pixel of the image. The Gibbs sampler stops it-
erating when R < 1:2. The algorithm above needs about
O(jF j�NM �G�S) operations where jF j is the area covered
by the filter and S is the number of sweeps of the Gibbs
sampler.

5 Results

The aim of analysis of TCA-images in this paper is to un-
cover the black and white labelling (G = f0; 1g) in order
to be able to estimate the number of tooth rings. For this
purpose a Gaussian hidden Markov random field is fitted to

Figure 5. The black rings from the mean field approxima-
tion of part of TCA-image 1 overlayed onto the original

the TCA-image in Figure 1. The MRF model is specified
by the FRAME model (1). The parameters �0, �1 and a
common variance �2 as well as the filter parameter T are
estimated by an EM algorithm as stated in Section 2. The
label image � is obtained from the mean field at the last
iteration.

Figure 4 shows the predictive probability
P (�ij~�N(i); �̂; T̂ ) of the pixels in the cementum band of

Figure 1, where �̂ and T̂ are the estimates of the last itera-
tion. The parameter estimates are the means �̂0 = 28444,
�̂1 = 28714, the common variance �̂2 = 5:5 � 107 and the
ring width T̂ = 14.

For illustration purposes a smaller part (the one
marked in Figure 1) of this mean field is thresholded (� i =
0 if P (�ij~�N(i); �̂; T̂ ) < 0:5 and �i = 1 otherwise). The
middle lines of the black rings are then superimposed onto
the original image. The reader can count approximately 32
tooth rings in Figure 5. From the known age we expect
34 tooth rings in the image presented in Figure 1. This is
quite a good estimate that is typically confirmed by a dozen
additional TCA-images.

6 Conclusion

For segmentation of TCA-images we set up a hid-
den Markov random field model and exploited the EM-
algorithm. This procedure requires the approximation of
the posterior probabilities P

�
�i = gjY; �N(i);�; T

�
and

the final segmentation �. The Gibbs sampler proved to be
infeasible in both cases except for small images. For exam-
ple the simulation of the predictive distribution in Figure 3
took about 55 hours on a PC and programmed in Matlab.



We therefore chose to use the mean field approximation
to estimate the posterior probabilities and thresholded the
mean field of the last iteration for the final segmentation.
This compound estimation procedure took all together 10
hours and gave reasonable results.

Despite of the good overall age estimate, the reader
can see in Figure 5 that some rings are not well met and that
bifurcations occur in the label image (Figure 4). This is due
to two reasons. On the one side the reconstruction of the
TCA-image is heavily influenced by the shape of the single
filter we estimate. The hidden FRAME model in this form
can hereby only take into account strong local changes of
tooth rings. In order to overcome this global property of
the FRAME model, one would need to select location de-
pendent filters, i.e. estimating the filter parameter T at each
pixel i. On the other side, we assumed that the orientation
of tooth rings is mainly horizontal. By estimating not only
the ring width T from the bank of filters, but also the ori-
entation �, one could overcome this limitation and would
therefore avoid the bifurcations, that now mainly occur in
areas where tooth rings have another orientation.

Additionally different variance parameters � 2
0 6= �

2
1

might also change results and therefore such heteroscedas-
ticity assumption should to be tested. The mean field ap-
proximation is not the only possible one for the approxi-
mation (6). Celeux, Forbes and Peyrard ([8]) also mention
mode field approximation and simulated field approxima-
tion that should be tested for quality and speed in the case
of TCA-image analysis. Moreover, a larger number of ex-
periments on images of different quality need to be imple-
mented in order to test the accuracy of the procedure.
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