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Population constraints on pooled surveys in demographic hazard modeling

Michael S. Rendall*, Ryan Admiraal**, Alessandra DeRose***, Paola DiGiulio®***,

Mark S. Handcock**, and Filomena Racioppi*****

Abstract
In non-experimental research, data on the same population process may be collected
simultaneously by more than one instrument. For example, in the present application, two
sample surveys and a population birth registration system all collect observations on first
births by age and year, while the two surveys additionally collect information on
women’s education. To make maximum use of the three data sources, the survey data are
pooled and the population data introduced as constraints in a logistic regression equation.
Reductions in standard errors about the age and birth-cohort parameters of the regression
equation in the order of three-quarters are obtained by introducing the population data as
constraints. A halving of the standard errors about the education parameters is achieved
by pooling observations from the larger survey dataset with those from the smaller
survey. The percentage reduction in the standard errors through imposing population

constraints is independent of the total survey sample size.
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INTRODUCTION

Statistical methods for using population information to increase the efficiency of sample-
survey-based estimates have a long history of development in statistics (Deming and
Stephan 1942, Ireland and Kullback 1968). More recently, they have been applied to
economic and demographic data (Imbens and Lancaster 1994; Handcock, Huovilainen,
and Rendall 2000). In demographic applications, the availability of population counts of
both vital events (in registration-system data) and of population characteristics (in
population censuses and inter-censal estimates) increases the scope for realizing
efficiency gains. Moreover, because prediction is frequently a goal in demography,

efficiency gains may be especially beneficial.

The alternatives of using either population or survey data alone each have their
disadvantages. Use of population data alone limits the amount of socio-economic
information that can be incorporated into the analysis. Data from large-scale, general
purpose surveys are also increasingly considered undesirable, either for their lack of a
longitudinal dimension or for their lack of certain variables needed for specific
applications. As a result, an increasing reliance on data from small, specialist surveys has
been seen in demography. Small survey data, however, have major disadvantages with
respect to statistical efficiency. They may also be subject to bias due to attrition and other
forms of non-response. These are the concerns that have led to the development of
methods for combining population or large-scale data with small-sample survey data in

economics (Hellerstein and Imbens 1999; Ridder and Moffitt, forthcoming).



In previous applications to fertility estimation, Handcock and colleagues (Handcock et al
2000; Handcock, Rendall, and Cheadle 2005) introduced and implemented a constrained
maximum likelihood estimator (MLE) in a logistic regression model. They demonstrated
large efficiency gains first in estimating the intercept parameter by constraining survey
estimates to an overall fertility rate (Handcock et al 2000), and second in estimating
coefficient parameters by constraining to the fertility rates of population subgroups
(Handcock et al 2005). In the first case, the reduction in the variance about the intercept
parameter resulted in a 50% reduction in the variance about the predicted birth
probabilities. In the second case, even larger reductions in standard errors about the
parameter estimates for population subgroup coefficients were achieved. They referred to
these coefficients as being “directly constrained” by the population data. Consistent with
Imbens and Lancaster’s (1994) simulation results, however, Handcock et al (2005) found
that no more than trivial gains in efficiency may by expected for regression parameters

that are not directly constrained by population data.

The present study builds on those earlier studies by addressing the problem of how to
improve efficiency of estimation of regression parameters that are not directly
constrained by population data. It does so by pooling data across surveys while still
constraining to population data. In an application to first births by education in Italy,
observations from a larger, general-purpose survey dataset (the 1998 Multiscopo survey)
are pooled with observations from a smaller, specialist dataset (the 1995/96 Fertility and
Family Survey, or FFS). We consider only first childbearing after age 25 to focus the

analysis on the process of entry to motherhood after completion of studies, and to



illustrate the utility of population constraints for ages at which survey observations of
women who have not yet given birth are relatively few. Women born in the early 1950s
are compared to women born ten years later in the early 1960s, thus providing examples

of estimation respectively for complete and censored hazards.

Even though the two surveys are conducted three years apart, their retrospective fertility
histories overlap for all years up to the survey year of the FFS. This allows for the
potential to realize gains in statistical efficiency by simply pooling sample observations
across the two surveys. We first derive a basic theoretical result on the relationship
between survey sample sizes and the variance-reducing effect of inclusion of population
constraints: that the proportionate reduction in variance from the inclusion of population
constraints is independent of the size of the survey sample. This implies that pooling
observations across sample surveys will not alter the relative efficiency gains achieved
through applying population constraints. This result is confirmed empirically by
comparing the gains between unconstrained and constrained estimation when using the
smaller survey dataset only with the gains when pooling the larger survey observations

with those of the smaller survey.

The population data, however, directly constrain survey estimation only of the
relationship of age and cohort to first birth. The relationship of education to first births is
not directly constrained, and so no significant improvements in its estimation are

achieved by adding population constraints. The pooling of surveys in a constrained MLE,



however, achieves substantial increases in the efficiency of the estimates of the

relationship of education to first births.

The remainder of the article is organized as follows. In the Data and Method section, we
first describe the sample survey data and evaluate the comparability of the two survey
datasets against population data. We then describe the method of constrained MLE as
applied to the problem of estimating first birth probabilities using these survey and
population data sources. We also derive the main analytical result relevant to pooling the
survey datasets with constrained estimation: that the proportionate reduction in variance
of the regression parameter estimates is independent of the total sample size. In the
Results section, we compare the results obtained under constrained MLE on the pooled
survey datasets with results from estimators that either ignore the population data or that
forego the opportunity to pool the survey data. Both non-parametric and parametric
specifications of the relationship of first births to age are used in the alternatives that

ignore the population data. The Summary and Conclusions section follows.

DATA AND METHOD

Sample and Population Data

Italy has two survey datasets that collected women’s fertility histories in the 1990s: the

smaller, 1995/96 Italian Fertility and Family Survey (“FFS”, De Sandre et al 2000); and
the larger, 1998 Italian Multipurpose Survey (“Multiscopo”, ISTAT 2000). As its name
implies, the FFS was designed explicitly for fertility analysis and for other subjects

related to family formation and change. The FFS included approximately 4,800 female



sample members aged 20 to 49 at survey date. From the fertility history asked of all
sample members, we use here only the year of birth of a woman’s first live-born child, if
any, born up to the end of the year (1994) before the survey year. The FFS also recorded
highest educational qualification obtained, coded to ISCED (International Standard
Classification of Education, OECD 2003) categories. We coded “high education” for

women with any tertiary education qualification (ISCED codes 5 and above).

The 1998 Multiscopo is a large, general purpose survey. Its sample included more than
20,000 households with approximately 54,000 individuals. A fertility history was
collected for all female sample members aged 15 and over. We use here only the year of
birth of a woman’s first live-born child, if any, born up to the end of the year before the
survey year (1997). The Multiscopo also included a question on highest educational
qualification obtained, from which we were able to code “high education” in the same

way as for the FFS.

From both the FFS and Multiscopo, we use data from female respondents born in the
years 1951-55 and 1961-65, with the variable “year of first birth” used to assemble the
data into person-years of exposure to first birth from age 25 and above. We define age
throughout the analysis using the “generation” definition of number of years attained this
calendar year. On average this is half a year younger than the “age at last birthday”
definition. The women born in the 1950s have only just completed their childbearing
years by survey date, assuming age 44 to be the oldest age of childbearing. The FFS data,

collected in 1995/96, allow for exposure to childbearing only to age 42. The Multiscopo



data, collected in 1998, allow for exposure up to age 44. For the 1960s cohort, the FFS
data allow for exposure to childbearing to age 32. We use the Multiscopo data for

exposure to childbearing up to age 34.

For the entire period of our analyses, the Italian birth registration system collected details
including age of mother and how many children the mother has previously given birth to.
Using these data, Giorgi (1993) calculated first birth probabilities by single-year cohort.
We use these probabilities, subsequently updated by Giorgi to 1997, as our population-
level estimates of first-birth probabilities by single-year age. We calculated the geometric
mean of individual birth-year specific probabilities to convert them into five-year birth-

cohort averages.

Population representativeness of the two survey datasets

Handcock et al (2005) showed that even when the sample survey data deviate from being
exactly representative of the population for which the constraint data are obtained, the
constrained MLE will improve estimation compared to using an unconstrained alternative
estimator. Bias in the survey data in this case will also be reduced by incorporating the
exact population constraints, but will not be eliminated (see also Hellerstein and Imbens,
1999). We now show that in the present application, the two survey datasets sample in an
approximately unbiased way from the same population, and therefore that the issue of

estimation from non-representative survey data will not play a major role in the analysis.



Sample sizes and comparisons of the variables of interest between the sample and birth-
registration data, and between sample and Labour Force Survey (LFS) estimates, are
presented in Table 1. FFS and Multiscopo sample sizes are of female respondents born in
the years 1951-55 and 1961-65 respectively. There are approximately three times as
many women from both cohorts in the Multiscopo (2,100 and 2,690 respectively) as in
the FFS (760 and 840 respectively). The three extra years of observation per woman in
the Multiscopo as compared to the FFS raise the ratio to approximately four times as
many person-years of observation in the Multiscopo (see below). For the LFS, we use
published reports and special tabulations that are not accompanied by confidence
intervals or sample sizes (ISTAT 1996, 2005), and therefore treat them as if they are from
population data. The effect is to make it more likely to reject the null hypothesis of no
difference between the FFS and Multiscopo estimates and those of the LFS. Given the
very large overall sample size of the LFS (320,000 individuals each trimester in 1985 and

200,000 in 1995, ISTAT 1996), this bias is likely to be small.

[TABLE 1 ABOUT HERE]

Comparisons of education at survey date indicate small deviations only of the survey
estimates from population data, and between the surveys. Compared to the LFS of 1995,
both the FFS and Multiscopo have significantly higher proportions of women with
higher-education qualifications, at around 11 percent, but differences between the FFS
and Multiscopo are small and not significant. Surprisingly, given international trends

towards increased female participation in higher education, no statistically significant



change is seen across the two Italian cohorts born ten years apart in either the FFS or
Multiscopo surveys (statistical test results not shown). To check whether this lack of
observed change is due to the different ages of the women from the two cohorts at survey
date (early-to-mid 30s for the 1961-65 cohort versus early-to-mid 40s for the 1951-55
cohort), we compared also the 1951-55 cohort’s proportion with higher qualifications ten
years before, in the 1985 LFS. While the 1995 LFS recorded almost identical percentages
of women with a higher education between the 1951-55 cohort (9.4%) and the 1961-65
cohort (9.3%), only 8.0% of women from the 1951-55 cohort had a higher qualification
in 1985. The real growth in higher education across cohorts implied by the LFS,

however, is still small: from 8.0% of the 1951-55 cohort to 9.3% of the 1961-65 cohort.

The survey data on births are also similar to estimates from population data, and the FFS
and Multiscopo data are similar to each other. Compared to the birth-registration data,
both the FFS and Multiscopo have similar proportions still childless at age 24 (the
beginning of the year the woman attained age 25). The FFS proportions appear slightly
lower, than either the Multiscopo and birth registration data, and the deficit is statistically
significant compared to both the Multiscopo and birth registration estimates for the 1961-
65 cohort. The FFS and Multiscopo exhibit similar differentials by education in
proportions childlessness at age 24 (much higher among “high education” women) and
by cohort (substantially higher for the 1960s cohort than for the 1950s cohort). The lower
overall childlessness in the FFS’ 1961-65 cohort is seen to be due to the “no high

education” group.



The first-birth probabilities by single-year age over all the observed ages of the study
(from age 25 to the oldest age available for each cohort in the respective surveys) are
compared between the two survey data sources and the population data source in Figure
la and 1b. From the population data, it is clear that the true pattern of age-specific first-
birth hazard is smooth. It is also clear that a major change in the pattern occurred between
the 1950s and 1960s cohorts. The hazard is generally lower, and the age pattern later, for
the 1960s cohort. The hazard slopes upward until age 30 for the 1960s cohort, while it
descends for the 1950s cohort already from age 26. At age 25, the first-birth probability
was 0.139 for the 1950s cohort, but only 0.085 for the 1960s cohort. By age 30, the
probabilities were similar: 0.111 for the 1950s cohort and 0.104 for the 1960s cohort. By
age 34, the probability for the 1960s cohort (0.078) exceeded slightly that for the 1960s

cohort (0.069).

From Figures 1a and 1b, both sample surveys appear to be approximately representative
of the population with respect to both levels and cross-cohort changes. Statistical tests of
differences between the surveys for the full age, cohort, and education relationship to first
birth were conducted by adding a full set of interactions for survey (Multiscopo against a
reference FFS), using a polynomial specification for the relationship of age to the first-
birth probability. The addition of the Multiscopo dummy and interactions of age, cohort,
and education with this dummy resulted in an improvement in model fit that was
statistically significant at the p=.05 level, but with none of the individual coefficients

added for “Multiscopo” and interactions with “Multiscopo” being statistically significant



(results available from the first author on request). This indicates again that the two

surveys are sampling from approximately the same population process.

Sampling fluctuations appear to be substantially greater in the smaller FFS estimates than
in the larger Multiscopo survey estimates, as would be expected given their respective
sample sizes. Fluctuations are especially large towards the oldest ages observed for the
1960s cohort (see Figure 1b). This is due to fewer single-year age birth cohorts
contributing exposed years just before survey date. For example, only the 1961 and 1962
cohorts attain age 32 in the FFS observation period. Thus the population pattern of
increasing first birth probabilities to age 30 followed by decreases thereafter is not

evident in the sample series.

[FIGURES 1A AND 1B ABOUT HERE]

Constrained Maximum Likelihood Estimation and Unconstrained Alternatives
Estimation of the probability of first birth by age, education, and birth cohort is by
logistic regression. Let Y be an indicator variable that takes the value of 1 in the year that
a woman has her first live birth, and 0 in every year that she remains childless. Let X be a
vector of regressors that may be fixed or time-varying, and 6 be a vector consisting of an
intercept fy plus a vector of coefficients f; for each of the regressors. This sets up the
discrete-time version of the first-birth hazard function, where age is the “duration”
variable of the hazard. The binomial logit model of this discrete-time hazard is expressed

by the first-birth probability P(Y=1|X=x) in the form:

10



P(x) =1/{1+exp(-0’x) } (1)

While this is the standard logistic regression model (e.g., Maddala 1983), we refer to it

here as the “unconstrained” model. Denote the survey data by D =(y,, x,), 1=1, ..., n.

These are person-year observations, including multiple observations on the same women.
We ignore, however, variance-estimation complications resulting from correlations
between person-years for the same woman. Because we use the same data for both the
constrained and unconstrained estimates, and the same assumption of independence for
both of the survey datasets to be pooled, introducing this further complication should not

change our main results.

The likelihood function for the person-year data given the model of equation (1) can be

written as:

L@O,yip,x) = [[PO =y, X=x | 0,9)=][P(Y=y,| X=1x,0)P(X=xy) (2

i=1 i=1

where the distribution of X may depend on some design parameter y. We will assume that
the parameter space of y and the parameter space of § are disjoint. Under standard

regularity conditions, the value of @ that maximizes the likelihood is an asymptotically

efficient estimator of 6. Under these conditions, the estimator is also asymptotically

11



unbiased and Gaussian with asymptotic variance ¥, where V' is the inverse of

E, [8log[L(H; yIx)]/ 8H[j] , the Fisher information matrix for & (Rice 1995).

To introduce the “constrained” model, let the proportion of women with a higher
education qualification at each age a and birth cohort ¢ be denoted by 7(a,c). Then for
each age and cohort, the probability of a first birth P(a,c) can be specified as the weighted
sum of the probability of a first birth for a woman with a higher education qualification
P(a,c, 1) and the probability of a first birth for a woman with no higher education
qualification P(a,c,0), where the weights are z(a,c) and /-7(a,c). For a given set of
constants {z(a,c)}, the constraint function depends on regression parameters ¢ and so may

be expressed as C(6):

C(@)= P(a,c) = P(a,c,1) n(a,c) + P(a,c,0) [1- n(a,c)] 3)

The set of values {P(a,c)} are known from population data, as described in the data
section above. The constrained MLE solves equation (1) subject to constraint functions
(3). If we maximize the above likelihood subject to this constraint, the estimator is still

asymptotically efficient, unbiased and Gaussian. However, while the asymptotic variance

matrix in the unconstrained version is given by the Fisher information matrix V_, in the

constrained version the asymptotic variance matrix is:

Ve-V.H [HV,H ["HV 4)

12



where H =[9C,(0)/00, ] is the gradient matrix of C(6) with respect to 6. As the

second term in this expression is positive definite, the inclusion of the population

information always leads to an improvement in the estimation of 8, . In particular, the

standard error of the estimator in the version using the population information (the

constrained model) will always be less than the one that ignores it (the unconstrained

model). Both V and H in (4) can be estimated from the survey data using the

unconstrained model. The efficiency gain from including population information can
therefore be estimated before running a constrained model, and so before obtaining the

population data.

A further result of (4) is that the asymptotic ratio of the variances of the constrained to
unconstrained parameters is independent of the survey sample size. Because individuals
in the survey, or across surveys in the case of pooled observations, are sampled at
random, independence holds. Consequently, when X is known, the Fisher information of
the sample, /,(0), can be represented as n 1(0), where /(0) is the Fisher information for a

given individual. When X is random, 7,,(6, y) is a block diagonal matrix, so 7,(6) and 7,(y)

are independent and can be easily extracted from 7,(6, y). In both cases, V= I.'(0)=[n

IO)]"' = =V, where V=T'(0). As aresult, the asymptotic variance matrix of the

I |-

constrained and unconstrained parameters can be represented as

13



i( V-VH"[HVH" ]"HV) and iV , respectively. The ratio of the variances is therefore
n n

independent of sample size. Hence, the percentage reduction in the standard errors of the

regression parameters will be the same for all sample sizes.

The form of constraint equation (3) is very general in demographic applications. It
expresses an overall rate P as a weighted sum of covariate-dependent (“specific”) rates
P(0) and P(1). The weights are given by the population distribution of the covariate {7, /-
7). This population distribution may be approximated by the sample distribution with the
loss of some efficiency, the analytical result for this loss being derived in Hellerstein and
Imbens (1999). In the present application, while sample survey data are used to
approximate the population distribution of the regressors, we treat this distribution as if it
were calculated from population data. This allows us to apply a pre-written constrained
maximization routine (the SAS PROC NLP, SAS Institute 1997) to the likelihood (2) and
constraint function (3), and thereby obtain the constrained version of the variance-
covariance matrix (4). The same simplifying assumption is used for both single-survey
and pooled-survey estimation. Supplied with the sample survey data are sample weights
to account for differential probability of selection. Before pooling the two surveys for the
estimation, we normalize to a mean of 1 the sample weights of each of the two surveys

separately. These normalized weights form part of the likelihood function (2).

We estimate two unconstrained specifications. The first is identical to the constrained
MLE regression specification, including single-year age dummies. This allows us to

compare standard errors for coefficients with and without constraints, and to illustrate the

14



deficiencies of sample survey data for a non-parametric approach to hazard estimation.
The second specification parameterizes the age function as polynomial, allowing for a
smoothing of the first birth relationship with age. The parametric approach to hazard
estimation is a common solution to the problem of high sampling variability with survey
data. We show here that the results obtained with this parametric approach are inferior to
those obtained by the smoothing of the age relationship with single-year age population

constraints.

RESULTS

Constrained versus unconstrained regression parameter estimates

In Table 2, constrained and unconstrained parameter estimates and standard errors are
presented for the logistic regression of first birth on age, cohort, and education. Separate
results are reported using the small (FFS) survey only, the large (Multiscopo) survey
only, and the FFS and Multiscopo surveys with their observations pooled. The function
of age and cohort to first birth is specified using single-year ages (that is, completely non-
parametric), while we parameterize (with a second-order polynomial) the education by
age interaction. This is because we have exact population information about the age and
cohort relationships, but must rely on survey data for information about the education

relationship.

[TABLE 2 ABOUT HERE]

Consistent with equation (4) in the statistical theory presented above, all standard errors

in the constrained version are as low as, or lower than, the corresponding standard errors

15



of the unconstrained version. The standard errors of the age parameters are seen to be
reduced by very large amounts by constraining survey-based estimates to the overall
population values, generally by 75 percent or more as compared to the unconstrained
version, and sometimes by as much as 90 percent. Only for the age parameters, cohort-
by-age parameters, and intercept, however, are the reductions in standard errors other
than of negligible magnitudes. That is, for none of the parameters for education and its
interaction with age and cohort is there a non-negligible reduction in the standard error.
This makes intuitive sense, as the constraints offer exact information about the
relationship of age to first childbearing, but no information about how this relationship

differs by education.

A further result of equation (4) noted in the statistical theory description above is
confirmed empirically in Table 2: the ratio of the variances of the constrained to
unconstrained parameters is independent of the survey sample size. The asymptotic result
is that the percentage reduction in the standard errors of the regression parameters from
the unconstrained to the constrained versions will be equal. This is seen to be closely
approximated in practice for the FFS and the Multiscopo. Thus even while the sample
size of the Multiscopo are approximately four times as high as the sample size of the
FFS, there is no difference in the proportionate reduction of the standard error about the
first-birth model coefficient estimates. Importantly, the standard errors for the pooled
sample are reduced by similar amounts in percentage terms as are the standard errors for
either of the two surveys alone. For example, for the age-40 coefficient, the standard

error for estimation with the FFS is reduced from an unconstrained-model 0.976 to a

16



constrained-model 0.277, an approximately 75 percent reduction. When estimating the
unconstrained and constrained models with the pooled FFS and Multiscopo, the standard

error falls from 0.311 to 0.081, again an approximately 75 percent reduction.

While the population constraints have a negligible effect on the standard errors of the
coefficients for education, and for the interaction of education with age and cohort,
pooling the two samples results in substantial reductions in these standard errors. These
reductions are seen equally in the constrained and unconstrained estimates, although we
focus on the constrained estimates. Compared with using the FFS alone, the standard
error for the parameter for the main effect (at age 25 for the 1951-55 cohort) of having a
higher education qualification is halved (from 0.337 to 0.178). Compared with using the
Multiscopo alone, the standard error for the same parameter is reduced from 0.213 to
0.178. Similarly large reductions by adding the Multiscopo data to the FFS data, and
much smaller but still substantial reductions by adding the FFS data to the Multiscopo
data, are seen in the standard errors for the parameters for higher-education interactions

with cohort and age.

The practical advantages of pooling survey data under population-constrained estimation
are best seen by graphing the predicted first birth probabilities by age, cohort, and
education. These predicted probabilities for the estimation that uses the pooled survey
data with the population information as constraints to the survey estimation are first
presented in Figures 2a and 2b. We consider these our best estimates of the relationship

of age, cohort, and education to first-birth, since they take into account all available

17



survey and population data. Confidence intervals for these estimates, as for all the
predicted probabilities presented in this article, were generated using a bootstrap

procedure (Efron and Tibshirani 1994) with 1,000 iterations. The 95% confidence
interval shown in the graphs consists of the 5™ percentile and 95" percentile of the

bootstrapped estimates.

[FIGURES 2A, 2B, 2C, AND 2D ABOUT HERE]

The 1950s cohort’s predicted first-birth probabilities show highly differentiated patterns
by education (see Figure 2a). The downward-sloping profile from age 26 seen in the birth
registration data is modeled for women without a high education, while the pattern for
women with a high education is modeled as sloping steeply upwards to a peak first-birth
probability at age 31. The modeled pattern follows the observed probabilities closely for
women with no high education. The observed probabilities for women with high
education qualifications, however, fluctuate much more around the predicted line. This is
expected given that relatively few women in the cohort, and therefore also in the sample,

have a higher qualification.

Some similar remarks may be made about the 1960s cohort’s constrained estimates
versus the observed data and overall first-birth probabilities in the population data (see
Figure 2b). Up to about age 30, the fit of the lines to the observed data appears as if it
were a simple smoothing of the sample data. After age 30, however, the effect of the

constraint is clearly much stronger than seen either before age 30 or in the case of the

18



1950s cohort. The constraint pulls both education-specific lines downwards so that they
are on average much lower than their observed sample points. For the higher-education
women, for example, little evidence of a downward slope emerging by age 34 is seen in
the sample points. The implication of the predicted education-specific lines after age 30 is
that the observed sample points may be biased upwards. This may be because, for
example, non-response is differentially low for women who had children in the year
before survey date. The population data, however, are not subject to response
differentials, and therefore are expected to be unbiased. Using them in the constrained

estimation therefore will correct for bias in the survey data.

We present in Figures 2¢ and 2d the predicted values for the constrained estimator using
only the smaller, FFS dataset. The main objective here is to show, by contrast with
Figures 2a and 2b, how pooling survey data may lead to substantial improvements
especially in estimating those parts of the relationship for which population information
is not available. While a similar relationship of education to first birth is seen under
constrained estimation using the FFS only, the confidence intervals around the predicted
probabilities are much wider. For example, while the confidence intervals for “High
Education” and “No High Education” women over 30 in the 1950s cohort are non-
overlapping only between the ages 32 and 35 for the FFS, they are non-overlapping from

ages 31 to 38 with the combined FFS and Multiscopo surveys.

The largest improvements achieved by using all of the available data are again seen for

the 1960s cohort. Here, the constrained estimator with the FFS data results in the higher
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educated women'’s first birth hazard approaching but never exceeding the hazard for
women without a higher-education qualification (see Figure 2d). This contrasts with the
cross-over at about age 31 seen for the constrained estimator that pools the FFS and
Multiscopo data (Figure 2b). The failure of the FFS constrained estimator to model the
education cross-over is due to a combination of its observations going only up to age 32
and to its much smaller sample size. Note that at age 32, no first births were observed in

the FFS sample (see the “High Education, observed” points on the plot).

Parametric and non-parametric specifications of age in unconstrained estimation

The researcher who uses sample data only is unlikely to specify the non-parametric,
single-year age dummy model used in constrained estimation. Instead, a smooth
relationship of the first-birth probability with age is likely to be imposed parametrically.
We now illustrate graphically that both the non-parametric and parametric approaches
will be inferior to the approach that uses the population data as formal constraints to the
estimation. For the parametric version, a polynomial age specification regression with
linear, squared, and cubed terms for the reference, 1950s cohort, and with linear and
squared interaction terms for the 1960s cohort is estimated (parameter estimates available
from the first author on request). The non-parametric version uses the specification from
Table 2 above. The two versions are intended to give the range of likely alternative
estimation strategies (from completely non-parametric to the simplest parametric
specification) in the case that no statistical method for the incorporation of known

population information is available to the researcher. The predicted values for the non-
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parametric and parametric unconstrained specifications, in all cases using the pooled

survey data, are shown in Figures 3a to 3d.

[FIGURES 3A, 3B, 3C, AND 3D ABOUT HERE]

The population line is included in the graphs to show how estimates from the sample
data, whether using non-parametric or parametric specifications, may be inconsistent with
the overall population values. This contrasts with Figures 2a and 2b, where such
inconsistency is prevented by the method of constraining to the population values. The
predicted values for the non-parametric, single-year age dummy specifications shown in
Figures 3a and 3b generate jagged lines for both the education-specific probability series.
False local peaks in the hazard, for example, occur at age 40 for the 1950s cohort and at
age 27 for the 1960s cohort. This is clearly attributable to sampling error, as the

population function is known from population data to be smooth across these ages.

Predicted values are presented in Figures 3c and 3d for the parametric version. For the
1950s cohort, the unconstrained polynomial-age specification lines are very similar in
pattern to those seen for the constrained estimate of Figure 2a. There is a similar cross-
over point, at about age 29, between the higher-qualified and not-higher-qualified
women. This parametric specification appears to model reasonably well the relationship
seen in the sample data. For the 1960s cohort, however, it produces predicted values that
exceed the population values for both higher-qualified and not-higher-qualified women

after age 30 (see Figure 3b). Such deviations from a known population relationship are
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possible because the parametric smoothing has no effect on the overall level of the

hazard.

The effect of the population constraint in Figures 2a through 2d is now clearer when
contrasted with Figures 3a through 3d. While the patterns of first-birth probabilities in
Figures 2a through 2d appear to be similar to those that would emerge from a parametric
or non-parametric smoothing of the two education-specific series, the two education-
specific lines always surround the population constraint line. This is a result of the
population line’s being a weighted sum of the two education-specific lines at each single-
year age. This is most obvious at the point at which the education-specific lines cross,
which is forced to be the point at which they are equal to the known overall first-birth
probability in the population (the constraint line). Both the parametric and non-parametric
versions of the unconstrained estimation, in contrast, allow drift in the two education-
specific hazards from the known overall population hazard of first birth by age and

cohort.

SUMMARY AND CONCLUSIONS

Previous demographic and economic studies have demonstrated large efficiency gains
through combining population data with survey data in regression estimation. These
gains, however, have been limited to the intercept parameter and the coefficients for
variables for which population data are also available. The present study demonstrated
how this limitation can be overcome by pooling data from more than one survey sample

and constraining estimates from the pooled surveys to population data.
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Full use of available population data was achieved by imposing population constraints by
single-year age, parity, and cohort. This introduced an exact, baseline relationship of age
to first childbearing separately for two five-year birth cohorts. Observations from a
second, large-scale survey (the 1998 Multiscopo) pooled with observations from a
specialist demographic survey (the 1995/96 FFS) allowed for much greater efficiency in
the estimation of the relationship of a key socio-economic variable (educational
attainment) to first birth by age. As expected, however, negligible reductions in the
standard errors for the parameters for education and its interaction with age and cohort
were achieved by the imposing of population constraints. The intuition for this is that the
constraints offer exact information about the relationship of age and cohort to first birth,
but no information about how this relationship differs by the education levels of cohort

members.

Additional information about how first birth differs by education was instead obtained by
pooling the data from the small survey with observations on women from the same
cohorts in a larger survey in which the education variable and fertility histories were also
present. Here, the efficiency gains over using the smaller survey alone are equivalent to
increasing the latter’s sample by the number of observations in the larger survey. Because
the larger, Multiscopo survey has approximately four times the person-year sample size
of the smaller, FFS, the standard errors about the education coefficients were
approximately half those estimated using the FFS data alone. Pooling the survey data,

moreover, does nothing to reduce the effectiveness of using population constraints. Both
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theoretical and empirical results were presented showing that the percentage reduction in
the standard errors achieved by applying population constraints is independent of the

survey sample size, and therefore equally effective when surveys are pooled.

The structures of the survey datasets and population data used in the present study have
permitted a largely straightforward statistical treatment. The two survey datasets used
here have been treated as though they sample from the same population, and contain the
same variables needed to estimate the relationships of interest. In one practically
important way, the larger dataset also contributed variables not present in the smaller
survey. These were from observations of women at ages 43 and 44 in the 1950s cohort
and at ages 33 and 34 in the 1960s cohort. Their practical significance is that they
complete the ages of reproduction for the 1950s cohort, and extend predictions over ages
at which first birth hazards are high, especially for women with higher education, in the
1960s cohort. This presents no statistical complication for hazard modeling, since adding
ages of observation does no more than relax the degree of right-censoring of first-birth
exposure. Pooling data from surveys with more general differences in their regressor
variables is also possible, but involves greater statistical challenges (see Ridder and

Moffitt, forthcoming).

The population data used here were treated as exact, in the senses both of being unbiased
and having negligible sampling error. This assumption will not hold for all population
data collections. The Italian statistical system for the collection of births data was itself

overhauled in 1999, such that information on mother’s age and parity is no longer
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available in a single, complete-enumeration source (LoConte et al 2003). This means that
only by using data collections that include sampling error will it be possible to construct
age- and parity-specific population constraints from 1999 onwards. This complicates, but
does not eliminate, the possibilities for improving survey estimates. Hellerstein and
Imbens (1999) show this by deriving a variance estimator that adjusts for sampling error

in “population” constraints from large-scale sample survey data.
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Figure 1b Italy 1961-65 Cohort First Birth Probabilities by Source of data
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Figure 2a 1951-55 Cohort Constrained Estimation with Pooled (FFS and Multiscopo) Survey Data
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Figure 2b 1961-65 Cohort Constrained Estimation with Pooled (FFS and Multiscopo) Survey Data
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Figure 2¢  1951-55 Cohort Constrained Estimation with Small (FFS) Survey

0.24 -
022 © | —® =No High Education, predicted |
: ' =A =High Education, predicted |
: Birth Registration !
0.20 1 | O No High Education, observed
| A High Education, observed |
018 - o © ! ---o--- |lower CI, No High Education |
' JUREEEC S ' ---o---upper Cl, No High Education
0----6, Bea . ---a--- lower CI, High Education ;
0.16 1 :— o a. A T . ---a--- upper CI, High Education !
. ‘ 0 “ ~
0.14 1 Lo
0.12 1
0.10 1
0.08
0.06 1
0.04 1
0.02 1
0.00

age



1st birth probability

0.24 ~

0.22 -

0.20 ~

0.18 -

0.16 -

0.14 -

0.12 -

0.10 ~

0.08 -

0.06 -

0.04 -

0.02 -

0.00

Figure 2d 1961-65 Cohort Constrained Estimation with Small (FFS) Survey

! =—® =No High Education, predicted
! ==A ==High Education, predicted

| Birth Registration

| O  No High Education, observed
1 A High Education, observed
|

|

|

|

|

|

|

|

---90--- lower Cl, No High Education
- - - upper Cl, No High Education
-- - lower CI, No High Education
- - - upper Cl, High Education

> > 0o

A
AN

25

26

27

28

age

29

30

31



1st birth probability

Figure 3a 1951-55 Cohort Unconstrained Estimation with Pooled (FFS and Multiscopo) Survey Data
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Figure 3b 1961-65 Cohort Unconstrained Estimation with Pooled (FFS and Multiscopo) Survey Data
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Figure 3¢ 1951-55 Cohort Unconstrained Estimation with Pooled (FFS and Multiscopo) Survey Data
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Figure 3d 1961-65 Cohort Unconstrained Estimation with Pooled (FFS and Multiscopo) Survey Data
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Table 1 First Birth Timing and Education: Sample Survey and Population data for Italian Women Born 1951-55 and 1961-65

Birth cohort

Year of survey

Percentage with High Education Qualification

Childless percent of all 24 year-old women

Fertility and Family
Survey (FFS)

1951-55

1995

10.7

45.2

Childless percent of 24 year-old women by education

High education qualification
No high education qualification

Sample size (persons)

Notes:

82.2
40.8

760

1961-65

Multiscopo
Survey

1951-55 1961-65
1995 1998 1998
114+ 11.0* 11.2 =
60.6 * 49.0 65.3
96.5 86.5 94.0
56.0 ++ 44.3 61.7
844 2,098 2,693

Birth registration
data (population)

1951-55 1961-65

48.3

* Statistically different from the population value (Birth Registration data or Labour Force Survey) p<0.05
** Statistically different from the population value (Birth Registration data or Labour Force Survey) p<0.01
+ Statistically different from the large survey value (Multiscopo Survey) p<0.05
++ Statistically different from the large survey value (Multiscopo Survey) p<0.01

65.5

Labour Force
Survey

1951-55 1961-65

1985

8.0

1995

9.4

1995

9.3



Table 2 Unconstrained and constrained logisitic regressions using the FFS, Multiscopo, and pooled FFS and Multiscopo

Unconstrained

Constrained

FFS Multiscopo FFS and Multiscopo FFS Multiscopo FFS and Multiscopo

Param. Std.error Param. Std.error Param. Std.error Param. Std.error Param. Std.error Param. Std.error
Intercept -1.282 **  0.139 -1.868 ** 0.097 -1.700 **  0.079 -1.661 **  0.028 -1.676 **  0.017 -1.674 ** 0.014
High Education Qualification -1.215*  0.338 -1.180 ** 0.213 -1.164 **  0.178 -1.203 **  0.337 -1.177 *  0.213 -1.162 ** 0.178
Age (ref. 25):
26 -0.184 0.209 0.344 ** 0.131 0.187 0.110 -0.016 0.011 -0.023 **  0.004 -0.021 ** 0.004
27 -0.258 0.222 0.148 0.141 0.023 0.118 -0.098 **  0.024 -0.091 0.010 -0.092 ** 0.010
28 -0.912 *  0.277 0.140 0.147 -0.123 0.127 -0.207 **  0.043 -0.188 0.018 -0.191 ** 0.017
29 -0.719 = 0.271 -0.126 0.162 -0.294 * 0.138 -0.328 **  0.060 -0.292 0.027 -0.297 ** 0.024
30 -1.048 **  0.310 -0.377 * 0.180 -0.562 **  0.155 -0.482 **  0.076 -0.434 * 0.036 -0.440 ** 0.032
31 -1.185 **  0.335 -0.623 ** 0.200 -0.780 **  0.171 -0.647 **  0.092 -0.585 **  0.044 -0.593 ** 0.039
32 -1.202 **  0.346 -0.655 ** 0.207 -0.806 **  0.177 -0.851 **  0.103 -0.777 **  0.051 -0.786 ** 0.045
33 -2.473 **  0.572 -0.636 ** 0.212 -1.006 **  0.194 -1.023 *»*  0.111 -0.932 **  0.053 -0.944 ** 0.048
34 -1.873 **  0.452 -0.929 ** 0.240 -1.171 *  0.211 -1.185*  0.119 -1.079 **  0.055 -1.094 ** 0.050
35 -2.041 = 0.491 -1.077 ** 0.260 -1.325 **  0.228 -1.373 **  0.136 -1.248 **  0.059 -1.267 ** 0.054
36 -2.194 **  0.537 -1.216 ** 0.281 -1.467 **  0.247 -1.514 **  0.154 -1.380 **  0.060 -1.402 ** 0.056
37 -2.733 **  0.691 -1.420 ** 0.313 -1.737 **  0.283 -1.719 **  0.186 -1.578 **  0.064 -1.602 ** 0.061
38 -2.666 **  0.697 -1.833 ** 0.382 -2.056 **  0.333 -1.910 *  0.214 -1.785 **  0.070 -1.807 ** 0.067
39 -2.589 **  0.785 -1.794 ** 0.386 -2.005 **  0.345 -2.112 = 0.215 -2.022 *  0.075 -2.039 ** 0.070
40 -2.659 *  0.976 -1.347 ** 0.330 -1.616 **  0.311 -2.385 **  0.277 -2.280 **  0.084 -2.300 ** 0.081
41 -14.870 523.834 -2.504 ** 0.564 -2.814 **  0.560 -2.650 **  0.270 -2.571 *  0.091 -2.589 ** 0.088
42 -14.510 554.688 -3.012 ** 0.732 -3.280 **  0.730 -3.077 *  0.329 -2.992 *  0.096 -3.011 ** 0.095
43 -3.521 ** 1.090 -3.710 *  1.089 -3.433 **  0.116 -3.454 ** 0.115
44 -3.228 ** 1.110 -3.416 **  1.109 -3.873 *  0.123 -3.893 ** 0.122
Cohort 61-65 -0.718 **  0.199 -0.433 ** 0.132 -0.519 **  0.110 -0.598 **  0.039 -0.560 **  0.017 -0.566 ** 0.016
Cohort 61-65 and High Education 0.339 0.445 -0.395 0.273 -0.199 0.226 0.330 0.444 -0.395 0.273 -0.200 0.226
Age for Cohort 61-65 (ref. 25):
26 0.175 0.291 -0.198 0.182 -0.086 0.153 0.089 **  0.011 0.098 0.004 0.095 ** 0.004
27 0.136 0.309 0.244 0.187 0.237 0.159 0.229 *  0.025 0.229 0.010 0.225 ** 0.009
28 0.882 * 0.351 -0.080 0.199 0.150 0.171 0.355 *  0.047 0.347 0.016 0.340 ** 0.014
29 1.210*  0.351 0.195 0.212 0.435 * 0.180 0.483 *  0.073 0.439 0.023 0.437 ** 0.021
30 0.946 * 0.441 0.531 * 0.226 0.630 **  0.197 0.636 **  0.117 0.548 * 0.033 0.550 ** 0.031
31 1.620 *  0.475 0.735 ** 0.245 0.869 **  0.213 0.746 **  0.154 0.623 **  0.045 0.630 ** 0.042
32 0.309 0.905 0.984 ** 0.250 1.031 *  0.220 0.859 **  0.144 0.706 **  0.058 0.722 ** 0.054
33 0.779 ** 0.270 1.075* 0.251 0.723 *  0.070 0.748 ** 0.065
34 0.739 * 0.324 0.917 **  0.298 0.756 * 0.086 0.792 ** 0.079
Interaction
Age and High Education 0.377 *  0.139 0.341 ** 0.073 0.339 **  0.063 0.372*  0.138 0.340 **  0.073 0.338 ** 0.063
Age, High Education and Cohort 61-
65 -0.153 0.127 0.019 0.052 -0.013 0.045 -0.150 0.126 0.019 0.052 -0.013 0.045
Age? and High Education -0.016 0.011 -0.016 ** 0.005 -0.015 **  0.004 -0.016 0.011 -0.016 **  0.005 -0.015 ** 0.004
-2logL intercept and covariates 3,237.987 11,937.004 15,230.601 3,281.535 11,979.917 15,267.134
Person years 4,945 19,596 24,541 4,945 19,596 24,541

*p<0,05 **p<0,01
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	In Table 2, constrained and unconstrained parameter estimates and standard errors are presented for the logistic regression of first birth on age, cohort, and education. Separate results are reported using the small (FFS) survey only, the large (Multiscopo) survey only, and the FFS and Multiscopo surveys with their observations pooled. The function of age and cohort to first birth is specified using single-year ages (that is, completely non-parametric), while we parameterize (with a second-order polynomial) the education by age interaction. This is because we have exact population information about the age and cohort relationships, but must rely on survey data for information about the education relationship.  
	Consistent with equation (4) in the statistical theory presented above, all standard errors in the constrained version are as low as, or lower than, the corresponding standard errors of the unconstrained version. The standard errors of the age parameters are seen to be reduced by very large amounts by constraining survey-based estimates to the overall population values, generally by 75 percent or more as compared to the unconstrained version, and sometimes by as much as 90 percent. Only for the age parameters, cohort-by-age parameters, and intercept, however, are the reductions in standard errors other than of negligible magnitudes. That is, for none of the parameters for education and its interaction with age and cohort is there a non-negligible reduction in the standard error. This makes intuitive sense, as the constraints offer exact information about the relationship of age to first childbearing, but no information about how this relationship differs by education. 
	A further result of equation (4) noted in the statistical theory description above is confirmed empirically in Table 2: the ratio of the variances of the constrained to unconstrained parameters is independent of the survey sample size. The asymptotic result is that the percentage reduction in the standard errors of the regression parameters from the unconstrained to the constrained versions will be equal. This is seen to be closely approximated in practice for the FFS and the Multiscopo. Thus even while the sample size of the Multiscopo are approximately four times as high as the sample size of the FFS, there is no difference in the proportionate reduction of the standard error about the first-birth model coefficient estimates. Importantly, the standard errors for the pooled sample are reduced by similar amounts in percentage terms as are the standard errors for either of the two surveys alone. For example, for the age-40 coefficient, the standard error for estimation with the FFS is reduced from an unconstrained-model 0.976 to a constrained-model 0.277, an approximately 75 percent reduction. When estimating the unconstrained and constrained models with the pooled FFS and Multiscopo, the standard error falls from 0.311 to 0.081, again an approximately 75 percent reduction. 
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