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POPULATION INERTIA AND ITS SENSITIVITY TO CHANGES IN 

VITAL RATES OR INITIAL CONDITIONS 

Abstract.  Many studies have examined Keyfitz’s population momentum, a 

special case of inertia in long-term population size resulting from demographic transition 

to the stationary population growth rate.  Yet, population inertia can be produced by any 

demographic perturbation (i.e., not just perturbations that produce stationary growth).  

Insight into applied population dynamics, population ecology, and life history evolution 

has been gained using perturbation analysis of the population growth rate.  However, a 

similar, generalized framework for perturbation analysis of population inertia has not 

been developed.  We derive general formulas for the sensitivity of population inertia to 

change in any vital rate or initial population structure.  These formulas are readily 

computable, and we provide examples of their potential use in life history and applied 

studies of populations.      

Key words: inertia; life history; population momentum; population structure; sensitivity; 

stable equivalent ratio. 

 
1.  INTRODUCTION 

Population size is central to the fields of demography and population biology.  

Demographers often study population size because it can affect economies, policy, social 

dynamics, and even natural resource supplies (Bos et al., 1994; Fischer and Heilig, 1997; 

United Nations, 2003).  Biologists pay special attention to population size when trying to 

understand ecological processes, keep small populations from going extinct, controlling 

pest populations, and in management of populations that provide hunting, fishing, and 

viewing opportunities as well as world-market food resources (Caughley, 1977).  
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Additionally, the change in population size over time (i.e., population growth rate) 

describes the average fitness and performance of the population (Fisher, 1930; Sibly et 

al., 2002).  Thus, population size is an important parameter for many reasons. 

In population modeling it is common to assume a stable population structure (i.e., 

the distribution of abundance across age, stage, size, sex, or other phenotypic categories) 

because it greatly simplifies study of how underlying vital rates, such as fecundity and 

survival, affect population size and growth.  Yet, if a population has an unstable 

population structure, such as an ‘over abundance’ of mature adults, it will experience 

transient dynamics (i.e., unstable short-term dynamics; Coale 1972, Fox and Gurevitch, 

2000; Koons et al., 2005; Yearsley, 2004).  Unstable population structure and transient 

dynamics can in turn create an inertial effect on long-term population size causing it to be 

larger or smaller than that of a population of the same initial size but with stable 

population structure and growing according to the same vital rates (Tuljapurkar and Lee, 

1997).  The most commonly studied case of population inertia is Keyfitz’s heralded 

concept of population momentum (1971a), which pertains to the special case when a 

population’s vital rates undergo a change to the stationary level (i.e., the level of lifetime 

individual replacement) (see Fig. 1).                 

Because population size can affect a variety of political, social, and economic 

issues, population momentum has been studied extensively in human demography and its 

effect has been shown to occur in many populations (e.g., Keyfitz, 1971a; Frauenthal, 

1975; Mitra, 1976; Wachter, 1988; Schoen and Kim, 1991; Fischer and Heilig, 1997; 

Kim and Schoen, 1997; Schoen and Kim, 1998; Bongaarts and Bulatao, 1999; Li and 

Tuljapurkar, 1999, 2000; Goldstein 2002; Schoen and Jonsson, 2003).  Through 
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simulation, biologists have recently shown that population momentum could affect 

conservation efforts of declining wild populations and control of pest populations (Koons 

et al., 2006a), that it varies with life history in a predictable pattern (Koons et al., 2006b), 

and that it is an important aspect of optimal harvest theory (Hauser et al., 2006).     

Like population growth rate, population inertia is as relevant to population 

biology as it is to classical human demography, and tools that relate change in underlying 

demographic parameters to change in population inertia could benefit a variety of 

demographic disciplines.  The sensitivity of population growth rate to changes in 

underlying vital rates has a long history of use in demography and evolutionary theory 

(Lewontin 1965, Hamilton 1966, Demetrius 1969, Emlen 1970, Goodman 1971, Keyfitz 

1971b, Mertz 1971), and Caswell’s (1978) discrete-time sensitivity formula has made 

calculation of this metric relatively simple for empiricists to use (e.g., van Groenendael et 

al., 1988; Horvitz et al., 1997; Benton and Grant, 1999; papers within Heppell et al., 

2000).  Analogous analytical formulae for population inertia would be just as useful, but 

have not been developed.  Here, we present such formulae for the sensitivity of 

population inertia to changes in any vital rate or initial conditions.  We then show how 

these formulae can be used to examine dynamic underpinnings of population inertia 

across life histories, and in applied population analysis.   

2.  DERIVATION 

2.1.  Population Model And Notation 

 We use bold-type capital letters to denote matrices and bold-type lower case 

letters to denote vectors.  We use x  to denote the conjugate of x, xT to denote the 

transpose of the vector x and x* to denote the complex conjugate transpose. 
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 Most studies of population inertia are conducted with continuous time models.  

However, the underlying mechanisms of population inertia are more easily seen in 

discrete form (Schoen and Jonsson, 2003).  Thus, our derivation is based on a linear, 

discrete, time-invariant population model 

 t+1 t .=n An  (1) 

Here, tn  is an n-dimensional vector with ith entry ( )in t  equal to the number of 

individuals in the ith stage at time t.  A is an n × n matrix with (i, j)-entry aij equal to the 

transition rate from the jth stage to the ith stage.  Alternatively, the population vector at 

any time t can be expressed as:   

 t
1

c λ ,
n

t
i i i

i=

=∑n w  (2) 

where the  iλ ’s are the eigenvalues of A (which we assume to be distinct), the iw ’s are 

corresponding right eigenvectors, and the ci’s depend on initial conditions and satisfy 

0 1
c

n
i ii=

=∑n w  (Caswell, 2001).  The ith eigenvalue  iλ  and corresponding right iw  and 

left iv  eigenvectors of A satisfy 

 λi i i=Aw w  (3) 

 λ .i i i
∗ ∗=v A v  (4) 

Unless otherwise stated, we assume that A is primitive so that, according to the Perron-

Frobenius theorem (Gantmacher, 1959; Seneta, 1981; Horn and Johnson, 1985), there is a 

unique eigenvalue of A having modulus strictly larger than the moduli of the other 

eigenvalues.  The indexing is chosen in such a way that  1λ  is this “dominant” 

eigenvalue.  It is real and positive, and both 1w  and 1v  have real positive entries.  For 
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large t, the i = 1 term dominates the expression for tn  given in Eq. (2), and so eventually, 

the population grows approximately geometrically at the rate  1λ  (assuming 1c 0≠ ).  The 

dominant right 1w  and left 1v  eigenvectors describe the asymptotic population structure 

and reproductive values, respectively (Goodman, 1968).  Unless otherwise noted, we 

assume that the eigenvectors have been scaled so that * 1i i =v w , and * 0 for i j i j= ≠v w .  

The 1-norm of the vector x is given by 
1

n
ii

x==∑x , where ix  is the ith component of x.   

2.2.  Measurement Of Population Inertia 

In a deterministic environment, population inertia is defined as the long-term size 

of a population growing at any rate as determined by the actual population structure, 

relative to the size of an otherwise equivalent population that grows according to its 

stable population structure (Fig. 1b).  In demography, this ratio is known as the Stable 

Equivalent Ratio (SER; sensu Tuljapurkar and Lee, 1997).  In order to relate various 

notions of population inertia and momentum that have appeared in the literature, we 

consider the quantity  

 
0

0

0

lim ,t

t
t

M
→∞r

n r

r n
 (5) 

which we call the “inertia relative to 0r ”.  Here 0r  is a nonzero vector and 0
t

t =r A r .  

We regard 0r  as a point of reference and therefore call it the “reference vector”.  Since  

 

0

00

0 0

0

,

t

t

t t

=

n
A

nn r

r n r
A

r

 (6) 
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one can see that 
0

M r  is the asymptotic ratio of the size of the population with initial 

structure 0n  normalized to a unit vector to that with initial structure 0r  normalized to a 

unit vector.  Note that 
0

M r  depends only on the line determined by 0r , that is, 

0 0 cM M=r r  for any nonzero complex number c.   

Here, we assume that the eigenvalues of A are indexed in such a way that 

 1  2  nλ λ λ≥ ≥ ≥� .  Moreover, any vector x can be written in the form 
1

n
i ii

d==∑x w  

for some uniquely determined complex numbers id .  If x is nonzero, then id  is nonzero 

for some i and we call the least such i the “height” of x.  Note that the height of x is also 

the least index i for which *
iv x  is nonzero. 

In Appendix 1, we establish that 

 
0

*
 0 0

*
 0 0

,
h

h

M =r

v n r

v r n
 (7) 

provided   i hλ λ<  for i > h, where h is the lesser of the height of 0n  and the height of 

0r  (or the common value if they are the same).  The fraction is interpreted as being 

infinity if the denominator is zero. 

 Now we consider various special cases of 
0

M r  that are of notable biological 

interest.  First, assume that 0 1c=r w  for some positive real number c.  Since, Eq. (5) 

gives, in this case, the Stable Equivalent Ratio (SER) described above, we set 

0 1
SER = cM M=r w .  From remarks above, we see that this quantity does not depend on 

c.  Because 0r  has height one, Eq. (7) yields 
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*
1 0 0
*
1 0 0

SER =
v n r

v r n
 (8) 

(noting that the absolute value signs can be dropped since the vectors on the right are all 

real and nonnegative).  If we further assume that 0r  is of the same size as 0n  (i.e., 

0 0=r n ), then Eq. (8) reduces to   

 
*
1 0
*
1 0

SER ,= v n

v r
 (9) 

which is consistent with Eq. (7) in Tuljapurkar and Lee (1997).   

Next, by replacing 0r  in Eq. (8) with 1cw  and canceling c’s we get  

 
( )T

T

**
1 0 11 0 1

*
01 1 0

SER ,= =
e v n wv n w

e nv w n
 (10) 

where e is the vector with each entry equal to one.  This right-hand side of Eq. (10) is the 

same as Caswell’s discrete-time formula for population momentum (Caswell, 2001:104).  

Caswell considers momentum resulting from instantaneous demographic changes to the 

stationary level, that is, where  1 1λ = .  In this case, 1 0t c= =r w r  for all t so Eq. (5) gives 

 ( ) 1
0

SER lim   assuming 1 ,t
K

t
λ

→∞
= =

n

n
 (11) 

which is equivalent to Keyfitz’s (1971a) general definition of population momentum 

(hence the subscript K on SER).  This, in turn, is a special case of population inertia 

(Schoen and Kim, 1991; Tuljapurkar and Lee, 1997; Schoen and Jonsson, 2003; Keyfitz 

and Caswell, 2005).  Caswell derives Eq. (10) from (11) making use of the assumption 

 1 1λ = .  Our derivation of Eq. (10) from (5) does not require this assumption, but the 

equivalent end result is interesting.  
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 Lastly, if the initial vector 0n  has height > 1, so that *
1 0 0=v n (we momentarily 

relax the assumption that A is primitive to allow for this possibility), then the SER is zero 

and all that can be concluded is that the size of the population will become increasingly 

less significant as compared to that of a stable population growing at rate  1λ .  However, 

the population might still be viable with, say, its structure vector approaching an 

eigenvector for a subdominant eigenvalue.  In this case, the SER can be regarded as being 

too coarse a measure to distinguish between this population and one that, for instance, is 

moving toward extinction, which would also clearly have zero SER.  We get a more 

refined view of inertial effects by choosing various reference vectors 0r  in Eq. (5).  For 

instance, if 0n  has height h > 1 and we let 0 h=r w  and assume that   i hλ λ<  for i > h, 

then Eq. (7) gives 

 
0

*
0

0

h h
M =r

v n w

n
. (12) 

This inertia 
0

M r  is nonzero (since *
0 0h ≠v n ) and it gives the asymptotic size of the 

given population relative to the size of a stable population growing at the subdominant 

rate  hλ .  In the remainder of this paper we focus on the SER and leave further 

investigation of this more general notion of inertia to future work.  

The SER in Eqs. (9) and (10) can be used to measure inertia in population size 

caused by an initially unstable population structure, or inertia resulting from 

instantaneous change in any vital rate to a new level (i.e., a ‘demographic transition’).  

For example, 0n  can represent the initial population structure or it can represent the 

population structure produced by a historical set of vital rates.  Of course, following a 
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‘demographic transition’, 1v , 1w , and 0r  would refer to the post-transition set of vital 

rates.  Henceforth, we use the terms ‘population inertia’ and SER interchangeably. 

2.3.  General Formulas For The Sensitivity Of Population Inertia To Changes In 

Vital Rates 

 A may represent the single set of focal vital rates, or, following a demographic 

transition, A may represent the set of post-transition vital rates.  In both cases, one might 

be interested in the question: “how would population inertia change if the vital rates were 

just a little bit different.”  A measure for the sensitivity of population inertia to change in 

the underlying vital rates (aij) of the transition matrix A is needed to answer this question.   

Thus, to develop general formulas for such a sensitivity measure, we begin with 

Eq. (10) because this form of the deterministic SER should be most familiar to readers 

(e.g., presented as an equation for the more familiar M in Caswell, 2001; Keyfitz and 

Caswell, 2005).  To begin, we apply the product rule to differentiate Eq. (10) with respect 

to a single vital rate aij:  

 

( )

( )

( ) ( )

( )

T *
1 0 1

T
0

T *
1 0 1T

0

T * *1
1 0 1 0 1T

0

*
T * 1 1

1 0 0T
0

 SER
 = 

1
        = 0

1
        =

1
        =

ij ij

ij

ij ij

ij ij

a a

a

a a

a a

  
 ∂ ∂   
 ∂ ∂  
 

 ∂   +   ∂  

   ∂ ∂
  +  

 ∂ ∂     

 ∂ ∂+ 
∂ ∂

e v n w

e n

e v n w
e n

w
e v n v n w

e n

w v
e v n n

e n
1 .

  
  

    

w

 (13) 
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It becomes apparent that perturbation of a vital rate causes change in the right 1w  and 

left 1v  eigenvectors.  Conveniently, Caswell (1980, 2001) has developed formulas for 

sensitivities of these eigenvectors to change in a vital rate aij:   

 
 

( )
(1)1

11

,
mn

i
mj

ij mm

v
w

a λ λ≠

∂ =
∂ −∑
w

w  (14) 

 
( )

(1)1

11

.
mn
j

mi
mij m

w
v

a λ λ≠

∂ =
∂ −∑

v
v  (15) 

where ( )m
jw  is the jth entry of mw  and ( )m

iv  is the ith entry of mv  .  By incorporating 

Caswell’s formulas (our Eqs. 14 and 15) into Eq. (13), the sensitivity of the deterministic 

SER to change in a vital rate can be seen as  

 ( )
 

*( )( )
(1) (1)T *

1 0 0 1T 111 10

 SER 1
.

mmn n
ji

m mj i
mij mm m

wv
w v

a λ λ λ λ≠ ≠

        ∂   = +      ∂ − −         

∑ ∑e v n w v n w
e n

(16) 

Thus, change in a vital rate causes change in the stable population vector 1w and 

reproductive value vector 1v , which then leads to change in the SER.  In appendix 2, we 

prove that Eqs. (14) and (15) can indeed be incorporated into Eq. (13) to yield (16). 

Sometimes matrix-level entries are computed from multiple lower-level vital 

rates.  For example, projection matrix fertilities are the product of fecundity and some 

component of survival.  The sensitivity of population inertia to a lower-level parameter x 

can be found using the chain rule  

 
,

 SER  SER
.kl

klk l

a

x a x

∂∂ ∂=
∂ ∂ ∂∑  (17) 

 Population inertia sensitivities can also be calculated numerically 
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SER SER SER

.post pre

ij ija

−∂
∂ ∆

�  (18) 

Here, SER pre  and SER post  are the measurements of population inertia before and after 

the instantaneous change ij∆  in the vital rate ija .  Although we have chosen to focus on 

the sensitivity of population inertia to absolute change in vital rates, the elasticity of 

population inertia to proportional change in vital rates can easily be calculated from the 

analytical sensitivity or numerically, 

 
logSER  SER

log SER
ij

ij ij

a

a a

∂ ∂=
∂ ∂

 (19) 

 
SER SERlogSER 1

log SER
post pre

ij pre ija p

−∂
∂

�  (20) 

where ijp  is the proportional change in the vital rate ija .  Population inertia is not a 

linear function of the ija , thus the elasticities do not sum to unity nor do they quantify the 

contribution of the ija  to SER like they do for the geometric population growth rate (de 

Kroon et al., 1986).  Still, elasticities do provide useful measures of the effect of relative 

change in a vital rate on population inertia. 

2.4.  General Formulas For The Sensitivity Of Population Inertia To Changes In 

Population Structure 

 Population inertia also depends on the initial population vector 0n , and one may 

be interested in how changes in initial conditions cause change in population inertia.  

Thus, we develop general formulas for this sensitivity as well.  To begin, we apply the 
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quotient rule to differentiate Eq. (10) with respect to a single entry (0)in of the initial 

population vector:  

 
( )

( )
( )

( )

*
T 1 0

1 T
0

T * * T
0 1 0 1 0 0

T
1 2T

0

(1)T *
0 1 0T

1 2T
0

 SER
 = 

(0) (0)

(0) (0)
            = 

            = .

i i

i i

i

n n

n n

v

 ∂ ∂
 
 ∂ ∂  

∂ ∂ − ∂ ∂
 
 
  

 − 
 
 
 

v n
e w

e n

e n v n v n e n
e w

e n

e n v n
e w

e n

 (21) 

We note that the ‘initial’ point in time can be defined as the point in time from which the 

population will be studied forward.  We assume for the rest of this section that 

T T
1 1 0 01, 1= = = =e w w e n n , and 1v  is real.  Then 

  (1) T
1 0

 SER
 = - .

(0) i
i

v
n

∂
∂

v n  (22) 

In particular, if one examines the special case where 0 1=n w , then 

 

1

 (1)

 

 SER
 = -1.

(0) i
i

v
n

∂
∂ w

 (23) 

Thus, in Eq. (22), knowledge of only the reproductive value and initial population 

structure are needed to measure the sensitivity of population inertia to change in a single 

entry of the initial population structure.  If it is safe to assume that the population 

structure is initially stable (Eq. 23), then only reproductive value is needed, which is 

easily computed from A.  
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 Now we consider perturbations that could affect multiple (st)age classes.  To do 

this, let [ ]T
1, , nu u=u �  be an arbitrary unit vector (i.e., 1=u ) to be regarded as a 

perturbation vector applied to 0n .  Furthermore, denote by SERDu  the directional 

derivative of SER in the direction u.  Then 

 TSER = SER ,Du u∇∇∇∇  (24) 

where [ ]T1SER =  SER (0), ,  SER (0)nn n∂ ∂ ∂ ∂�∇∇∇∇  is the gradient of the SER.  The set 

of all vectors x for which TSER 0=x∇∇∇∇  forms a hyperplane in n-space.  The set of those x 

for which TSER 0>x∇∇∇∇  (respectively, TSER 0<x∇∇∇∇ ) are on the positive side 

(respectively, negative side) of the hyperplane.  Thus, the directional derivative is 

positive, negative, or zero when u is on the positive side of the hyperplane, the negative 

side, or in the hyperplane itself, respectively.     

 Considering the special case where 0 1=n w  (with each being a unit vector), we 

get 

 

( )
1

T
 

T
1

SER  = SER

                = .

D

−

u w u

v e u

∇∇∇∇
 (25) 

In this case the SER equals 1.  Therefore, the new value of population inertia after 

perturbation is > 1, < 1, or = 1 when the directional derivative is > 0, < 0, or = 0, 

respectively.  If one perturbs only the ith entry of 1w  (i.e., [ ]T
0, ,0,1,0, , 0=u � � ), then 

the sign of the ith entry of 1 −v e  dictates the direction that the SER moves away from 1.  

In this case 
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1
1

 (1)

  

 SER
SER = -1.

(0) i
i

D v
n

∂ =
∂ u

w w

 (26) 

Thus, Eq. (23) is just a special case of the directional derivative (Eq. 25).  In addition, if 

1=u w , then the distribution of individuals among stage classes does not change 

following the perturbation (u), so the SER is expected to remain at 1.  This is indeed the 

case, since ( )
1

1

T T T T
1 1 1 1 1 1 1 

SER 1 0D = − = − = − =w w
v e w v w e w v w .   

3. APPLICATIONS AND EXAMPLES 

3.1.  Age-related Dynamics Of Inertia In An Open Population 

 Nearly all studies of population inertia in demography have focused on 

momentum following change in fertility to the stationary level.  Yet, changes in age-

structured vital rates other than fertility are expected to produce population inertia and 

warrant more study (Li and Tuljapurkar, 1999).  Furthermore, spatial structuring of 

populations can significantly affect population momentum, and more generally, 

population inertia (Rogers and Willekens, 1978; Rogers, 1995).  In addition to fertility 

and survival, dynamics of ‘open’ populations are affected by immigration and 

emigration.  Here, we provide a short example illustrating how our formulae can be used 

to examine and compare how population inertia is affected by changes in each of the age- 

or stage-structured vital rates of an open population.   

It is relatively straightforward to incorporate net immigration into projection 

models (e.g., Rogers, 1995), but Cooch et al. (2001) present a concise model for 

incorporating birth, survival, immigration, and emigration vital rates into a single 

projection matrix:   
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0 0 0 00

0 0 0

0 0 0

0

0 0 0 0

x x

x x x

x x x

m S m S

S I

S I

η η
η

η

 
 + 
 =
 
 
 + 

A

� �

�

� �

� � � �

 

where A is constructed in the traditional pre-breeding census format (Caswell, 2001), xm  

is the average number of births per female in age- or stage-class x, 0S  is the probability 

of surviving from birth to census in age- or stage-class 1, xS  is the survival probability 

from age- or stage-class x to x + 1, 0η  and xη  are the corresponding probabilities of 

remaining in the population, conditional on being alive (i.e., 1 – emigration probability, 

which is called site fidelity), and xI  is the probability that an individual present in the 

population at time t in age- or stage-class x + 1 was not present in the population at time t 

– (census time) in age- or stage-class x (i.e., the probability of immigrating during the 

time between censuses from outside the local population).  In the example presented here, 

we parameterized this model (A) with data based on a female segment of the U.S. 

population < 50 years old, counted at 5-year intervals, and growing by 1% per year 

(Table 1).  Data were based on the 1980, U.S. Southwest life tables presented in Rogers 

(1995), but adjusted to fit our example described above.  We assumed that the population 

initially had a stable population structure and then applied Eqs. (16), (17), and (18) to 

calculate the elasticity of population inertia (i.e., the SER) to changes in each of the 

aforementioned vital rates.       

 Of great importance, the sign of the survival, fidelity ( xη ), and immigration 

elasticities changed from negative to positive with increasing age while the fecundity 

elasticity was always negative, indicating that increased fecundity always created inertia 
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leading to smaller population size relative to an otherwise equivalent population in its 

stable population structure (Fig. 2).  (We note that elasticity values indicate results for an 

increase in a vital rate, and decreases would produce exactly the opposite result.  We also 

note that elasticities for survival probabilities and fidelity were identical because of their 

perfect multiplicative relation in the model).  The effect of changing a vital rate on the 

population structure and reproductive value (see Eq. 13) varied with age, leading to the 

patterns in SER elasticities across age (Fig. 2).  Furthermore, changes in fecundity did not 

have the largest impact on the SER, changes in survival and local population fidelity did.  

Thus, while demographers seem to be quite concerned about the effects of the fertility 

transition on population momentum (see numerous citations in Introduction), perhaps 

they should also be concerned about the effects of increasing longevity (sensu Guillot, 

2005) and changes in migration rates on the SER, a more general measure of population 

inertia.     

Moreover, population inertia affects abundance in the various age classes, which 

is known to have profound impacts on the economy (Lee, 2000) and use of natural 

resources (Liu et al., 1999, 2003).  Thus, our resultant patterns in the elasticity of 

population inertia to changes in vital rates across age (see Fig. 2) could be very important 

in a variety of situations.  From our example, it is quite apparent that change in a given 

vital rate for age-class 30 would have a very different effect on population inertia, and 

thus abundance, than would the same change in age-class 5 (Fig. 2).   

Age-related patterns in population inertia sensitivities and elasticities may be a 

general result of significant importance.  Although this is just one simple example, 

further study of population inertia sensitivities and elasticities across age and stage are as 
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warranted as the numerous studies of population growth rate sensitivities, elasticities, and 

selection pressures.  Furthermore, population inertia sensitivities and elasticities could 

prove to be very useful for studying the dynamics of multi-regional populations (Rogers, 

1995), and meta-populations (Hanski and Gilpin, 1997) such as source-sink systems (e.g., 

Koons, 2005). 

3.2.  Life History And The Sensitivity Of Population Inertia 

The study of patterns in population dynamics across populations and species is 

important because it aids in the understanding of life history evolution (Harvey and 

Pagel, 1991; Stearns, 1992), and in the development of demographic policy as well as 

conservation and management of populations (Bos et al., 1994; Fagan et al., 2001).  

Adding to the repertoire of methods used in comparative demography, our formulas 

allow one to compare the functional relationship between vital rates and population 

inertia across populations and across species.  Furthermore, the analytical formulae 

provide a consistent means for comparison that alleviate some pitfalls of numerical 

simulation.     

To provide a brief example of such an application, we used the bird data with 

stationary growth (  1 1λ = ) provided in Koons et al. (2006b).  Population models were 

constructed as in Koons et al. (2006b), and we assumed that each population initially had 

a stable population structure and stationary growth, hence the SER = 1.  This served as a 

nice starting point because any perturbation to these equilibrium conditions produces a 

SER ≠ 1, and it is this ‘change’ in population inertia that we were interested in comparing 

across species with different life history attributes.  Specifically, we applied Eq. (16) to 
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the population model (A) for each species and calculated the sensitivity of the SER to 

changes in fertility, sub-adult survival, and adult survival. 

Across the avian life histories, we found that the sensitivity of the SER to changes 

in fertility increased with the life history generation time (p < 0.01, R2 = 0.94, Fig. 3a) as 

did sensitivity of the SER to changes in sub-adult survival (p < 0.01, R2 = 0.86, Fig. 3b).  

Interestingly, sensitivity of the SER to change in sub-adult survival was negative for 

species with a generation time < 10 years but positive for species that mature later in life 

and have a longer generation time.  Thus, whether changes in sub-adult survival produced 

inertia leading to an enlarged or reduced population size relative to an otherwise 

equivalent population in its stable population structure depended on the duration of the 

sub-adult stage.  On the other hand, sensitivity of the SER to change in adult survival 

decreased with life history generation time and was always negative (Fig. 3c).  Although 

statistical support for the latter relationship was weak (p = 0.12, R2 = 0.27), this brief 

analysis indicates that the functional relationship between vital rates and population 

inertia does tend to vary with life history, which is consistent with Koons et al’s more in-

depth numerical analysis of population momentum across vertebrate life histories 

(2006b).  Our equations can be used for analysis following a population’s transition to 

stationary growth, which would be of interest when studying population momentum, but 

can also be used to study non-stationary conditions as well.  We suggest use of these new 

tools to examine population inertia dynamics in a wide variety of populations and 

species.    
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3.3.  Effects Of Initial Population Structure 

 In many cases, managers and pest-control officials might want to consider how 

different management strategies focused on population structure could change population 

inertia in their favor when managing population abundance (MacArthur, 1960; Merrill et 

al., 2003; Hauser et al., 2006).  Plant and animal release and relocation programs provide 

managers a variety of ways to directly ‘add’ individuals to specific age or stage classes of 

a population (e.g., Starling, 1991; Wolf et al., 1996; Ostermann et al., 2001), while 

harvest, live-trapping, and other removal techniques allow managers to directly decrease 

abundance in specific age or stage classes (Larkin, 1977; Holt and Talbot, 1978).  All of 

these management practices could change population inertia.  Thus, we provide an 

example that illustrates how population inertia is affected by perturbations that add or 

remove individuals from specific age classes of a population.  We use the following 

matrix A, which describes the mean fertility and survival rates of the lesser snow goose 

(Chen caerulescens) population at La Perouse Bay, Manitoba from 1973 to 1990 (Cooch 

et al., 2001).  

0 0.12 0.26 0.38 0.41

0.83 0 0 0 0

0 0.83 0 0 0

0 0 0.83 0 0

0 0 0 0.83 0.83

 
 
 
 =
 
 
  

A  

In A, fertilities are represented on the top row and survival probabilities are on the sub-

diagonal and bottom-right corner of the matrix.  The 1st age class represents young and all 

others represent adult age classes.   
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To begin, we calculated the left [ ]T
1 0.34 0.44 0.52 0.56 0.57=v  and right 

[ ]T
1 0.46 0.36 0.28 0.21 0.73=w eigenvectors of A.  To simplify our scenario, we 

assumed that population structure was initially stable (i.e., 0 1=n w ), indicating SER 

initially = 1.  We also normalized 1w  into a unit vector (i.e., 1, . 1nor =w ), and 

normalized 1v , such that 1, . 1 1nor =v v w , which allowed us to use Eqs. (25) and (26) to 

easily address our scenario.  In addition, the normalized right and left eigenvectors are 

still eigenvectors of A, and the condition * 1i i =v w  is maintained.  Rounded to the second 

decimal, [ ]T1, . 0.23 0.17 0.14 0.10 0.36nor =w  and 

[ ]T1, . 0.70 0.90 1.06 1.15 1.17nor =v .   

Next, we used the directional derivative to measure the sensitivity of population 

inertia to a variety of perturbations to initial population structure (Table 2).  It is readily 

seen that if only the ith entry of initial population structure is perturbed, then the direction 

SER moves away from 1 is dictated by the sign of the ith entry of SER∇∇∇∇  or  (1) -1iv .  For 

example, a unit increase in the 1st age class decreases population inertia (SER < 1), a unit 

increase in an older adult age class increases population inertia (SER > 1), and unit 

decreases produce opposite results (Table 2).  Furthermore, perturbations to multiple age 

classes produce intermediate, but perhaps more realistic results.  Perturbations equal to 

the stable age distribution ( 1, .norw  ) do not change population inertia at all (SER still = 1; 

Table 2).   

Compared to the stable age distribution of A, removing young (e.g., through 

clutch removal), releasing adults, or both, would allow a goose manager to quickly 
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increase population inertia because each action shifts age structure towards reproducing 

adults.  On the other hand, releasing young, removing adults (via harvest or live 

trapping), or both, would allow the manager to quickly decrease population inertia 

because these practices shift age structure towards young.  However, it is important to 

remember that these results pertain only to the effects of directly changing population 

structure, not the effects of perturbing vital rates, which are presented above. 

In general, the influence of population structure on eventual population size is of 

great importance in conservation biology and management (Keyfitz and Caswell, 2005).  

When reintroducing species into previously habited areas, it would be most effective to 

introduce individuals of an age and reproductive value that would maximize the SER (see 

Koons, 2005).  Similarly, invasion of non-native plants and animals can lead to 

substantial economic and environmental damage.  Management aimed towards 

minimizing the SER would be of interest in the management of invasive species (Keyfitz 

and Caswell, 2005; Koons et al., 2006a) and our formulae could help refine management 

agendas in these situations.  (Matlab code for example calculations can be attained by e-

mailing DNK.) 

4.  CLOSING REMARKS 

Population inertia is a measure related to population size rather than growth rate, 

and unlike the growth rate, population size is very responsive to initial population 

structure (Tuljapurkar and Lee, 1997).  Direct or indirect changes in population structure 

create transient dynamics having an effect on both short- and long-term size, which is an 

issue that is best addressed with formal perturbation measures like sensitivities.  

Sensitivities have been developed for population size (Fox and Gurevitch, 2000; 
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Yearsley, 2004).  However, we have drawn upon theory developed by Caswell (1980) to 

derive a suite of sensitivity formulae for the SER that explicitly show that population 

inertia depends on both reproductive value and population structure (Tuljapurkar and 

Lee, 1997; Eq. 13).  These formulae differ from those for population size itself because 

the SER is a ratio measuring the inertial effect of population structure and transient 

dynamics on long-term population size relative to an otherwise equivalent population in 

its asymptotically stable population structure.   

Most often, demographers and population biologists refer to asymptotic measures 

of population dynamics (e.g., r,  1λ , T) making the SER especially useful because it 

provides a direct comparison of the dynamics resulting from changes in the vital rates and 

population structure to the stable population dynamics (Fig. 1b).  Thus, the SER 

sensitivities can readily be used to examine the consequences of assuming a stable 

population structure, which is common practice.  Furthermore, we have shown that SER 

sensitivities could be used to address a large array of new questions in human 

demography, population biology, evolution, conservation, and natural resource 

management as well as many other arenas. 

Formulas relating change in underlying vital rates to change in the asymptotic 

population growth rate (e.g., Caswell 1978), transient dynamics (Fox and Gurevitch, 

2000; Caswell, 2001; Yearsley, 2004; Koons et al. 2005), and inertia in long-term 

population size (here) are all needed to better understand population dynamics from 

evolutionary and applied points of view.  We encourage further exploration of the 

behavior of population inertia in nature, as well as theoretical work on the maximization, 

minimization, and control of population inertia (e.g., Koons, 2005; Hauser et al., 2006).      
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Appendix 1. 

 Here, we establish Eq. (7), namely, 
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and the equality follows.  For the fourth equality, we have used the fact that for i > h, 

  i hλ λ< , implying ( ) 0lim
t

t i hλ λ→∞ = .  Note also that if 0,  then 0h hd c= ≠ , so the 

limit is ∞.  In this case, *
0 0h =v r , so the final fraction is interpreted as being ∞ in 

accordance with our stated convention. 
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Appendix 2.   

 We discuss in detail some technical issues regarding our derivation of the 

population inertia sensitivity formula presented in Eq. (16) of the text.  To begin, fix a 

pair (i, j) and view the matrix A as a function of ijt a=  alone (this dependence is 

indicated by writing A = A(t)).  Let I  be an open interval of real numbers such that A(t) 

is irreducible for all t I∈  and fix 0t I∈ .  We claim that the dominant right 1w and left  

1v  eigenvectors of A can be chosen in such a way that  

(A1)  1w and 1v  are both differentiable functions of t on the interval I , 

(A2)  1 0 1 0( ), ( ) 1,t t =w w  

(A3)  ' '
1 1 1 1, 0 and , 0,= =w v w v  

(A4)  1 1, 1.=w v  

Here, the prime symbol ( ' ) denotes derivative with respect to t and the equations in A3 

and A4 are understood to be identities, that is, valid for all t I∈ .  Also, for vectors v and 

w we are writing, for clarity, ,v w  instead of *v w .  (Reasons for choosing the 

eigenvectors to satisfy A1-A4 are given in the remarks below.)   

We first establish a general result.  

Lemma: Let x and y be n-dimensional real vector functions on an open real interval I .  

Assume that x is differentiable, 'x  and y are continuous, and ( ), ( ) 0t t ≠x y  for all t I∈ .  

Let 0c  and 0t  be real numbers with 0t I∈  and 0c  > 0.  There exists a differentiable 

positive real-valued function c on I  such that ( ) ', 0c =x y  and 0 0( ) .c t c=  
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Proof: We have ' '( ) ', , ,c c c= +x y x y x y , so the desired function c is a solution to 

the initial value problem ' 0c pc+ = , 0 0( )c t c= , where ', , .p = x y x y   This has a 

unique solution, namely 
0

0( ) exp ( ) 
t

t
c t c p u du = − 

 ∫ , which is evidently positive. 

 For t I∈ , let 1ˆ ( )tw  and 1ˆ ( )tv  denote the unique positive right and left 

eigenvectors of A(t) corresponding to  1( )tλ  such that 1 1ˆ ˆ( ), ( ) 1t t =w w  and 

1 1ˆ ˆ( ), ( ) 1.t t =v v   This is guaranteed by our assumption that A(t) is irreducible for all 

t I∈ .  Then 1ŵ  and 1v̂  are continuously differentiable vector functions on I . 

 Fix 0t I∈ .  Apply the lemma with 1 1 0ˆ ˆ, , 1.c= = =x w y v   Then 1 1ˆc=w w , with c 

as in the lemma, is a differentiable vector function satisfying '
1 1ˆ, 0=w v  and 

1 0 1 0ˆ( ) ( ).t t=w w   Apply the lemma again, but this time with 1 1ˆ , ,= =x v y w  

1
0 1 0 1 0ˆ ˆ( ), ( ) .c t t

−= w v   Then 1 1ˆc=v v , with c as in the lemma, is a differentiable vector 

function satisfying '
1 1, 0=v w  and 1

1 0 1 0 1 0 1 0ˆ ˆ ˆ( ) ( ), ( ) ( ).t t t t
−=v w v v   Note that 

' ' '
1 1 1 1 1 1ˆ ˆ, , , 0.c c= = =w v w v w v   Now ' ' '

1 1 1 1 1 1, , , 0= + =w v w v w v , so 1 1,w v  

does not depend on t.  Since 1
1 0 1 0 1 0 1 0 1 0 1 0ˆ ˆ ˆ ˆ( ), ( ) ( ), ( ), ( ) ( ) 1t t t t t t

−= =w v w w v v , it 

follows that 1 1, 1=w v  on I .  This establishes the claim that 1w and 1v  can be chosen 

to satisfy A1-A4. 

Remarks: In view of A1 and A4, we can use 1w and 1v  in Eq. (9) to view the SER as a 

differentiable function of t on the interval I .  Writing the differential '
1 1d dt=w w  in the 
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form 1 1

s
m mm

d a==∑w w  as in Caswell (2001:249) and taking the inner product with 1v  

of both sides, we see that 1 0a =  since '
1 1, 0=w v  (by A3).  Therefore, the derivation 

Caswell gives of the right eigenvector sensitivity formula (Eq. 14 in our paper) is valid 

for this choice of 1w and 1v  (with the remaining eigenvectors chosen arbitrarily).  Since 

'
1 1, 0=w v  (by A3), the left eigenvector sensitivity formula (Eq. 15) is valid as well.  

Finally, we point out that if a computer program automatically scales the eigenvectors so 

that 1 1, 1=w w  and 1 1, 1=w v  (as does Matlab), then, in view of A2 and A4, it gives 

the desired results when applied to our SER sensitivity formula in Eq. (16) at any fixed 

parameter value 0 .ija t I= ∈  
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Table 1.  Values of survival probability (S), local population fidelity (η , not to be 

confused with fidelity towards a mate), immigration probability (I) and fecundity (m, 

female births per female between and including age x and x + 4) for the female segment 

of the U.S. Southwest population < 50 years old, counted at 5-year intervals, and growing 

by 1 % per year.   

 Vital Ratesa 

Age x S η  I m 

     

0 0.938 0.956 - 0 

5 0.971 0.973 0.087 0.0008 

10 0.977 0.979 0.076 0.0978 

15 0.968 0.974 0.102 0.2880 

20 0.956 0.963 0.144 0.3698 

25 0.955 0.962 0.144 0.2760 

30 0.962 0.970 0.104 0.1313 

35 0.969 0.978 0.065 0.0389 

40 0.970 0.985 0.042 0.0067 

45 0.966 0.988 0.030 0.0004 

a –  Data were based on life tables presented in Rogers (1995), but adjusted to fit our example described in 

the text. 
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Table 2.  The sensitivity of population inertia to unit changes u in the initial population 

structure of the lesser snow goose population at La Perouse Bay, Manitoba, indicated by 

the directional derivative 
1 SERDu w , and the effect of the perturbation on the SER. We 

used the normalized left eigenvector [ ]T1, . 0.70 0.90 1.06 1.15 1.17nor =v , and the 

following gradient of the SER: [ ]T
SER 0.30 0.10 0.06 0.15 0.17= − −∇∇∇∇ , each 

rounded to the second decimal.    

ua 

1 
SERDu w

 Value of SER after perturbation 

[1 0 0 0 0]T -0.30 < 1 

[0 0 1 0 0]T 0.06 > 1 

[0 0 0 0 1]T 0.17 > 1 

[-1 0 0 0 0]T 0.30 > 1 

[0 0 -1 0 0]T -0.06 < 1 

[0 0 0 0 -1]T -0.17 < 1 

[0.2 0.2 0.2 0.2 0.2]T
 -0.003 < 1 

[-0.2 -0.2 -0.2 -0.2 -0.2]T 0.003 > 1 

[0.23 0.17 0.14 0.10 0.36]T
 b 0 1 

a – Rounded to the second decimal 

b – The stable age distribution 
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Figure 1.  Graphical examples of a) Keyfitz’s “population momentum” showing 

increased population size caused by an unstable population structure (solid line) relative 

to the size of an otherwise equivalent population growing according to its stable 

population structure and a stationary growth rate (dashed line), and b) “population 

inertia”, which is essentially the same phenomenon, but not restricted in definition to 

populations that eventually attain the stationary population growth rate (e.g., a growing 

population is shown here).  Measures of population inertia are given in section 2.2.   

Figure 2.  The elasticity of the Stable Equivalent Ratio (SER) to changes in 

survival probability, local population fidelity, immigration probability, and fecundity 

across age categories for the U.S. Southwest population example (section 3.1). 

Figure 3.  The relationship between life history generation time and the sensitivity 

of the Stable Equivalent Ratio (SER) to changes in a) fertility, b) sub-adult survival, and 

c) adult survival for initially stationary populations of selected avian species.  The scale 

of the y-axes differs among graphs a, b, and c.  (Life history data comes from Koons et al. 

2006b).   
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