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Summary: We estimate a Cox proportional hazards model where one of the covariates measures the level
of a subject’s cognitive functioning by grading the total score obtained by the subject on the items of a
questionnaire. A case study is presented where the sample includes partial respondents, who did not answer
some or all of the questionnaire items. The total score takes hence the form of an interval-censored variable
and, as a result, the level of cognitive functioning is missing on some subjects. We handle partial respondents
by taking a likelihood-based approach where survival time is jointly modelled with the censored total score
and the size of the censoring interval. Parameter estimates are obtained by an E-M-type algorithm that
essentially reduces to the iterative maximization of three complete log-likelihood functions derived from two
augmented datasets with case weights, alternated with weights updating. This methodology is exploited to
assess the Mini Mental State Examination index as a prognostic factor of survival in a sample of Chinese
older adults.
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1. Introduction

Composite covariates are indexes that summarize the values
taken by several variables and are often exploited as predictors
in regression modelling. In longevity studies, for example,
the Mini-Mental State Examination (MMSE; Folstein et al.,
1975) index is frequently used to assess the cognitive mental
status in older adults, and is often included as a covariate in a
Cox (1972) proportional hazards model, to detect significant
mortality differentials (Frisoni, et al., 1999; Tilvis et al., 2004;
Lee et al., 2006). The MMSE index is based on a questionnaire
whose items are tests assessing orientation, attention, imme-
diate and short-term recall, language, and the ability to follow
simple commands. During the interview, each item receives a
binary score, namely 1 for a correct answer and 0 if the answer
is not correct. The cognitive mental status of a subject is
typically assessed by comparing her/his score to a reference
cut-off, which is chosen according to a specific definition of
cognitive impairment (Lopez, et al., 2005) or on the basis of
population-based norms (as those reported, for example, by
Crum, et al., 1993), depending on the purpose of the analysis.
Accordingly, the MMSE index grades the questionnaire total
score in two levels, say 1 if the total score is greater than or

equal to a cut-off d and 0 otherwise, clustering subjects into
cognitively normal and impaired cases, respectively.

We present a case study of the Chinese Longitudinal Health
and Longevity Survey (CLHLS), where cognitive functioning
is assessed through a MMSE questionnaire, but the sample
includes partial respondents, who did not answer some or all
of the questionnaire items. The MMSE total score of partial
respondents takes the form of an interval-censored variable,
because the total score is only known to lie within a censoring
interval. The lower extreme of this interval is equal to the
partial score obtained by the subject on the observed part of
the questionnaire. The size of the censoring interval is given
by the number of the unanswered items. The MMSE index
is a piece-wise constant function of the total score, with a
jump at a cut-off point d. This index is hence missing when
the censoring interval of the total score includes the cut-off
point d (Figure 1). Given the cut-off d, the sample is therefore
partitioned into three sub-samples that respectively include
normal and impaired cases, and cases whose MMSE index
level is unknown. These three sub-samples can be geometri-
cally described by representing questionnaires as points whose
coordinates are the number of missing items and the partial
score obtained by the subject on the observed part of the
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Figure 1. An example of a subject who correctly answers
10 questions, gives 3 wrong answers and leaves 10 items
unanswered, in a MMSE questionnaire of 23 binary items.
The subject’s total score is interval-censored between a = 10
and b = 20. The piece-wise constant function describes the
values taken by an MMSE index that grades the total score
according to a cut-off d = 12. The index is missing because d
is included in the censoring interval.

questionnaire. In this two-dimensional questionnaires space,
subjects with a MMSE index level 0 (1) are included in a
lower (upper) triangle, while subjects with a missing MMSE
index are included in a parallelogram. The sizes of the three
polygons depend on the cut-off d that have been chosen to
specify the index. Figure 2 depicts the partitioning of the
CLHLS questionnaires, showing whether a MMSE index is
missing or takes a level 0/1, in an example where the cut-off
d is equal to 12.

Because the MMSE index of partial respondents can be
missing, we face with a missing value problem when this index
is included in a Cox model as a covariate.

In gerontology studies that investigate the impact of the
MMSE index on survival, two are the most popular ap-
proaches that are pursued to handle partial respondents.
Referred to as complete cases (CC) analysis, a first approach
is based on discarding subjects with a missing index from
the study. Under a CC analysis, all the subjects with ques-
tionnaires in the parallelogram of the questionnaires space
are discarded. The effect of the index is thus estimated by
comparing subjects with questionnaires in the lower triangle
and cases included in the upper triangle. Estimates provided
by a CC analysis can be seriously biased, if the excluded
subjects are not a random sample of the data, i.e., if the data
are not missing completely at random (MCAR hypothesis;
Rubin, 1976). In our case, it is difficult to motivate a MCAR
assumption, because a missing MMSE index is the outcome
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Figure 2. The number of questionnaires in the CLHLS
dataset, clustered by the number of missing items and the
partial score obtained by the subject on the observed part
of the questionnaire. If the MMSE index grades the total
score according to a cut-off d = 12, questionnaires in the
lower (upper) triangle receive an index level 0 (1), while the
index level is missing for all the questionnaires included in the
parallelogram.

of a disadvantageous combination of the cut-off chosen for
grading the total scores, the number of missing items and the
partial score of a questionnaire.

A second approach is based on counting missing answers
as incorrect answers (missing-as-incorrect; MAI). By pursuing
a MAI analysis, the lower triangle and the parallelogram of
the questionnaire space are merged in one class of cognitively
impaired cases. Results from a MAI analysis are difficult to
interpret. Beside cognitive impairment, several can be the
factors that lead to missing items in a questionnaire, including
poor physical health, depression and anxiety. The effects
of these factors are mixed with cognitive functioning when
missing answers are counted as incorrect answers.

As a compromise between discarding partial respondents
and including them as impaired cases, we work with a likeli-
hood function where questionnaires contribute with different
terms, according to the complete or partial information they
provide. We essentially proceed along the general likelihood-
based (LB) strategy that has been outlined by Herring et al.
(2004), to estimate a Cox model with non-ignorable missing
covariates. Within this methodological framework, we present
a parsimonious model where, conditionally on the fully ob-
served covariates x, the survival outcome t is jointly modelled
with both the number m of missing items and the censored
total score z obtained by a subject on the MMSE question-
narie. This joint distribution, say p(t,m, z|x), is specified as
the product of three one-dimensional conditional distribu-
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tions. Specifically, a binomial regression model is exploited
to specify the missing value mechanism, i.e., the conditional
distribution of m, given the subject’s profile (t, z, x). A Cox
proportional hazards model is considered to specify a semi-
parametric conditional distribution of the survival outcome t,
given (z, x). A Beta-binomial regression is finally placed on
the conditional distribution of the total score z, given the
covariates x. Parameter estimation is carried out by a E-
M-type algorithm, which essentially reduces to the iterative
maximization of three complete log-likelihood functions on
two augmented datasets with case weights, alternated with
weights updating.

The rest of the paper is organized as follows. After report-
ing some details on the CLHLS data that stimulated this
study (Section 2), modelling assumptions on the observed
and missing data are outlined in Section 3. The practical
implementation of the proposed LB approach is discussed
in Section 4. In Section 5, we show the results provided by
the proposed method on the CLHLS data and compare them
with those obtained by CC- and MAI-based methods. Final
comments are summarized in Section 6.

2. Data

The CLHLS data that motivated this article are drawn from
the Study No. 3891 of the Inter-University Consortium for
Political and Social Research (www.icpsr.umich.edu; Zeng et
al., 2002). The study was carried out on subjects aged 80 and
above in 1998 and in two subsequent follow-up waves in 2000
and 2002. We have left-truncated, right censored survival data
on 7908 subjects with a number of fully observed covariates,
collected at the entry time: gender, type of residence (rural
or urban), whether the subject is sedentary or active, and
limits in activities of daily living (ADL; six activities including
bathing, dressing, eating, indoor transferring, toileting and
continence), categorized into three levels: no, one, two or more
limits.

The covariate of main interest in this study is the MMSE
index, which is computed from the total score obtained by a
subject on the Chinese version of the MMSE questionnaire.
We concentrate on the assessment of cognitive impairment as
a prognostic factor and, accordingly, only the MMSE index
obtained by subjects upon entry into the study is included in
the analysis.

With respect to the standard 30-items MMSE (Folstein et
al., 1975), the 23-items Chinese MMSE adopts some appropri-
ate adjustments to make the questions more understandable
and answerable among ordinary oldest old Chinese, the ma-
jority of whom are illiterate (Zeng and Vaupel, 2002). For in-
stance, the Chinese MMSE asks respondents to name as many
foods as possible (in one minute) instead of writing a sentence,
which is a quite difficult task for the elderly. Overall, re-
spondents were asked 5 orientation related questions (naming
the current time, animal year, season, festival, and county),
one naming foods question, 6 word recall questions (3 words
are mentioned and respondents are asked to repeat them
two times), 4 calculations questions (respondents are asked
to subtract 3 from 20, then 3 from the previous resulting,
and so on), 3 language questions (repeating a sentence and
naming simple items such as pen and watch that are shown

to the respondents), 1 drawing question, and 3 comprehension
questions (respondents are asked to take paper in their right
hand, fold it, and then put it on the floor).

3. Modelling

3.1 Likelihood-based analysis

In the present study, the data are available for n subjects
as vectors (ei, yi, δi,xi, zi,mi), i = 1 . . . n. For each subject
i, ei and yi are respectively the entry and exit time, while
δi is a failure indicator (δi = 1 if a death occurred at yi,
and 0 otherwise) and xi is a row profile of K fully observed
covariates. Furthermore, zi = (zi1 . . . zij . . . ziJ) is a row
vector of binary covariates, some of which may be missing,
where zij = 1 if subject i knows the correct answer to item j
in the MMSE questionnaire, and 0 otherwise. Finally, mi is
a vector of missing indicators, say mij = 1, if zij is missing
and 0 otherwise.

For each questionnaire i, we partition the items set {1 . . . J}
into the set M(i) = {j : mij = 1} of the missing items
and the set O(i) = {j : mij = 0} of the observed items.
Accordingly, zM(i) denotes the vector of the mi· =

∑J
j=1mij

missing scores, while zO(i) indicates the vector of the J −mi·
observed scores. Furthermore,

zobs
i· =

∑
j∈O(i)

zij =

J∑
j=1

zij(1 −mij), and

zmis
i· =

∑
j∈M(i)

zij =
J∑
j=1

zijmij

respectively denote the partial and the unobserved scores
obtained by the ith subject. The total score zi· = zobs

i· + zmis
i·

is hence an interval-censored variable, with censoring interval
[zobs
i· , zobs

i· +mi·].
Information provided by zi is summarized by the MMSE

index

D(zi) = D(zi·) =

{
1 zi· > d

0 zi· < d

which is a piece-wise constant function of the total score zi·,
with jump at the cut-off d. In the presence of missing items,
only the partial score zobs

i· is known and, as result, index D is
equal to 1 if zobs

i· > d, it takes the value 0 if zobs
i· +mi· < d,

and it is otherwise missing (Fig. 2).
Time up to death t is modelled by a semi-parametric Cox

proportional hazards model. Precisely, we assume that the
survival time of subject i is drawn from a positive random
variable T with hazard function

h(t|xi,zi) =h0(t) exp(β0D(zi) + xiβK) (1)

=h0(t)ri(β)

where h0(t) is a nonparametric baseline hazard function, β =
(β0,βK) is a vector of fixed effects to be estimated and ri(β)
is a parametric hazards ratio. Accordingly, the cumulative
hazard is given by H(t|xi, zi) = H0(t)ri(β) where H0(t) =∫ t
0
h0(τ)dτ is the baseline cumulative hazard.



4

In addition to the distribution of survival time, we intro-
duce the parametric conditional distribution

p(mi|zi; α) = p(mi|ei, yi, δi,xi,zi; α) (2)

of a subject’s missingness pattern, known up to the parame-
ters α. We also introduce the conditional distribution

p(zi|γ) = p(zO(i), zM(i)|xi; γ) (3)

of the subject’s scores, some of which can be missing, driven
by the unknown parameters γ.

Following Herring and Ibrahim (2001), if the censoring time
is non-informative and the censoring time distribution does
not depend on the missing values, the likelihood contribution
of subject i is proportional to

Li(θ) =
∑

zM(i)

p(mi|zi; α)Li(β|D(zi))p(zi|γ), (4)

where θ = (α,β,γ, h0) denotes all the parameters to be
estimated and

Li(β|D(zi)) = (h0(yi)ri(β))δi exp(H0(ei)−H0(yi))
ri(β) (5)

is the likelihood contribution of a left-truncated, right-
censored subject, as derived from the Cox model (1).

In this study, the parameter of main interest is the effect
β0 of being cognitively normal, as measured by the MMSE
index. Parameters α and γ are instead treated as nuisance
parameters. Because parameter estimation may become too
computationally intensive and unstable with many nuisance
parameters, we need to employ strategies to reduce the
number of nuisance parameters in the specification of both
the missing data mechanism p(mi|α) and the score vector
distribution p(zi|γ). Following Ibrahim and Lipsitz (1996),
the two joint distributions could be, for example, modelled
as a product of one-dimensional conditional distributions, a
strategy that greatly reduce the number of nuisance param-
eters. Unfortunately, this idea is still unpractical in our case,
because of the large dimension of the MMSE questionnaire
(J = 23). In the following, we present an alternative parsimo-
nious specification of the two distributions, which is based on
a binomial regression model for the missing data mechanism
and a Beta-binomial regression model for the distribution of
the vector of the questionnaire scores.

3.2 The missing value mechanism

An outcome often reported by the literature (Herzog and
Wallace, 1997; Hayward and Gorman, 2004; Zimmer, et al.
2002) is the observation that missing scores on tests of cog-
nitive impairment occur more frequently among cognitively
impaired and/or physically disable patients. Motivated by
this, we consider a binomial regression model where the
expected number of missing items depend on the observed
data and on cognitive impairment, as measured by the MMSE
total score.

For each subject i, we specifically assume that the miss-
ingness pattern mi depends on the scores vector zi through
the individual total score zi· and that, conditionally on the

observed data, the coordinates of vector mi are i.i.d., i.e.

p(mi|ei, yi, δi,xi,zi; α) =p(mi|ei, yi, δi,xi, zi·; α)

=

J∏
j=1

p(mij |ei, yi, δi,xi, zi·; α)

=pi(α)mi·(1 − pi(α))J−mi· , (6)

where pi(α) = p(mij = 1|α) is the subject-specific con-
ditional probability of a missing item. We complete the
specification of the binomial regression model by assuming
a canonical link transformation

logitpi(α) = ηi(α),

where ηi(α) is a linear predictor that is defined on the basis
of the variables (ei, yi, δi,xi, zi·).

3.3 The MMSE score distribution

Studies on the same CLHLS data considered in this paper
have shown significant gender differentials in cognitive impair-
ment (Zhang, 2006) and a strong link between cognitive func-
tioning and limits in daily activities (Gu and Qiu, 2003). A
Beta-binomial regression is a parsimonious model that allows
us to include the effects of these covariates and simultaneously
accounts for correlated scores. Specifically, we assume that
the single MMSE binary scores obtained by the ith subject
are exchangeable Bernoulli random variables, with common
marginal correlation ρi and success probability drawn from
a Beta density with mean πi, where πi = Ezij , j = 1 . . . J ,
is the marginal common mean of the J scores. We exploit a
logit link for π and a Fisher’s z-transform for ρ, as follows

log
πi

1 − πi
=γµ,0 + xiγµ,K

log
1 + ρi
1 − ρi

=γρ, (7)

where γ = (γµ,0,γµ,K , γρ) are parameters to be estimated.
Under this setting, the distribution of the score vector ob-
tained by subject i is given by:

p(zi|γ) =

∫ 1

0

pzi·(1 − p)J−zi·b(p|πi, ρi)dp

=
B(πi(1−ρi)

ρi
+ zi·,

(1−πi)(1−ρi)
ρi

+ J − zi·)

B(πi(1−ρi)
ρi

, (1−πi)(1−ρi)
ρi

)
, (8)

where

b(p|π, ρ) =
pψ(π,ρ)−1(1 − p)ξ(π,ρ)−1

B(π, ρ)

is the Beta distribution with parameters

ψ(π, ρ) =
π(1 − ρ)

ρ

ξ(π, ρ) =
(1 − π)(1 − ρ)

ρ

and B(π, ρ) =
∫ 1

0
b(p|π, ρ)dp is the Beta function.



5

4. Data augmentation and parameter estimation

Parameter θ can be computed by the E-M-type algorithm
suggested by Herring et al. (2004), following the approxi-
mation arguments provided by Herring and Ibrahim (2001).
This algorithm reduces to the iterative evaluation of a set of
weighted score equations, alternated with weights updating,
and can be conveniently illustrated by using the counting
process notation. Using this notation, the information con-
tained in (ei, yi, δi) is represented by the bivariate process
(Ni(t), Ri(t)), where the death processNi(t) = 1 if the subject
dies at or before time t and 0 otherwise, while the risk process
Ri(t) = 1 if the subject is in the study at time t and 0
otherwise.

At each step of the iteration, the estimate θ̂ available from
the previous iteration is exploited to compute the predictive
distribution of the missing scores in the ith case, namely

w(zM(i)|θ̂) =
p(mi|zi; α̂)Li(β̂|D(zi))p(zi|γ̂)∑

zM(i)
p(mi|zi; α̂)Li(β̂|D(zi))p(zi|γ̂)

. (9)

Parameter estimates are then updated by solving the follow-
ing set of weighted score equations

ū(θ|θ̂) =
n∑
i=1

∑
zM(i)


ui(β0|D(zi))
ui(βK |D(zi))
ui(h0|D(zi))
ui(α|zi)
ui(γ|zi)

w(zM(i)|θ̂) = 0,

(10)
where

ui(β0|D(zi)) =

∫ ∞

0

(
D(zi) − D̄w(β, u)

)
dNi(u)

ui(βK |D(zi)) =

∫ ∞

0

(
xi − X̄w(β, u)

)
dNi(u)

ui(h0|D(zi)) =dNi(t) − h0(t)ri(β̂)Ri(t)

ui(α|zi; θ̂) =
∂

∂α
log p(mi|zi; α)

ui(γ|zi; θ̂) =
∂

∂γ
log p(zi|γ)

while

D̄w(β, u) =

∑n
i=1

∑
zM(i)

w(zM(i)|θ̂)D(zi)Ri(u)ri(β)∑n
i=1

∑
zM(i)

w(zM(i)|θ̂)Ri(u)ri(β)

X̄W (β, u) =

∑n
i=1

∑
zM(i)

w(zM(i)|θ̂)xiRi(u)ri(β)∑n
i=1

∑
zM(i)

w(zM(i)|θ̂)Ri(u)ri(β)
.

The first two components of (10) are theK+1 score equations
suggested by Herring and Ibrahim (2001) to update the pa-
rameters of a Cox model with missing covariates. These equa-
tions provide an updated estimate β̃ that can be exploited in
ui(h0|D(zi)) to update the baseline hazard and computing a
new Breslow’s (1974) estimate H̃0 of the cumulative hazard.
The last two components of (10) separately provide us with
the updated estimates α̃ and β̃. Estimate θ̃ = (β̃, H̃0, α̃, β̃) is
then used to update the weighting schemes (9). The algorithm
is iterated up to convergence of the estimates.

Significant simplifications arise in the practical implemen-
tation of this algorithm, under the parsimonious specification

considered in this paper. Under the modelling assumption
(5),(6) and (8), the predictive weights depend on zi only
through the totals zobs

i· and zmis
i· , as follows

w(zM(i)|θ̂) = w(zmis
i· |zobs

i· ; θ̂) =

p(mi|zobs
i· +zmis

i· ;α̂)Li(β̂|D(zobs
i· +zmis

i· ))p(zobs
i· +zmis

i· |γ̂)∑mi·
j=0 (mi.

j )p(mi|zobs
i· +j;α̂)Li(β̂|D(zobs

i· +j))p(zobs
i· +j|γ̂)

.

As a result, the last two components of the score vector (10)
reduce to

ū(θ|θ̂) =

n∑
i=1

mi·∑
j=0

(
ui(α|zi)
ui(γ|zi)

)
wij(θ̂) = 0, (11)

where wij(θ̂) = w(zmis
i· = j|zobs

i· ; θ̂). The roots of the equation
above can be computed by separately fitting a binomial
regression model and a Beta-binomial regression model on an
augmented dataset D1, obtained by including all the subjects
with no missing items, each weighted by w = 1, and replacing
each partial respondent i with mi· + 1 pseudo-profiles, each
given a total MMSE score zobs

i· + j and a case weight wij(θ̂).
The first two components of (10) reduce to

ū(θ|θ̂) =

n∑
i=1

1∑
l=0

(
ui(β0|D = l)
ui(βK |D = l)

)
Wil(θ̂) = 0 (12)

where

Wil(θ̂) =

{∑
j:zobs

i· +j<d wij(θ̂) l = 0∑
j:zobs

i· +j>d wij(θ̂) l = 1.
.

Estimates β̃ can be hence found by exploiting an augmented
dataset D2, obtained by including all the subjects with an
observed MMSE index D, each weighted by 1, and replacing
each subject i with a missing MMSE index with two pseudo-
subjects with composite index equal to 0 and 1, respectively
weighted by Wi0(θ̂) and Wi1(θ̂). Finally, the baseline hazard
can be updated as follows:

h̃(t) =

∑n
i=1 dNi(t)∑n

i=1

∑1
l=0Ri(t)ri(β̃)Wil(θ̂)

.

As pointed out by Herring and Ibrahim (2004), variance
estimation of the parameters of interest in this algorithm is
complicated because of the large dimension of the vector of the
hazard estimates. Following Goetghebeur and Ryan (2000),
they suggest to impute missing data by sampling values of the
missing variable, to obtain naive point estimates and variance
estimates of the parameter of interest. Then the variance of
the EM estimator is obtained as a weighted sum of the mean
of the imputation variances and the empirical variance of the
imputation point estimates, with weights 1 and m, where m
is the number of imputation used. In our case, values of D
can be imputed by sampling values of the total latent score
zmis
i· from the predictive distribution

p(zmis
i· = j|zobs

i· ,xi, γ̂) =(
mi·
j

)B(j+zobs
i· +π̂i

1−ρ̂i
ρ̂i

,J−j−zobs
i· +(1−π̂i)

1−ρ̂i
ρ̂i

)

B(zobs
i· +π̂i

1−ρ̂i
ρ̂i

,J−mi·−zobs
i· +(1−π̂i)

1−ρ̂i
ρ̂i

)
,

(13)

where γ̂ is the point estimate of γ that is obtained at last
iteration of the algorithm.
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Figure 3. CC (point-up triangles), MAI (point-down tri-
angles) and LB (squares) estimates of the effect of being
cognitively normal, estimated by a battery of Cox models that
include different definitions of the MMSE index, according to
a sequence of cut-off points. Black (white) symbols indicate
significant (not significant) estimates at a 95% confidence
level. Segments represent the 95% confidence intervals of LB
estimates.

5. Results

The structure of the missing value problem considered in
this paper depends on the choice of the cut-off point d that
specifies the MMSE index, as illustrated in the Introduction.
Specifically, the partitioning of the questionnaire space (Fig-
ure 2) in subsamples of normal, impaired and missing cases
depends on d. The outcomes of alternative estimation strate-
gies can be therefore conveniently compared by repeating the
analysis for a sequence of different cut-offs. We have thus
considered a battery of 22 MMSE indexes, as defined by a
sequence of cut-off points (d = 2, 3, . . . 23). These indexes
have been then separately included among the covariates of 22
Cox models. The resulting battery of Cox models have been
estimated under a CC, MAI and LB analysis. For each cut-
off d, log-hazards differences between normal and impaired
subjects are depicted in Figure 3, while Figure 4 shows the
point estimates of the effects of the additional covariates
included in the Cox model. Regardless of the estimation
method and the MMSE cut-off point, the estimated effect of
the MMSE index is never positive, indicating that, overall, the
mortality risk among normal subjects is not higher than the
risk experienced by impaired subjects, even after adjusting for
gender, type of residence, physical disabilities and life style.

Significant differences however appear between LB, MAI
and CC estimates, when the cut-off takes lower values, say
2 6 d 6 12. These differences decrease as the cut-off point
increases. Partial respondents play a major role in the inter-
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Figure 4. The effect of a number of covariates on survival,
as estimated by a battery of Cox models that include different
definitions of the MMSE index, according to a sequence of
cut-off points. Results under a MAI approach (dotted lines),
a CC analysis (dashed lines) and a LB strategy (solid lines).

pretation of these differences. Under a MAI analysis, partial
respondents are treated as impaired cases if their partial score
is less than the threshold d. For lower values of the cut-
off point, most of these partial respondents are discarded
by a CC analysis. When these subjects are excluded from
the analysis, the significant effect of cognitive impairment, as
detected by a MAI analysis, becomes not significant under
a CC analysis. This implies that lower scores obtained on
questionnaires with many missing items (the parallelogram of
the questionnaire space) are associated with higher mortality
risks than those experienced by subjects who obtained lower
scores on complete questionnaires (the lower triangle in the
questionnaire space). For lower values of the cut-off point,
in summary, MAI estimates are significant because they are
based on a overestimated number of impaired cases, while CC
estimates are not significant because they are based on the
exclusion of subjects with a high mortality risk. As d increases,
partial respondents with lower scores are progressively re-
placed in the sample by a CC analysis, CC estimates become
significant and differences between MAI and CC estimates
decrease.

LB estimates appear as a reasonable compromise be-
tween the outcomes of the MAI and CC analysis. Estimates
smoothly decrease as the cut-off increases, indicating that a
value of the MMSE total score in the neighborhood of 10 can
be already used as a prognostic cut-off to detect significant
risk differentials. The critical cut-off d = 8, after which the
LB-based effect is significant, is lower than that estimated by
a CC analysis (d = 12), because the LB analysis appropriately
includes those subjects that are excluded by a CC analysis.
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Figure 5. Effects of the fully observed covariates on the
MMSE total score, as estimated by a Beta-binomial regression
model, including pairwise items correlation, for each MMSE
cut-off point, under a LB estimation strategy.

Simultaneously, the LB-based effect of the MMSE index is
less strong than than predicted by a MAI procedure, where
all the partial respondents are treated as impaired cases.

Nevertheless, the LB estimation method essentially con-
firms the effects of gender, type of residence, physical dis-
abilities and life style, as estimated by pursuing a CC or a
MAI procedure (Figure 4). The individual physical status,
as measured by ADL limits and life style, has a stronger
impact on survival than the type of residence. As expected,
males have a higher mortality risk than females. Viewed as
functions of the threshold d, LB and MAI estimates appear
smoother than those resulting from a CC analysis. It is
possible that cut-off-specific exclusions and replacements of
partial respondents affect the pattern of CC estimates.

Figures 5 and 6 show the estimates of the nuisance param-
eters that are exploited by the LB method to weight partial
respondents, for each cut-off d.

Figure 5 shows, in particular, the estimates of the Beta-
binomial regression model that has been assumed for the
distribution of the MMSE total score. After adjusting for the
items correlation within questionnaires, males in the sample
are less cognitively impaired than females, confirming the
results on gender differentials found by Zhang (2006) on the
same CLHLS data used in this paper. In keeping with the
outcomes reported by Gu and Qiu (2003), urban residents are
less cognitively impaired than rural residents, while physical
disabilities and life styles negatively influence a subject’s
cognitive functioning.

Figure 6 shows the estimates of the parameters that drive
the missing value mechanism (2), as specified by a binomial
regression model whose covariates include the survival out-
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Figure 6. Effects of the fully observed covariates, the
MMSE total score and the follow-up duration on a subject’s
probability to leave a questionnaire item unanswered, as
estimated by a binomial regression model, for each MMSE
cut-off point, under a LB estimation strategy.

come (as measured by the follow-up duration) and the MMSE
score, in addition to the fully observed covariates. Although
follow-up duration was expected to be an important factor
for the probability of coping with MMSE items, it does not
seem to play a significant role in our case study. On the
contrary, the negative effect of the MMSE score indicates
that missing answers occur more frequently among cognitively
impaired subjects, as expected. Finally, the influence of the
fully observed covariates on the weighting schemes of partial
respondents decreases as the cut-off value increases, reflecting
the convergence of the LB, MAI and CC outcomes, shown by
Figure 3.

6. Discussion

Motivated by a specific case study, we have presented a
likelihood-based strategy to estimate the Cox model when
one of the covariates is a piece-wise constant function of the
total score obtained by a subject on a questionnaire, but some
of the questionnaires in the sample are partially observed. We
have shown that this particular missing value problem can be
naturally handled by a likelihood-based approach where the
survival outcome is jointly modelled with the missing value
mechanism and the total score distribution. A parsimonious
specification of the latter two models greatly reduces the num-
ber of nuisance parameters and the computational complexity
of the estimation algorithm, through an appropriate aug-
mentation of the observed data. The proposed LB approach
enhances the outcomes that are obtained when subjects with
missing values are removed from the analysis or when missing
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answers are counted as incorrect answers. The signs of the nui-
sance parameters are in keeping with the findings reported by
the literature about both the relationship between cognitive
impairment and physical disabilities, and the factors that are
influential in the occurrence of unanswered items in a MMSE
questionnaire.

Although encouraging, the outcomes of a LB strategy
strongly depend on the assumptions that have been made
on the distributions of both the missing and observed data.

Through this paper, we have essentially assumed that the
items of a MMSE questionnaire are homogeneous. Specifically,
we have assumed that the scores on the single items are
exchangeable, placing a Beta-binomial distribution on the
questionnaire total score. The inclusion of a Beta-distributed
random effect simultaneously allows for unobserved hetero-
geneity between subjects and correlated scores within the
questionnaire of each subject, strategically compensating for
unobserved covariates (e.g., educational level) that could be
influential in the measurement of cognitive functioning. On
the other side, this model explicitly assumes that the success-
ful coping with a questionnaire item does not depend on the
item. Because more flexible models would typically involve a
greater number of nuisance parameters and our data did not
show evidence of heterogeneity in items difficulties, we have
taken a Beta-binomial regression as a reasonable compromise
between realism and parsimony.

Items homogeneity was also assumed in the specification
of the missing value mechanism. Conditionally on cognitive
impairment, we have assumed that the pattern of the unan-
swered items is drawn at random by a Binomial distribution.
This can be a shortcoming when factors such as fatigue or
anxiety are responsible for a dependence structure between
answered and unanswered items. The availability of detailed
information on the MMSE interview would allow to check the
independence assumption and perhaps to try more complex
models. On the basis of the available data, a binomial regres-
sion model parsimoniously captures the relationship between
the number of missing items and the cognitive impairment of
a subject, as measured by the MMSE total score.

Although with these limitations, a LB analysis allows for a
sharper validation of the MMSE index as a prognostic factor,
compared to popular protocols that are based upon either
the exclusion or the deterministic classification of partial
respondents.
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