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ABSTRACT 
 
Simple series systems of identical components with spare parts are considered. It is 
shown that the cumulative distribution function of a system failure time tends to a step 
function as the number of components increases and resources can be shared. An ex-
ample of ‘continuous resources’ is also described. The time-sharing strategy for 
standby systems is investigated. It is proved that an optimal rule for a system of 
standby components with increasing failure rates is the single switching performed at 

2/ta = , where t  is a mission time. 
 
Keywords: resource, spare part, convergence in distribution, aging, optimal switching 
strategy. 
 
1. INTRODUCTION 
 
In this paper, we consider performance of systems with initial (at )0=t  resource of 
some kind. The simplest example of a resource is the spare parts for an operating 
component (standby reserve). Each failure of an operating component is ‘repaired’ by 
the substitution of the spare one. The failure of a system occurs when there are no 
available spare parts for substitution. In a general setting, the run out resource in-
creases in time and the failure occurs when it reaches some deterministic or random 
value. If a system consists of a number of components with resources that can be 
shared, then sharing increases reliability of such systems. When a large number of 
identical components share resources, some interesting facts can be observed. In Sec-
tions 2 and 3, specifically, we show that, as the number of components increases, the 
failure time of a series system tends to be ‘less random’ in the sense to be defined 
later. This means that the corresponding reliability of a system under certain assump-
tions can be extremely high (close to 1) in the interval ),0[ m , where m  is the mean 
lifetime of a component, and then falls down sharply to 0  outside this interval. We 
believe that this property can be useful in designing reliable systems.  
     When considering performance of standby systems with aging components, the 
following question arises: will the switching from one component to another prior to 
its failure increase the performance characteristics of the whole system? We under-
stand here aging as increasing of the corresponding failure rate or as decreasing of a 
performance characteristic of a component and show in Sections 4 and 5 that such 
simple switching strategies exist. Specifically, it turns out that switching at 2/ta = , 
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where t  is a mission time, maximizes the probability of the system’s performance 
without failures of components in ],0[ t . The strategy that maximizes the mean time to 
this event is also suggested. 
 
2. SHARED SPARE PARTS 
 
Consider a series system of n  i.i.d. components with the Cdf )(tFc  Assume that there 
are 0≥in  spare parts (‘cold’ standby) for the component nii ≤≤1, . Assume that the 
replacement of the failed component is instantaneous. The system fails when one of 
the components fails and there are no more spare parts allocated to this component. 
The survival function ( FF −≡ 1 ) of our series system is defined in this case as 

∏=
n

n
c tFtF i

1

)( ))()( ,                                               (1) 

where )()( tF in
c  is the in -fold convolution of )(tFc  with itself  and )()()0( tFtF cc ≡ . 

     It is clear from obvious probabilistic considerations [10] that the survival probabil-
ity increases if spare parts can be shared , i.e., 

0),()( ≥≥ ttFtFs , 

where )(tFs  denotes survival probability of the system with shared resources. For the 
specific exponential case, this obvious fact can be illustrated by the following remark-
able asymptotic considerations:  
 
Example 1.  Let }exp{1)( ttFc λ−=  and nimni ,...,2,1, ==  . Then  

∑−=
m i

m
c i

tttF
0

)(

!
)(}exp{)( λλ                                        (2) 

and equation (1) becomes  
nm

c tFtF ))(()( = .                                               (3) 

It is clear that for every fixed 0>t  and 0≥m  the survival function vanishes: 
0)( →tF  as  ∞→n . On the other hand, assume now that resources are shared. Then 

the corresponding survival probability is  

∑−=
nm i

s i
tntntF

0 !
)(}exp{)( λλ                                      (4) 

Obtaining the limit values for 1≥m  and every fixed 0>t  in this case is not so 
straightforward. Let for simplicity 1=m . As equation (4) defines the Erlangian Cdf 
(the sum of 1+n  i.i.d. exponentially distributed random variables with mean λn/1 ), 
the central limit theorem can be applied, which gives for ∞→n : 
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where, as usually, )(⋅Φ  denotes the Cdf of the standard normal distribution )1,0(N . 
As the variance tends to 0  with ∞→n , relationship (5) means that )(tFs  converges 
uniformly to the step function: 

⎩
⎨
⎧

≥
<

=→
λ
λ

/1,1
/1,0

)()(
t
t

tItFs   ,                                    (6) 

which, in fact, means that  the time to failure of our system with shared spares con-
verges in distribution to a non-random λ/1 . This conclusion surprisingly differs from 
the case of the not shared resources. It is obvious that this result is valid for 1>m  and 
the rate of convergence in (5)-(6) increases with m . It is also clear that the assump-
tion of identical components is essential for sharing of resources, although a generali-
zation to the case when the spare parts for different components are non- identical but 
interchangeable can be also considered (see the next section).  
 
Remark 1. Relationships (6) is a meaningful, practical interpretation of the well-
known fact that as ∞→n : 

0... 2
21 →=⎥⎦

⎤
⎢⎣
⎡ +++

nn
XXXVar n σ , 

where ,...2,1, =iX i  are i.i.d. random variables with variances σ . 
 
3. SHARED CONTINUOUS RESOURCE 
 
Consider, firstly, one component that starts operating at 0=t . Assume that in the 
process of production (engineering applications) or birth (biological applications) it 
had acquired an initial unobserved resource R [3,4]. For mechanical or electronic 
items, for instance, it can be a ‘distance’ between the initial value of the key parame-
ter and the boundary that defines a failure of the component. It is natural to assume 
that it is a continuous random variable with the Cdf )(0 rF (the discrete case, as in the 
previous section, can be considered as well): 

)()(0 rRPrF ≤= .                                                (7) 

A battery charged to an unobserved level or the ‘vitality’ of an organism [11] can be 
considered as relevant examples. A similar notion of a random resource (hazard po-
tential) was considered in references [2,7]. Suppose for simplicity that for each reali-
zation of R  the component’s remaining resource is monotonically decreasing with 
time. Therefore, the run out resource, to be called wear, monotonically increases. The 
wear in ),0[ t  can be defined as 
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∫=
t
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0
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where )(tw  denotes the rate of wear. The failure occurs when the wear )(tW  reaches 
R . Denote the corresponding random time by T . It is clear that 

))(())(()( 0 tWFtWRPtTP =≤≡≤ .                               (9) 

Therefore, we arrive at a conclusion that this specified survival model can be inter-
preted in terms of accelerated life model [1]. The generalization to the case of the 
monotonically increasing random wear process 0, ≥tWt  is straightforward [3,5].  
     Consider now the series system of n  components of the described type with shared 
resources: 

nitWFtF iii ,...,2,1));(()( 0 == .                                    (10) 

Thus, the resources are ‘consumed’ with the ‘accumulated’ rate ∑
n

i tw
1

)(  and the fail-

ure of the system occurs when the increasing ∑
n

i tW
1

)(  reaches the accumulated re-

source ∑
n

iR
1

. Denote the Cdf of  ∑
n

iR
1

 by )(0 tF Σ . Then, similar to equation (9), the 

lifetime Cdf of this system with shared resources is given by  
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1

0 )()( .                                          (11) 

Equation (11) states the general result for the series system with shared resources. The 
corresponding survival probability is obviously larger than for the case of individual 
resources. To proceed further and to obtain relationships similar to (5)-(6), we must 
first consider the case of identically distributed lifetimes of components with constant 
in time rates )(tw , i.e., )()( 0 wtFtFi = . Then, similar to relationship (5), for ∞→n : 
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µ ,                                  (12) 

where µ  and σ  are the mean and the standard deviation, defined by the Cdf )(0 wtF . 
Indeed, the rate of wear (resource consumption) for the system, which can be consid-
ered as some integrated component, is now nw . As the pattern of the overall resource 
consumption does not matter, let the resource of each original component be con-
sumed consequently with this rate, thus forming the sum of  i.i.d. random variables 
with the Cdf )(0 nwtF  each. Therefore, the probabilistic interpretation is similar to the 
one of the previous section. In addition, (12) can be easily adjusted to the case of dif-
ferent iw  because there will be still the sum of i.i.d random variables (except the last 
cycle).  
     In the next section we will consider sharing of resources of a different type. 
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4.  OPTIMAL ‘TIME SHARING’ FOR A STANBY SYSTEM WITH AGING 
COMPONENTS 
 
Consider a standby system of two i.i.d. components. Assume that the failure rate of a 
component )(tλ  is increasing. Therefore, the corresponding Cdf )(tFc  belongs to the 
IFR class of distributions. The first component starts operating at 0=t  and is instan-
taneously switched to the second one upon its failure. Assume now that switching 
from the operating component to the standby one can be instantaneously performed at 
any instant of time. The former operating component then starts to be a standby one 
and vice versa. We will describe now a simple optimal switching strategy that maxi-
mizes the probability of system’s performance without any failures of components in 
the given time interval. It is clear that the strategy of this kind cannot change the 
probability of system’s failure (when both components are failed), but an extension of 
the operation period without failures of components can be very important in various 
applications (see also the next section) 
     Denote by ),(1 tSP  the probability of the system’s performance without failures of 
components in ],0( t  under an arbitrary switching strategy .S  Let ),(1 taP  denote this 
probability with only one switching at a . Then, it is easy to prove that 

⎟
⎠
⎞

⎜
⎝
⎛ == ttaPtSPS ,

2
)),((max 11 .                                    (13) 

Indeed, assuming only one switching, the following minimum should be obtained: 
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which simply follows from  
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After differentiating the sum of integrals in (14) and equating the result to zero, we 
arrive at the following equation with respect to an optimal a : 

)()( ata −= λλ .                                                  (15) 

Equation (15) has a trivial unique solution 2ta =  for increasing functions. It can be 
also easily seen that, due to additivity of integrals, additional switching cannot im-
prove this result if the total time of functioning of each component is 2t . 
     Thus, the described strategy maximizes the probability of system’s performance 
without failures of components. We will now derive a strategy that maximizes the 
mean time to the first failure of a component in this system. Denote by tS∆  the fol-
lowing strategy. Assume that the first component functions in ],0( t∆ , then it is 
switched to the second component, which functions in ]2,( tt ∆∆ , then again the first 
component functions in ]3,2( tt ∆∆ , etc. Denote by )(,)( tFt tt ∆∆λ  the corresponding 
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failure rate and the Cdf of time to the first failure. As )(tλ  is increasing, the following 
piecewise constant function is the upper bound for )(tt∆λ :  
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whereas the corresponding lower bound is 
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This means that  )()()( ttt ttt ∆∆∆ ≤≤ λλλ
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Let now 0→∆t  and denote the corresponding ‘limiting strategy’ by lS . It can easily 
be seen from definitions (16) and (17) that, as 0→∆t : 

0
2

)( →⎟
⎠
⎞

⎜
⎝
⎛−∆

ttt λλ  

uniformly in each bounded interval. Finally, 

⎟
⎠
⎞

⎜
⎝
⎛=

2
)( ttl λλ ,                                                    (18) 

where )(tlλ  denotes the limit failure rate, which has an infinite (countable) number of 
ordinary points of discontinuity and is integrable (with respect to Lebesgue measure).      
This, as 0→∆t , leads to the following weak convergence result: 
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It follows from (18) and (19), that the defined operation is a scale transformation of 
the underlying failure rate )(tλ  with a scaling factor 2/1 , and that )2/()( tFtFl ≠ .  
     Therefore, by means of strategy lS , the ‘integrated system’, which shares in the 
described way  the resources of both aging components, had been constructed. It fol-
lows from relationship (13) that  
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as the total scheduled time of each component’s operation for both strategies is equal 
to .2t  What is the reason for considering the limit strategy instead of the simplest 
strategy with one switching? It can be easily shown that lS  maximizes the mean time 
to the first failure of a component, )(1 ST  and this can be relevant in various applica-
tions. Indeed, 

                                         ∫
∞

=
0

11 ),(max)(max duuSPST SS                 

 ∫ ∫
∞

⎭
⎬
⎫

⎩
⎨
⎧

⎟
⎠
⎞

⎜
⎝
⎛−=

0 0 2
exp dtduut

λ ,                              (21) 

as lS  maximizes ),(1 uSP  for each ),0( ∞∈u . Hence, the random time to the first fail-
ure is stochastically larger [8,9] under the strategy lS  then under any other strategy. 
Therefore, the corresponding inequality for the means trivially holds. 
     Along with maximization of the mean time to the first failure of a component, 
maximization of the time to this event can be useful in many applications. For exam-
ple, assume that operation of our system can be terminated by some external random 
event. It can be some other device in series with our system or a shock effecting both 
components. As lS  maximizes ),(1 uSP  for each ),0( ∞∈u , this strategy is optimal in 
the presence of the described random termination. 
     The reasoning of this section will be ‘more pronounced’ in the next section, where 
we consider a system, which quality of performance depends on the number of operat-
ing components. 
 
Remark 2. The strategy lS  is, of course, a mathematical idealization. It is obvious 
that in practice t∆  cannot be very small because each preventive switching requires 
some efforts. The switching device can also be unreliable, but, unlike the switching 
upon failure, the state of this device can be checked prior to the preventive switching. 
Thus, in practice lS  means that switching should be performed as often as reasonable. 
Given the corresponding costs and rewards, a problem of obtaining some optimal opt∆  
can be considered. 
 
Remark 3.  The considered approach can be generalized in a straightforward way to a 
standby system of 2>n  i.i.d. components. The strategy, maximizing the time to the 
first failure, is the one when n -1 equidistant switching are scheduled. Then, using the 
same approach, ),,( 12 ttSP -the probability of system of 1−n  components perform-
ance without failures in ],( 1 tt , where 1t  is the time of the first failure, can be maxi-
mized, etc. The corresponding limiting strategy is also defined in an obvious way. 
Another generalization is to the case of the non-identical components with increasing 
failure rates )(1 tλ  and )(2 tλ . The optimal time of switching a  can be uniquely ob-
tained from the equation similar to (15): 

)()( 21 att −= λλ . 
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The corresponding limiting strategy also can be defined. 
 
Example 2. Let )(tFc  be exponential, i.e., }exp{1)( ttFc λ−−= . Assume that each 
component of this system can be instantly perfectly repaired upon failure, but the 
number of repairs is bounded by 0≥m , as, for instance, in the case of spare parts. 
The ‘total failure’ of each component occurs when m  repairs had been already per-
formed and a component fails. Therefore, the Cdf of time to this failure is the Erlan-
gian distribution (2) with the increasing failure rate [6]. 
     What strategy should be used for maximizing the probability of system’s function-
ing without total failures of components in the given interval of time. The formal an-
swer, based on the previous results, is that the only switching at 2at =  (and the lS  
strategy for maximizing 1T ) should be used for this purpose. On the other hand, now 
we are able to perform the dynamic strategy of switching, based on the additional in-
formation. This information is the number of repairs left for each component at any 
instant of time. From a simple probabilistic reasoning it follows that an optimal strat-
egy in this case is any strategy optS  that leaves the remaining component (after the 
total failure of the other one) in the state with no repairs left. Therefore, 

=),(1 tSP opt { }∑
+

−
12

0 !
)(exp

m i

i
tt λλ . 

For any other strategy, including  the one with switching at 2ta =  and lS , we have 

),(),( 11 tSPtSP opt ≥ . 

Therefore, additional information can increase the ‘quality’ of the switching policy. 
 
5. OPTIMAL STRATEGIES FOR FINITE INTERVALS OF TIME 
 
Consider now the operation of the standby system (described in Section 4) to its total 
failure when the second component also fails. It is obvious that instantaneous, perfect 
switching from one component to another cannot change the corresponding survival 
function, but it can increase the quality of performance in the finite interval of time. 
Therefore, assume additionally that each operating component is characterized by the 
reward function )(xwR , i.e., the reward in ],( dxxx +  is )()( dxodxxwR +  and the ac-
cumulated reward (profit) in ],0[ t (without failures) is  

∫=
t

RR dxxwtW
0

)()( . 

Let )(xwR  be a decreasing function, which describes deterioration (ageing) with time. 
The reward in the failed state is assumed to be 0. Therefore, the expectation of the re-
ward accumulated by one component in ],0[ t  is  

∫+=
t

RcRc dxxWxftWtFtR
0

)()()()(),0( ,                               (22) 
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where )()( xFxf cc ′=  and )(1)( tFtF cc −= . 
     Similar to the previous section, we want to obtain a strategy of switching that will 
maximize the system’s reward ),0( tRs . It is clear that ),0( ∞sR  does not depend on 
switching and is equal to ),0(2 ∞R , i.e., 

∫
∞

=∞
0

)()(2),0( dxxWxfR Rcs ,                                    (23) 

where we assume, for simplicity, that  0)()(lim =∞→ tWtF Rct , which given that )(tWR  
cannot increase faster than a linear function, is a very mild condition on the Cdf of a 
component )(tFc . Note that, the heavy-tailed Pareto distribution for certain values of 
parameters does not comply with this condition.  
     However, for the finite interval, switching can make sense as it ‘moves’ intervals 
of time with smaller values of reward outside the mission interval ],0[ t . Let a single 
switching be performed at  a . The corresponding reward in ],0[ t  is given by the fol-
lowing sum: 

                        ))()()(()(),,0( atWaWatFaFatR RRccs −+−=  

                                        + ∫ −+−
a

RRcc dxxtWxWxtFxf
0

))()()(()(  

                                        + ∫ −+−+−+−
t

a
RRcc axWxtaWxtaFaxf ))()()(()(  

                                        + ∫∫
<+

+
tzx

cc dxdyyWxWyfxf ))()()(()( . 

The last term, which corresponds to realizations, where both components had failed in 
],0[ t , similar to (23), does not depend on switching. Differentiation of ),,0( atRs  with 

respect to a  results in the following equation: 

))()()(()(),,0( atWaWatFaFatR ccs −−−=′ . 

Therefore, as )(tWR  is a monotonically increasing function, 

2
)()(0),,0( taatWaWatR RRs =⇒−=⇒=′ , 

and it can be proved that ),,0( atRs′  achieves maximum at 2/ta = . 
     It can be also proved that additional switching does not improve this result. There-
fore, switching (if any) should be planned at 2/ta = . The limiting strategy of the 
previous section is considered in a similar way and the case of components with dif-
ferent decreasing reward functions 2,1, =iW iR  as well. Specifically, the optimal point 
for the latter case is uniquely derived from the equation  

0)()( 21 =−= atWaW RR . 
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Example 3 (explanatory). Assume that the components lifetimes are described by the 
degenerate distributions with a mass at b  and exponential decay function }exp{ tα− . 
Let bt <  (the similar considerations hold for btb 2<< , whereas there is no need in 
switching when bt 2> , as the switching is ‘automatically’ performed at bt =  upon 
failure). 
     The reward without switching is just the reward from the first component, i.e., 

})exp{1(1}exp{),0(
0

tduutR
t

α
α

α −−=−= ∫ ,                             (24) 

whereas the reward with switching at 2/ta =  is  
 

})2/)(exp{1(2}exp{2)2/,,0(
2/

0

tdttttR
t

s α
α

α −−=−= ∫ , 

which is larger than ),0( tR . 
 
 
6. CONCLUDING REMARKS 
 
In this paper, we have considered different types of resource sharing. It is clear from 
general considerations that sharing of resources of different parts of a system can in-
crease its performance quality. For example, sharing of spare parts increases probabil-
ity of spare parts sufficiency for a system in the mission period ],0[ t . It is shown that 
when a large number of identical components in series share resources, the fail-
ure time distribution for a series system tends to a degenerate distribution. This 
means that the corresponding reliability of a system under certain assumptions 
can be close to 1 interval ),0[ m , where m  is the mean lifetime of a component, 
and then falls sharply to 0  outside this interval. 
     Another type of sharing resources arises when considering performance of 
standby systems with aging components. We understand aging as increasing of 
the corresponding failure rate or as decreasing of a performance characteristic 
of a component and derive simple optimal switching strategies. Specifically, 
we show that the switching at 2/ta = , maximizes the probability of the sys-
tem’s performance without failures of components in ],0[ t  and the switching 
strategy which performs switching at ,...2,1, =∆ ntn , where 0→∆t , maximizes 
the mean time to this event. 
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