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Abstract 

Burn-in is a widely used engineering method which is adopted to eliminate defective 

items before they are shipped to customers or put into the field operation. In the 

studies of burn-in, the assumption of bathtub shaped failure rate function is usually 

employed and optimal burn-in procedures are investigated. In this paper, however, we 

assume that the population is composed of two ordered subpopulations and optimal 

burn-in procedures are studied in this context. Two types of risks are defined and an 

optimal burn-in procedure, which minimizes the weighted risks is studied. The joint 

optimal solutions for the optimal burn-in procedure, which minimizes the mean 

number of repairs during the field operation, are also investigated. 

 

Keywords : Mixed population, ordered subpopulations, main population, stochastic 

order, weighted risk, burn-in procedure, minimal repair 

 

ACRONYMS 
Cdf     cumulative distribution function 

FR     instantaneous failure rate (function) 

pdf    probability density function 

r.v.     random variable 

Sf     survivor function 

 

NOTATION 

SX      lifetime of the strong component, 0SX ; a r.v. 

WX      lifetime of the weak component, 0WX ; a r.v. 

)(),(),( ttrtF SSS       Cdf, FR and cumulative FR of SX  

)(),(),( ttrtF WWW       Cdf, FR and cumulative FR of WX  

)(t      the scale transformation function 

pp 1,      the proportions of strong and weak subpopulations in the population, 

respectively 

b      burn-in time 

n      the critical number of failures during burn-in 

1F      the event that the item passes the burn-in process 

2F      the event that the item is eliminated by the burn-in process 
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S      the event that the item is from the strong subpopulation 

W      the event that the item is from the weak subpopulation 

21,ww      weights of two types of risks 

)(bN      the number of minimal repairs during the burn-in time ),0[ b ; a r.v. 

      given mission time 
***,tt      the first and second wear out points, respectively, when the FR is eventually 

increasing 
*s      the uniform upper bound for optimal burn-in time 

 

1. Introduction 

 

Burn-in is a method of „elimination‟ of initial failures in field usage. To burn-in a 

component or a system means to subject it to a period of simulated use prior to actual 

operation. Due to the high FR at the early stages of component‟s life, burn-in has been 

widely accepted as an effective method of screening out failures before systems are 

actually used in field operations. An introduction to this important area of reliability 

engineering can be found in Jensen and Petersen (1982) and Kuo and Kuo (1983).  

     If burn-in procedure is applied for „too long‟, then the items with „high reliability‟ 

can also be eliminated by burn-in or their remaining lifetimes can be substantially 

decreased. On the other hand, if burn-in procedure is too short in time, then the items 

with „low reliability‟ can still remain in the population, which results in frequent 

failures at the early stages of component‟s usage. As burn-in is usually costly, one of 

the major problems is to define the duration of this procedure. The best time to stop 

the burn-in process for a given criterion is called the optimal burn-in time. In the 

literature, various cost structures have been proposed, and the corresponding problem 

of finding the optimal burn-in time has been considered. See, for example, Nguyen 

and Murthy (1982), Clarotti and Spizzichino (1991), Mi (1994a, 1996, 1997) and Cha 

(2000). Some other performance-based criteria, for example, the mean residual life, 

the reliability for the given mission time, or the mean number of failures, have been 

also considered to determine the optimal burn-in time (See also Mi (1991, 1994b), 

Block et al. (1994, 2002)). An excellent survey of research in this area can be found in 

Block and Savits (1997). 

In most papers mentioned above, the burn-in procedures have been studied under 

the assumption that the FR of the system follows the traditional bathtub shape. 

However, recently there has been much research on the shape of the FR for mixtures 

of distributions. The IFR, bathtub shape, the modified bathtub shape (first, increasing 

and then bathtub) and some other shapes can occur as specific cases of mixing (see, 

e.g., Jiang and Murphy (1995), Gupta and Warren (2001), Block et al. (2003a, 2003b) 

and Klutke et al. (2003)). It was stated also that the bathtub shaped FR describes only 

up to 15% of applications (See, e.g., Kececioglu and Sun (1995)). Thus, the 

assumption of the bathtub-shaped FR can be sometimes considered as rather 

superficial.  

     In this paper, a new burn-in approach for repairable items is proposed and optimal 

burn-in procedure is investigated without assuming initially the bathtub shape of a 

population FR. We consider the mixed population composed of two ordered 

subpopulations – the subpopulation of strong items (items with „normal‟ lifetimes) 

and that of weak items (items with shorter lifetimes). Based on the information 

obtained during the burn-in procedure, items are classified into two groups: one class 

of items, which is considered to belong to the strong subpopulation and the other class 
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of items that is believed to belong to the weak subpopulation. Then the items 

belonging to the second class are eliminated (discarded) and only the remaining items 

are considered to be suitable for the field operation.  

As, e.g., in Mi (1991, 1994b), Block et al. (1994, 2002), we study an optimal 

burn-in which optimizes the defined performance-based criterion. In the first part of 

the paper, we consider two types of risks – (i) the risk that a strong component will be 

eliminated during burn-in and (ii) the risk that a weak component will pass the burn-in 

procedure. Optimal burn-in, which minimizes the weighted average of these risks, is 

investigated. The second part deals with optimal burn-in which minimizes the mean 

number of failures during the given mission time. It should be emphasized that the 

obtained optimal burn-in procedure (which minimizes the mean number of repairs 

during field usage) is suggested mainly for the case when the field mission is very 

important and the failures (even minimally repaired) during this mission are very 

undesirable (e.g., military missions). The costs incurred during burn-in are usually not 

so important in this case. 

 

2. Stochastically Ordered Subpopulations and Mixed Distributions 

 

Due to the high initial FR that often occurs in the early stages of component‟s life, 

burn-in has been considered as an essential procedure for revealing early failures. In 

Jensen and Petersen (1982), based on various sets of field data, it is observed that the 

population of produced items is composed of two subpopulations - the strong 

subpopulation with normal lifetimes and the weak subpopulation with shorter 

lifetimes. In practice, weak items can be produced along with strong items due to, for 

example, defective resources and components, human errors, unstable production 

environment caused by uncontrolled significant quality factors, and, etc. Mixture of 

these two subpopulations often results in a bimodal distribution as illustrated in 

Jensen and Petersen (1982). According to these authors, e.g., the infant mortality 

period of the life cycle that exhibits high FR, results from failures in a weak 

subpopulation of a bimodal lifetime distribution. This can also be well understood if 

we observe the fact that weak items tend to fail earlier than strong items. In other 

words: the weakest populations are dying out first (Finkelstein, 2008). Thus, in view 

of this context, it can be stated that one of the main purposes of the burn-in procedure 

is to eliminate the weak subpopulation from the mixed population.  

Having in mind these considerations, we assume in our paper that the population 

is a mixture of two ordered subpopulations – the strong subpopulation and the weak 

subpopulation.  

     Let the lifetime of a component from the strong subpopulation be denoted by SX  

and its absolutely continuous Cdf be )(tFS . Similarly, the lifetime and the Cdf of a 

weak component is denoted by WX  and )(tFW , respectively. It is reasonable to 

assume that these lifetimes are ordered as: 

SstW XX  ,                                                             (1) 

which means that (see, e.g., Ross (1996)) 

0),()(  ttFtF WS .                                                    (2) 

These inequalities define a general stochastic ordering between two r.v.‟s. Note that, 

since a Cdf of an absolutely continuous r.v. is a continuous function that increases 

from 0  to 1, the relationship defined in (2) is equivalent to the following equation: 
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,0)),(()(  ttFtF SW                                                (3) 

where )(t  is non-decreasing, 0,)(  ttt , and .0)0(   Throughout this paper, 

we assume the stochastic ordering (2)-(3). Let )(trS  be the FR which corresponds to 

SX . Then, the FR )(trW  for WX , as follows from (3), is given by  

))(()(')( trttr SW  .                                                (4) 

Another important ordering in reliability applications is the FR ordering, which is 

defined as   

0),()(  ttrtr WS .                                                   (5) 

It can be easily seen that the ordering (5) implies (1), and therefore equation (3) also 

holds. A practical specific case of (5) is the proportional hazards model that can be 

defined in our case as  

0),()(  ttrtr SW  ,                                                 (6) 

where 1 . From a practical point of view, relationship (6) constitutes a reasonable 

model for defining the subpopulations of interest. For practical applications, when 

exponential distribution is assumed, (6) turns to: 

SW rr  . 

     We assume that the proportion of items from the strong subpopulation in the total 

population is p . Then the Cdf of the total population is given by the following 

mixture:  

)),(()1()()( tFptpFtG SS   

whereas the proportional hazards model (6) results in 

)))((1)(1()()( tFptpFtG SS  , 

where FF 1 .  

     Furthermore, assume that items are repairable and undergo minimal repair upon 

failure (See also Cha (2000, 2006)).  

 

3. Optimal Burn-in Procedure for Minimizing Weighted Risks 

 

In this paper, we adopt the following Burn-in Procedure. 

 

•Burn-in Procedure: 

The item is burned-in during ],0( b  and if the number of minimally repaired failures 

during burn-in process )(bN  satisfies nbN )(  then the item is considered as one 

from the strong subpopulation and put into field operation; otherwise the item is 

considered as one from the weak subpopulation and is discarded.  

 

Before starting with quantification of the described burn-in procedure, it is reasonable 

to clarify the term “minimal repair” for our settings of this and the following sections. 

 

•Minimal repair  
Minimal repair is usually defined in the classical sense as the repair that brings an 

item to the statistically identical state it had just prior to the failure (Barlow and 
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Proschan, 1975). For the item with the Cdf )(tF that had failed and was 

instantaneously minimally repaired at time a , it means that the time to the next 

failure is distributed as ))(1/())()(( aFaFatF  , which is equal to the Cdf of the 

corresponding remaining lifetime for a nonrepairable item. This type of minimal 

repair is sometimes called a statistical minimal repair. (Arjas and Norros, 1989; 

Finkelstein, 1992) to emphasize the repair to the mentioned above statistically 

identically state, but usually the term “statistical” is omitted. 

    Minimal repair in heterogeneous populations is not so unambiguous as in the 

homogeneous case (Finkelstein, 2004, 2008). In the case under consideration, we 

have a mixed (heterogeneous) infinite population described by the mixture 

distribution )(tG . This means that formally, in accordance with the classical 

definition, the time to the next failure should be distributed as 

))(1/())()(( aGaGatG  . The only theoretical possibility to perform this operation 

is to replace the failed item by another item from our population that had functioned 

for the same time but did not fail. It is obvious that it is practically impossible to 

achieve this ideal statistical minimal repair in reality. On the other hand, if it would be 

possible, then e.g., for the case of proportional hazards with constant FRs, when the 

mixture FR is decreasing in ),0[  (Barlow and Proschan, 1975), the probability that 

after each repair we are choosing an item from the strong population is increasing to 1 

as t . This means that when the mixture FR is decreasing, an “ideal burn-in 

procedure” without discarding can be performed. When, e.g., the mixture FR has a 

bathtub shape, as it was already mentioned, different optimal burn-in procedures can 

be performed, but again, one cannot execute the corresponding statistical minimal 

repair in practice.  

     Our case is different. At 0t  an item from a mixed population is chosen and put 

into operation. Upon failure at at   it is minimally repaired, etc. An item that does 

not meet our burn-in criterion is discarded. Therefore the main goal is to classify the 

mixed populations into the weak and strong populations. We assume that the 

corresponding minimal repair is, in fact, a physical minimal repair (Finkelstein, 1992) 

in the sense that a „physical operation‟ of repair (not a replacement as above) brings 

an item in the state which is „statistically identical‟ to the state it had just prior the 

failure. Note that, obviously, we do not know whether an item is „strong‟ or „weak‟. 

On the other hand, the described operation in some sense „keeps a memory of that‟: if 

it is, e.g., „strong‟, the time to the next failure is distributed as 

))(1/())()(( aFaFatF SSS  , etc. An example of this „physical operation‟ is when a 

small realized defect (fault) is corrected upon failure, whereas the number of the 

possible inherent defects in the item is large. In practice, physical minimal repair of 

the described type can be usually performed and therefore our assumption is quite 

realistic. 

 

     By various practical reasons, total burn-in time is generally limited. Therefore, in 

this section, we assume that the burn-in time is fixed as b . Then the above burn-in 

procedure can be defined in terms of n  and we find an optimal burn-in procedure 
*n  

which minimizes the appropriately defined risk. 

For description of related risks, define the following four events:  

-Event 1F : the item passes the burn-in process; 

-Event 2F : the item is eliminated by the burn-in process; 
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-Event S  : the item is from the strong subpopulation; 

-Event W  : the item is from the weak subpopulation. 

Then  

)|(1)|( 12 SFPSFP   and )|(1)|( 21 WFPWFP  . 

Note that )|( 2 SFP  is, the so-called, the risk of the first order (the probability that the 

strong component is eliminated) and )|( 1 WFP  is the risk of the second order (the 

probability that the weak component had passed the burn-in). Therefore our goal is to 

minimize these risks. Basically we have 3 options: 

     Firstly, we minimize the first risk )|( 2 SFP  not taking into account the second risk. 

Then this problem is equivalent to maximizing )|( 1 SFP . In accordance with the well-

known property, the process of minimal repairs is the corresponding 

nonhomogeneous Poisson process (NHPP). Therefore, taking into consideration our 

reasoning with respect to minimal repair: 








n

i

bi

S

i

eb
SFP

S

0

)(

1
!

))((
)|( , 

where 
t

SS duurt
0

)()(  is the corresponding cumulative FR. Obviously, the 

maximum is achieved when n . This is an intuitively clear trivial solution, as we 

are not concerned about the other risk and „are free‟ to minimize )|( 2 SFP . Therefore, 

this value can be as close to 0 as we wish. In practice, sometimes this setting can 

occur but, in that case, the optimal *n  should be defined via the corresponding 

restrictions on the allocated burn-in resources, burn-in costs, etc.  

     Secondly, we minimize )|( 1 WFP  not taking into account the first risk. Then this 

problem is equivalent to maximizing )|( 2 WFP . In this case, 








n

i

bi

S

i

eb
WFP

S

0

))((

2
!

)))(((
1)|(


, 

where, as follows from (4): 

))(()()()(
0

)(

0

tduurduurt S

t t

SWW 


   .                           (7) 

The maximum is achieved when 0n . The corresponding value is  

))((

20 1)|(
b

n
SeWFP


  , 

which means that the second order risk in this case is equal to the probability that an 

item from the weaker population will survive the burn-in process without any failures, 

which makes a perfect sense.  

The previous two options were illustrative, as their settings are usually non-realistic. 

The appropriate approach should take into account both types of risk. Therefore, it is 

reasonable to consider minimization of the weighted risks: 

)|()|()( 1221 WFPwSFPwn   

                 )]|()|([1 2211 WFPwSFPw  , 
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where 1w  and 2w  are the weights satisfying 121  ww . When 11 w , 02 w , we 

arrive at the first considered option, whereas the case 01 w , 12 w  corresponds to 

the second one. Furthermore, if 2/121  ww , then we should minimize the sum of 

two risks )]|()|([ 12 WFPSFP   or, equivalently, maximize the sum of the 

probabilities of correct decisions )]|()|([ 21 WFPSFP  . 

     Let *n  be the optimal burn-in procedure that satisfies 

).(min)( 0

* nn n                                                  (8) 

This value is given by the following theorem: 

 

Theorem 1. Let 10  iw , ,2,1i  and n  be the nonnegative integer which satisfies 

(8). If  

1

)(

))((
ln

)ln(ln))())((( 21 
















b

b

wwbb

S

S

SS




, 

then the optimal 
n  is given by 0n , otherwise 

n is the largest integer which is less 

than or equal to  
















)(

))((
ln

)ln(ln))())((( 21

b

b

wwbb

S

S

SS




. 

 

 

Corollary 1. When the specific proportional hazard model (6) holds, the cumulative 

FRs in (7) can be expressed in a more explicit way:  

)()()()(
0 0

tduurduurt S

t t

SWW     . 

In this case, if  

1
ln

)ln(ln)()1( 21 




 wwbS , 

then the optimal 
n  is given by 0n , otherwise 

n is the largest integer which is less 

than or equal to  





ln

)ln(ln)()1( 21 wwbS 
. 

 

 

Example 1. Suppose that the FR of the strong subpopulation is given by 










10,9

100,1
)(

tt

t
trS , 

and )(t  in (3) is given by 0,5)(  ttt . The corresponding FR of the weak 

subpopulation is 
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








2,4525

20,5
)(

tt

t
trW  

and therefore the FR order between SX  and WX  holds. Suppose further that the burn-

in time for this mixed population is given by 0.1b  and 8.01 w , 2.02 w . Then 

34.3

)(

))((
ln

)ln(ln))())((( 21 
















b

b

wwbb

S

S

SS




. 

Therefore, the optimal burn-in procedure is determined by 3n . 

 

4. Optimal Burn-in Procedure for Minimizing Expected Number of Minimal 

Repairs 

 

In this section, we discuss optimal burn-in that minimizes the mean number of 

minimal repairs during the mission time  . We consider the same burn-in procedure 

as in Section 3, but now it is characterized by both b  and n  (i.e., b  and n  are burn-in 

parameters).  

Observe that  

)()|()()|()( 111 WPWFPSPSFPFP   

                        )1(
!

)))(((

!

))((

0

))((

0

)(

p
i

eb
p

i

eb n

i

bi

S
n

i

bi

S
SS










 










 
 







 
. 

)(/)()|(
)(

)(
)|( 11

1

1
1 FPSPSFP

FP

FSP
FSP 


 

)1(
!

)))(((

!

))((

!

))((

0

))((

0

)(

0

)(

p
i

eb
p

i

eb

p
i

eb

n

i

bi

S
n

i

bi

S

n

i

bi

S

SS

S










 










 










 




















.

)1(
!

)))(((

!

))((

)1(
!

)))(((

)|(

0

))((

0

)(

0

))((

1

p
i

eb
p

i

eb

p
i

eb

FWP
n

i

bi

S
n

i

bi

S

n

i

bi

S

SS

S










 










 










 



























. 

Let ),( nb be the mean number of minimal repairs during the mission time  in field 

operation given that the duration of burn-in is equal to b  and that the rejection 

number is n . Then, in accordance with the above formulas and noting once again that 

the mean number of minimal repairs is equal to the cumulative intensity function of 

the corresponding NHPP, 

    bbnb SS  ),(  
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)1(
!

)))(((

!

))((

!

))((

0

))((

0

)(

0

)(

p
i
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p

i

eb

p
i

eb

n

i

bi

S
n

i

bi

S

n

i

bi

S

SS

S





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

 
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





 





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

 




















 

      bb SS    

      

)1(
!

)))(((

!

))((

)1(
!

0

))((

0

)(

0

p
i

eb
p

i

eb

p
i

eb

n

i

bi

S
n

i

bi

S

n

i

bi

S

SS

S








 








 













 



























.    (11) 

 

The objective is to find optimal ),( ** nb  which satisfies 

),(min),( 0,0

** nbnb nb   .                                     (12) 

     In order to find the joint optimal solution defined in (12), we follow the procedure 

similar to that given in Mi (1994) and Cha (2000), where the two-dimensional 

optimization problems of finding the optimal burn-in time 
*b and the age-replacement 

policy *T  that minimize the long-run average cost rate ),( Tbc  are considered.  

     At the first stage, we fix the burn-in time b  and find optimal )(* bn  that satisfies 

),(min))(,( 0

* nbbnb n   .                                         (13) 

At the second stage, we search for 
*b  that satisfies 

))(,(min))(,( *

0

*** bnbbnb b   . 

Then the joint optimal solution is given by ))(,( *** bnb , since the above procedure 

implies that  

))(,())(,( **** bnbbnb  , for all 0b , 

),( nb , for all 0b , 0n . 

As in Mi (1994) and Cha (2000), in this case, if an uniform upper bound (with respect 

to n ) could be found, then the optimization procedure would be much simpler. 

     Following the procedure described above, first find optimal )(* bn  satisfying (13) 

for each fixed b . For this purpose, we need to state the following lemma which will 

be used for obtaining the optimal )(* bn : 

 

Lemma 1 (Mi, 2002). Suppose that ,1,0  iai  and .1,0  ibi  Then 

i

i

ni
n

i

i

n

i

i

i

i

ni b

a

b

a

b

a













1

1

1

1
maxmin , 

where the equality holds if and only if all the 1,/ iba ii , are equal. 

 

The optimal value )(* bn  is defined by the following theorem.  
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Theorem 2. For a given fixed 0b , let the following inequality:  

   )(())(()()( bbbb SSSS    

hold. Then the optimal )(* bn  is given by 0)(* bn , whereas )(* bn  corresponds 

to the opposite sign of the inequality. 

 

Remark 1. When the FR ordering (5) holds, the first inequality in Theorem 2 

corresponds to 

   )()()()( bbbb WWSS   , 

 

which is always obviously satisfied. For the specific case (6), it leads to 

    







b

b

SWWSS

b

b

S duurbbbbduur )()()()()()( . 

 

Remark 2. The result  )(bn (Theorem 2, Case 2) implies that after the burn-in 

time b  with minimal repair every item is put into the field operation regardless of the 

number of failures during burn-in. This burn-in procedure is the same as that proposed 

in Cha (2000). Case 2 can obviously occur when the cumulative FR in ),0[ b  for the 

strong subpopulation is smaller than that for the weak subpopulation, whereas the 

reverse ordering holds for the interval ),[ bb  (e.g., when )(trS  has a decreasing 

part). In this case, the „quality‟ of items after burn-in in the weak subpopulation is 

better than that in the strong subpopulation. Therefore, the burn-in procedure should 

leave all weak items in the population, which results in  )(bn . 

 

     Consider now obtaining an uniform upper bound (with respect to n ), i.e., we will 

find an upper bound for 
*b  denoted by 

*s , such that, 

),,(min),(min **0
nbnb

sbsb



 

for all fixed 0n .  

     The following result gives an uniform upper bound for the optimal burn-in time 
*b , 

but first we need to define the notion of the eventually (ultimately) increasing 

function (Gurland, Sethuraman, 1995, Mi, 2003). 

 

Definition 1. The FR )(xr  is eventually increasing if there exists  00 x  such 

that )(xr  strictly increases in 0xx  .  

 

     For the eventually increasing FR )(xr , the first and the second wear-out points 
*t  

and 
**t  are defined in Mi (2003) as 

)(:0inf{* xrtt  is non-decreasing in }tx  , 

)(:0inf{** xrtt  strictly increases in }tx  . 

 

Observe that the eventually increasing FR can be constant in parts of the interval 

),( *** tt , whereas 
*** tt   is obviously a specific case. 
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Theorem 3. Suppose that  

(i) )(trS is eventually increasing with the first wear-out point t , the second wear-out 

point **t  and  )(lim trSt ;  

(ii) )(t  is weak (i.e., not necessarily strictly) convex function.  

Then ),[*  ts , defined as 

 
 



)(

)(

**

*

*

}',)()(|'inf{





t

t

b

b

SS bbduurduurtbs ,                   (14) 

is the uniform upper bound for the optimal burn-in time *b . 

 

Example 2. Let the FR of the strong subpopulation be given by 










.6,5

,60,1
)(

tt

t
trS                                                     (15) 

Then 0t  and 6** t . Assume that 0,2)(  ttt , 0.2 . Then 





)(

)(

*

*
0.4)(





t

t
S duur  and it is easy to see that 0.6* s . 

 

     It follows from Theorem 2 that, for each b , either 0)(  bn  or  )(bn . 

Moreover, with the uniform upper bound *s  defined by Theorem 3, we can search for 
*b  which minimizes ))(,( * bnb  in the reduced interval ],0[ *s . Then Theorems 2-3 

imply that the joint optimal solution is given by ))(,( *** bnb . Based on these facts, the 

optimization procedure can be summarized as follows: 

 

< Optimization Procedure (Algorithm)> 

 

(Stage1) 

Fix 
*0 sb  . If ))(())(()()( bbbb SSSS    then 0)(  bn ; 

otherwise  )(bn . 

 

(Stage2) 

Find 
*b  which satisfies  

))(,(min))(,( *

0

**
* bnbbnb

sb





. 

 

(Joint Optimal Solution) 

Then the two dimensional optimal solution is given by ))(,( ** bnb 
. 

 

Example 3. Consider the setting of Example 2 and suppose that the FR )(trS is given 

by (15). Furthermore, as in Example 2, assume that 0,2)(  ttt , 0.2  and the 

proportion of strong subpopulation is 9.0p . Then, as given in Example 2, the 

uniform upper bound 
*s  is given by 0.6* s . Thus, in order to find the joint optimal 

solution ),( * nb , we follow the optimization procedure described above. However, in 



12 

 

this case, since )(t  is a convex function and )(trS  is a non-decreasing function, the 

inequality  

.0)),(())(()()(  bbbbb SSSS                      (16) 

always holds. Thus 0)(  bn , for all 0b . Then the optimal solution ))(,( ** bnb 
 is 

given by )0,( *b , where 
*b  is the value which satisfies 

)0,(min)0,( 0.60

* bb b   . 

The graph for )0,(b  is given in Figure 1 along with the graph for ),(  b .  

 

 
Figure 1. Function of Mean Number of Minimal Repairs 

 

By a numerical search, it has been obtained that 048.4* b  and minimum value of 

),( nb  at optimal point )0,048.4(),( * nb  is given by 00396.2)0,048.4(  . Note 

that, by Theorem 1, the minimum value of ),( nb  for each fixed n  is given by 

)0,(b  or ),(  b . In this specific example, due to inequality (16), ),()0,(  bb .  

 

     The discussion based on the specific setting of Example 3 ( )(t  is a convex 

function and )(trS  is a non-decreasing function) can be summarized by the following 

corollary: 

 

Corollary 2. Suppose that  

(i) )(trS  is eventually increasing with the first wear-out point 0t , the second wear-

out point 
**t  and  )(lim trSt ;  

(ii) )(t  is a weak convex function.  
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Then the joint optimal solution is given by )0,( *b , where 
*b  is the value which 

satisfies 

)0,(min)0,( *0

* bb
sb



, 

and *s is the uniform upper bound given in (14).                                                           

 

5. Concluding Remarks 

 

In most papers dealing with optimal burn-in procedures the assumption on the shape 

of the FR of population has been made, e.g., the bathtub-shaped FR, the eventually 

increasing FR, etc. In our paper, on the contrary, we consider the mixture of two 

ordered subpopulations which can have different shapes of the population FR, and 

this can be considered as a more realistic and practical setting.  

     Two types of risks are considered and the optimal burn-in procedure defined by the 

optimal critical value for the number of failures during burn-in is studied. We also 

consider another type of the burn-in procedure, which is characterized by both burn-in 

time and the critical number of failures during burn-in. The optimal solution that 

minimizes the mean number of minimal repairs during field operation has been 

investigated in this case. Some numerical examples which illustrate the utility of the 

obtained results are also given. 

     Since the assumptions on the parametric model proposed in this paper (e.g., on 

functions )(t  and )(trS ) are quite general and not too restrictive, the obtained results 

can be used in many real applications. Furthermore, based on field data, some useful 

specific parametric models for )(t  can be developed. 

 

APPENDIX 

 

A. Proof of Theorem 1 

Note that the problem is equivalent to the problem of maximizing 

 

)|()|()( 2211 WFPwSFPwn  . 
Substitution gives: 

 

)|()|()( 2211 WFPwSFPwn   

)|)(()|)(( 21 WnbNPwSnbNPw   

                         
 










 





n

i

n

i

bi

S

bi

S

i

eb
w

i

eb
w

SS

0 0

))((

2

)(

1
!

)))(((
1

!

))((


. 

Then observe that, for 1n , 

0
!

)))(((

!

))((
)1()(

))((

2

)(

1 








n

eb
w

n

eb
wnn

bn

S

bn

S
SS 

 



n

S

Sbb

b

b

w

w
e SS

















)(

))((

1

2)())(( 
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

















)(

))((
ln

)ln(ln))())((( 21

b

b

wwbb
n

S

S

SS




.                                               (9) 

 
Case I. Let  

1

)(

))((
ln

)ln(ln))())((( 21 
















b

b

wwbb

S

S

SS




. 

Then there is no positive integer which satisfies (9). This implies that 

 

,1,0)1()(  nnn  

and thus we have 0n . 

 

Case II. Let      

1

)(

))((
ln

)ln(ln))())((( 21 
















b

b

wwbb

S

S

SS




. 

Then 
n  is the largest integer which is less than or equal to  
















)(

))((
ln

)ln(ln))())((( 21

b

b

wwbb

S

S

SS




. 

■ 

 

B. Proof of Theorem 2 

For the fixed 0b , we consider the following two cases: 

Case 1. Let  

   )(())(()()( bbbb SSSS   . 

As the sum of quotients in equation (11) is 1 in this case, it can be easily seen that 

minimizing ),( nb  is equivalent to maximizing  

)1(
!

)))(((

!

))((

!

))((

)|(

0

))((

0

)(

0

)(

1

p
i

eb
p

i

eb

p
i

eb

FSP
n

i

bi

S
n

i

bi

S

n

i

bi

S

SS

S










 










 










 




















. 
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⇔ Minimize       
p

i

eb

i

eb

pp
n

i

bi

S

n

i

bi

S

S

S


















0

)(
0

))((

!

))((

!

)))(((

)1(



 

⇔ Minimize         ),(

!

))((

!

)))(((

0

)(

0

))((

nbg

i

eb

i

eb

n

i

bi

S

n

i

bi

S

S

S
















 

 

We compare ),( nb  with )1,(  nb , ,2,1,0n . Observe that )1,(),(  nbgnbg  

if and only if )1,(),(  nbnb . Note that  

!

))((

!

)))(((

)(

))((

i

eb

i

eb

bi

S

bi

S

S

S










 

is strictly increasing in 0i . This can be easily seen by comparing the values of this 

function for i  and 1i , 0i . Thus 

)!1(

))((

)!1(

)))(((

!

))((

!

)))(((

)(1

))((1

)(

))((






















n

eb

n

eb

i

eb

i

eb

bn

S

bn

S

bi

S

bi

S

S

S

S

S
 

, ni 0 . 

Then using Lemma 1: 

)!1(

))((

)!1(

)))(((

!

))((

!

)))(((

max

!

))((

!

)))(((

)(1

))((1

)(

))((

1

0

)(

0

))((









































n

eb

n

eb

i

eb

i

eb

i

eb

i

eb

bn

S

bn

S

bi

S

bi

S

nin

i

bi

S

n

i

bi

S

S

S

S

S

S

S  

. 

Accordingly, using Lemma 1 again: 






















































)!1(

))((

)!1(

)))(((

,

!

))((

!

)))(((

min),(
)(1

))((1

0

)(

0

))((

n

eb

n

eb

i

eb

i

eb

nbg
bn

S

bn

S

n

i

bi

S

n

i

bi

S

S

S

S

S  

 

)1,(

!

))((

!

)))(((

1

0

)(

1

0

))((























nbg

i

eb

i

eb

n

i

bi

S

n

i

bi

S

S

S 

, 

implying that )1,(),(  nbnb , ,2,1,0n . Finally, we arrive at 0)(  bn . 
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     This obviously means that for each fixed duration of the burn-in time b , the failed 

item is discarded and those that did not fail are put into a field operation. Therefore 

the obtained rule is simple and easy for implementation. 

 

Case 2. Let 

   )(())(()()( bbbb SSSS   . 

In this case, minimization of ),( nb  is equivalent to minimization of 

)1(
!

)))(((

!

))((

!

))((

0

))((

0

)(

0

)(

p
i

eb
p

i

eb

p
i

eb

n

i

bi

S
n

i

bi

S

n

i

bi

S

S

S










 








 










 


















, 

or, to maximization of ),( nbg . Therefore  )(bn .                                                  ■ 

 

C. Proof of Theorem 3 

Observe that ),( nb  is of the form of weighted average of  )()( bb SS    and 

 )(())(( bb SS   , i.e., 

            ))(1()(),( bpbbbpbbnb SSSS   , 

where  

)1(
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)))(((
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))((

)(

0
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)(
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eb
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
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
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
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

 
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


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

 
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








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


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Also we see that  

duurbb

b

b

SSS 






 )()()(  and duurbb

b

b

SSS 




)(

)(

)())(())((





 . 

Define ),[*  ts  as 

 
 



)(

)(

**

*

*

}',)()(|'inf{





t

t

b

b

SS bbduurduurtbs . 

It clear that such 
*s  exists as 

b

b

S duur )(  is non-decreasing for ),[  tb  and is 

strictly increasing after some point ],[' *** ttt  . Observe that )()( bb    is non-

decreasing in b  and  

   bbbb SSSS   ))(())((  

for 
*tb  . Then 

)()())(())(()()( bbtttt SSSSSS     

*)),(())(( sbbb SS   . 
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The weighted average of elements in the first group is smaller than that of elements 

in the second group for any arbitrarily chosen weights in two groups if the maximum 

element in the first group is smaller than the minimum element in the second group. 

This fact implies: 

.),,(),( ** sbnbnt   

Then we can conclude that at least the optimal burn-in time ),(*  sb , i.e., ** sb  . 

This result holds regardless of the value of n . Therefore, *s  is the uniform (with 

respect to n ) upper bound for *b .                                                                                 ■ 
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