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Another Tempo Distortion: Analyzing Controlled Fertility
by Age-specific Marital Fertility Rate

Kiyosi Hirosima∗

Abstract

      The rise in marital fertility in East Asian societies with very low fertility has
been reported through analyses using the age-specific marital fertility rate (AMFR).
Though the measure is often considered related to the average number of children
married women have (CMF), we demonstrated that such an interpretation is often
erroneous (AMFR problem) and valid only under limited conditions in more or less
controlled fertility, a fact that has been known by some researchers. We conducted
numerical simulations based on a simple mathematical model. Holding completed
marital fertility (CMF) constant, tempo changes in the age-specific marriage rate
and in the duration-specific marital fertility produce a parallel and opposite change
in the AMFR, respectively. Note that the former is in the opposite direction of
demographic translation. This means that a change in the AMFR caused by such
tempo changes may cancel the change in the CMF thus leading to an erroneous
interpretation.
        We should be careful in using the AMFR when the age at marriage or the
tempo in duration-specific marital fertility changes or differs notably. Hence, the
observed rise in the AMFR should be interpreted after subtracting the enormous
effect by such tempo changes so as to avoid exaggeration of the marriage rate
decline and negligence of marital fertility decline. This problem may even apply to
some developing countries or Western societies.

1 Introduction

       In the 1970s and 80s, the rise in marital fertility attracted the attention of researchers for
it was seen as a contradictory phenomenon in the process of demographic transition. Today,
researchers might be challenged by a similar phenomenon in societies with very low fertility
in East Asia. In fact, not negligible rises in marital fertility is reported and the fertility decline
there is believed to be derived exclusively from marriage postponement (a decline in the
marriage rate), which confusingly leads the general public to dilute the concern over the
marital fertility in each society (South Korea, Eun, 2003; Japan, Ministry of Health and
Welfare, 1998; Hong Kong, Yip and Lee, 2002; Taiwan, Freedman et al. 1994). We argue
that such recognition may be erroneous since it is based on analyses using a marital fertility
measure, i.e. the age-specific marital fertility rate (AMFR). It may seem strange, however, to
scrutinize the AMFR since it is so firmly rooted and widely used in demography and in fact,
since it is indispensable for the study of societies with few births outside marriage and scarce
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data such as that of historical demography. The problem in the measure occurring in certain
circumstances may not be quite unknown to some demographers (Freedman, Hermalin and
Sun, 1972; Freedman and Casterline,1982, p78; Hirosima, 1986). Yet, systematic
examinations have not been undertaken so that one would be puzzled about what the criteria
for its appropriate application is. A thorough examination of the AMFR will not only resolve
the confusion in aggregate fertility measurement in East Asian societies or potentially other
Western societies with few extramarital births, but also provide insight into the earlier studies
on the onset of the demographic transition in the Western societies where a similar measure to
the AMFR, Ig, was widely used (see, for example, Coale and Watkins, 1986).
      The major objective of this paper is to specify the cases in which the AMFR can and
cannot be used for quantitative analyses of fertility. First, we review the literature and trace
the almost general negligence or insufficient treatment of the problem in order to explain our
approach. Then, we show that the AMFR in controlled fertility can be modeled by two
functions: the marriage duration-specific marital fertility rate and the age-specific marriage
rate, which means that it is determined not only by the quantum of the former but also the two
tempos in both rates. Also, we show that the average number of children women have
(completed marital fertility, CMF) coincides with the quantum of the duration-specific marital
fertility rate for we postulate the rate as independent of marriage age in our model. We
consider the CMF as the most fundamental marital fertility measure for controlled fertility.
Based on this model, we examine the relationship of the AMFR with the CMF when such
tempos change in order to show that the quantum of the AMFR (total marital fertility rate,
TMFR) changes without a corresponding change in the CMF when either of the tempos of the
two rates change. In these cases, we show that the AMFR leads to an erroneous identification
of changes in the CMF, and that therefore, when the CMF is not available and we use the
AMFR, it should be accompanied by the marriage rate (proportion married), not causing the
deteriorating (positively correlated) change in the AMFR, given constant marriage duration-
specific marital fertility rates.
      Next, we examine the decomposition of the change in the period total fertility rate, TFR,
using the period AMFR to know whether the AMFR shows the cause of the change when the
tempos and quantums of the two rates for cohort change. In the simulation model, we
incorporate the cohort-period translation or demographic translation (Ryder, 1964), assuming
a change occurring to one cohort for its generality and not a continuous change as many
demographers assume (Ryder, 1964; Bongaarts and Feeney, 1998; Kohler and Philipov,
2001). The demographic translation is not our main subject but elaborated enough for the
simulation model because the examination of the AMFR in dynamic (cohort-period
interacting) situations cannot be conducted without it. We argue that the most serious problem
is the misleading change in the AMFR caused by a change in the tempo of the marriage rate
without a correseponding CMF change and that therefore, we may have to avoid relying on
this decomposition when we find a notable change in the mean age at marriage.
       As we show, the problem in the AMFR itself, however, is derived not from the
demographic translation but from its composite nature of marriage duration-specific fertility
rates by different marriage age in controlled fertility. Finally, we discuss the precedent results
of studies on the decline or the difference in fertility using the AMFR in some developed
societies and developing societies, based upon the insights obtained by our study. Also,
similar problems in the marital fertility index by Coale, Ig, to that in the AMFR will be
examined in Annex C.
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1.1 AMFR Problem

       Period fertility has a prominent value since it forms the population of the youngest age in
a year. It determines the extent of population growth and will remain a part of the age-specific
population for a long time. The unchanging concern over the total fertility rate (TFR) in
recent years apparently reflects this fact (for example, Bongaarts, 2002; Kohler et al., 2002).
       Among period fertility indices, the period age-specific fertility rate (AFR) is obviously
most important for several reasons. First, and theoretically, as far as we are interested in the
age structure of population, it shows how the population age structure relates to the youngest
(under one year old) population, the sum of products of age-specific population by the AFR,
neglecting infant mortality. Second, and more practically, it is the simplest among basic
fertility measures.  Third, and because of the second reason, it is one of the only obtainable
fertility indices in some modern or historical societies. Fourth, because of the second reason
again, it is most understandable and influential to a wide audience in societies. The TFR that
represents the AFR as its simple total shares those reasons.
       The downsides of the AFR and the TFR, however, are that it is often difficult to know
whether they show the trend in cohort fertility or period fertility without distortion by period
fertility-related structure or by tempo change of the fertility, and which target, for example, of
parity, the policy should aim at. Obviously more sophisticated fertility measures should be
used for such purposes (Feeney, 1991; Rallu and Toulemon, 1994, among others).
      Nevertheless, as far as we are interested in the age structure of population due to the clear
meaning of the AFR and the TFR to it, we should continue to use and explain the cause of the
change in them. The adjustments of TFR concerning the tempo change in fertility in recent
years are one of the efforts in this line (for example, Bongaarts and Feeney, 1998; Kohler and
Philipov, 2001).
      Another relevant direction of the explanation concerning the change in the AFR and in the
TFR is to decompose into nuptiality and marital fertility in societies where nuptiality has a
direct impact on fertility i.e. societies with little births out of wedlock (for the works in this
direction, see Ruzicka, 1982, for example). This can be done given data of mothers of births
and all women not only by age but also by marital status, respectively. We can obtain the age-
specific marital fertility rate (AMFR, B(x)/M(x) ) and the age-specific proportion married
(APM, M(x)/P(x)) by the data (B(x), )(xP , and M(x) denoting births by age of mother,

women by age, and married women by age, respectively).
      Via these two rates, if there are no births outside marriage, the AFR could be written as
the multiplication of the two, AMFR and APM,
AFR= )}(/)()}{(/)({)(/)( xPxMxMxBxPxB = =AMFR*APM

In this decomposition the first term could be interpreted as showing the marital fertility and
the second, nuptiality. This decomposition could be used against fertility measures based
upon the age-specific fertility rate, not only the TFR, but also the CBR, the GFR and so forth,
though we are most interested in the TFR in most cases. It is because they all could be
expressed using the AFR (B(x)/P(x)).
       For this reason, the usage of the AMFR is widely found in analyses of aggregate changes
or differences of those fertility indices in terms of time series, geographical or other
characteristics, and in forms such as demographic decomposition, demographic
standardization, simulations or regressions 1. In this paper we deal mostly with change in time
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for convenience but, for generalization, we only interpret change as difference by other
attributes than time (for example, geographic difference or difference by educational
attainment).
        In such analyses, the crucial problem is whether the AMFR is really relevant for marital
fertility measurement. This seems to be a serious problem that needs fuller examination than
has yet been done. We refer to this as AMFR problem and examine ways dealing with it in
this paper.

1.2 How has AMFR been described?

       Reviewing comments on the AMFR in demography, we find optimism at the introduction
by the founders of the standardization of crude birth rate using AMFR.  Newsholme and
Stevenson (1905) wrote, “[the standardization] correct[s] completely both for the varying
proportion of married women in compared population and for the varying fertility at different
periods of married life”. Barclay (1958) apparently followed this optimism, saying,
“Sometimes age-specific rates are computed separately for married women, as a further
refinement when the effect of variations in marriage patterns must also be excluded (p.172)”.
This attitude seems to have been basically inherited by standard demography textbooks, such
as Shryock, Siegel et al. (1973), the United Nations (1989) and Preston et al. (2001). Shryock,
Siegel et al. (1973, p.486) only criticizes summing up the AMFR in order to make the total
marital fertility rate (TMFR) because of its same weight on youngest ages in the TMFR. It
introduces instead the standardization of the TFR for marital status and the AMFR. The
textbook by Preston et al. (2001) only warns of the conceptions outside marriage concerning
the AMFR.
      The most famous work that uses the AMFR may be the model fertility by Coale and
Trussell (1974) as they produce model age-specific fertility rates on the base of the AMFR.
Their work was founded on the work of Henry (1971, 1976) who deduced that in natural
fertility, the AMFR is independent of the age at marriage. This observation was actually an
approximation but still well-verified 2. When comparing modern controlled fertility with
natural fertility, he used data only of a marriage cohort of British “women married at about 20
years old around 1920” and not a birth cohort or a synthetic cohort (period) of different
marriage ages. Coale and Trussell (1974) extended the usage of the AMFR to the period
AMFR that derived from women of different marriage ages, neglecting the effect of marriage
age distribution on the AMFR in modern fertility with various degree of control. They were
only concerned about reproducing age-specific fertility rates of all societies and comparing
the extent of fertility control among populations before the end of a demographic transition
and they had no concern as to whether the AMFR represents the over-all marital fertility level
or not.
      In contrast to the general negligence of the AMFR problem in demography, there have
been a small number of demographers who are critical about using the AMFR for deliberately
controlled fertility (Tachi, 1936 3 ; Pressat, 1972). “In computing the age-specific marital
fertility rates [AMFR] regardless of age at marriage, the relationship between fertility and
duration of marriage is neglected, and the result, in spite of an apparent refinement, is a quite
broad description of fertility. ” (Pressat, 1972, p. 181) And according to Pressat (1972), the
only usefulness of the AMFR is to distinguish whether the fertility is deliberately controlled
or not by its age pattern (p.185). We think, however, that the AMFR can be used for
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quantitative measurement in certain situations for controlled fertility as well, and specifying
such situations is the main objective of this article.
        Marriage age influence on the AMFR was observed by the paradox of higher AMFRs for
more educated women than for those less educated because of a shift in marriage age (Sutton
and Wunderlich, 1967; Bogue, 1969, p. 711) though they also used the AMFR as a marital
fertility measure without taking into account marriage age itself. The problem is more
noticeable than before in the works on decomposing changes in the TFR or the CBR (Feeney
et al., 1989; Zeng et al., 1991). They correctly pointed out the effect of marriage age on the
AMFR but seemingly characterized it as owing to cohort-period translation citing Ryder
(1980) which did not discuss the AMFR, and commented that decreasing age at marriage
gives upward pressure to the AMFR (Zeng et al., 1991). Of course, we do not deny the
increase in the TFR or the CBR caused by a decrease in age at marriage through demographic
translation (Ryder, 1964) (For an interesting question of demographic translation for the CBR
suggested by Feeney et al. (1989) and Zeng et al. (1991), see Appendix B). We will argue that
the decrease in marriage age potentially causes the decrease in the AMFR at the same time.
         Increases in the AMFR in some developed and developing societies undergoing the
fertility decline with few extramarital births have been reported (Eun, 2003; Yip and Lee,
2002; Chang, 2003; Freedman et al., 1994; Freedman, Hermalin and Sun, 1972; Cho and
Retherford, 1973; Coale, Goldman and Cho, 1982; Retherford and Rele, 1989). Apparently,
these may be caused by an increase in marriage age. Besides, advancements in tempo of
duration-specific marital fertility in developing societies have been substantiated (Donaldson
and Nichols, 1978; Freedman and Casterline, 1982; Rindfuss and Morgan, 1983). Such
changes in the AMFR by the change in tempo of duration-specific marital fertility seem to
have not yet been explained by fertility models. We will attempt to do this here.

2 Relationship between AMFR and CMF in two fertility regimes

       In this section, let us consider fertility for a cohort for its straightforwardness of
theoretical reasoning. (If all vital rates are constant in time, the whole discussion holds for the
period study too 4.) The most representative measure of marital fertility is the average number
of children of married women, which we call completed marital fertility (CMF), meaning
completed fertility for married women. Age-specific marital fertility (AMFR) is often
considered a measure related to this. The problem is what relationship the AMFR really has to
the CMF. As we think about this theoretically, we make mathematical models for controlled
fertility and natural fertility.
       An example of age-specific marital fertility rates (AMFR) in a natural fertility regime is
shown as five convex curves with different marriage ages from English parish data in Figure
1 (Wilson et al., 1988). Evidently we may regard the AMFR at every age is as the same,
notwithstanding marriage age in natural fertility, since the difference between the curves is
comparatively small, though they are apparently higher at each age for those married at older
ages. This attitude is the same as most historical demographers have had.
       As an example of the AMFR in a controlled fertility regime, that of women married at
20-22.5, 25-27.5 and 30-32.5 years old in Great Britain in 1919 (Henry, 1976) is also depicted
in Figure 1. The total of these rates (multiplied by 5) makes the CMF. The age pattern shows
the typical concave curve concentrated to the first ten years of marriage duration. Note that
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each AMFR is at the same time a duration-specific marital fertility rate, with marriage age
being the same for the cohort.
       We can interpret the pattern of fertility in this regime that it is deliberately controlled to
achieve a normally desired number of children in a certain short period so that it is strongly
decided by marriage duration rather than by age itself of married women, as has been well-
known (Page, 1977; Takahashi, 1979; Kono et al., 1983). We can see larger relative
differences in the AMFR over the ages by marriage age for controlled fertility than that for
natural fertility. Based upon these characteristics, we could model that the marital fertility rate
has a similar duration-specific pattern irrespective of marriage age in a controlled fertility
regime.
       In addition to these marital fertility rates by marriage age, we could place the AMFR with
all marriage ages aggregated. This is the period AMFRs of Japan in 2000 (broken line with
small circles) instead of the cohort AMFR, for convenience. Similar age-patterns in different
countries are shown in, for example, Shryock, Siegel et al. (1973, p.478). From this figure, it
may be easy to understand that the aggregate AMFR at each age interval is a weighted sum of
these duration-specific fertility rates by marriage age and that this AMFR can be obviously
affected by the composition of marriage ages in each age interval. The aggregate AMFR is
the subject of this paper.

2.1 Deliberately controlled fertility

       For the mathematical expression of deliberately controlled fertility, we simply set g(t) as
the marriage duration-specific marital fertility rate where t or x-a is marriage duration, x being
the women’s age and a being age at marriage 5. The expression of marital fertility, g(t) means
that marital fertility is only decided by t (=x-a), duration of marriage and not by a or x.
Actually, the marital fertility by marriage duration is known to become slightly lower over the
duration of marriage as age at marriage gets older (see Figure 1; Henry, 1976; Inaba, 1995;
Billari et al. 2000). We exclude this effect and set marital fertility independent of marriage
age. This simplification enables us to understand more clearly the effects of marriage age and
duration-specific marital fertility on the AMFR, separately. We will give notice to this
simplification later as necessary (Section 3.1). Such effect as of marital fertility (g(t)) decline
by delayed marriage can be modeled on the combination of the effects by the two causes in
our model (For decline of marital fertility, see at the end of Section 2.1 and Simulation B1,
and for delayed marriage, see Simulation A4-A5 and B4).

       We also set m(x) as the age-specific marriage rate, and P as the size of the female cohort.
P does not change by age because we neglect mortality. Then M(x), the number of ever-
married (= currently married) women at age x is expressed by the integration of m(a), as
formula (1).

M(x)=P ∫
x

daam
0

)(                ……………………………………………………………….(1)

where we assume that no divorce and no widowhood occurs so that every marriage is a first
marriage.  B(x) or births to women of age x is expressed by the integration of births of women
married at the age from 0 to x, that is an integration of g(x-a), weighted by the marriage
density m(a), as formula (2).

B(x)=P ∫ −
x

daaxgam
0

)()(  …………………………………………………………………(2)
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From these two, by dividing (2) by (1), we get the AMFR.

AMFR=B(x)/M(x)=

∫
∫ −

x

x

daam

daaxgam

0

0

)(

)()(
    ………………………………………………….(3)

This formula shows that the AMFR is a weighted average of g(x-a), weighted by m(a), from
age 0 to x as we explained for Figure 1 6.
       The TMFR is the total of the AMFR over all ages. This is represented by formula (4).

TMFR= ∫
ω

0
)](/)([ dxxMxB

= dx
daam

daaxgam
x

x

∫
∫∫

−

0

0

0 )(

)()(ω
  …………………………………………………… …………(4)

        Meanwhile, the CMF, the completed  marital fertility rate is a ratio of the total births of a
cohort of women to the number of married women of the cohort at the end of reproductive
age, , as we postulated that there are no deaths and divorces.

CMF )(/)(
0

ω
ω

MdxxB∫=    ………………………………………………………………...(5)

Note that in spite of the similar appearance, the TMFR and the CMF are completely different
as shown in (4) and (5). Substituting B(x) and M(x) according to formulas (1) and (2), CMF is
expressed as follows and then we exchange the order of integration. The range of integration
can be treated as from 0 to infinite. Then we can divide the integration into a multiplication of
the two parts and cancel the integral of m(a), eventually leading to the expression (6).

CMF
daam

dtdatgam

daam

dxdaaxgam

daam

dadxaxgam
a

x

∫
∫∫

∫
∫∫

∫
∫∫ =

−
=

−
= ω

ωω

ω

ωω

ω

ω

0

00

0

0

0

00

)(

)()(

)(

)()(

)(

)()(

= ∫
ω

0
)( dttg                                    ……………………………………………….…..……..(6)

Thus we can say that the CMF equals the integration of g(t), i.e., the total of marriage-
duration-specific marital fertility rates 7. In other words, the quantum of g(t) is equal to the
CMF in our model.

        In conclusion, according to formulas (3), (4) and (6), if the marriage rate, m(x) is fixed
and marital fertility becomes kg0(t) from g0(t), meaning with no change in the duration-
specific pattern of marital fertility but only the level is changed by k times, then the CMF will
increase by k times and the AMFRs and the TMFR will also increase by k (constant). This
change in g(t) described above can be defined here as "quantum change without tempo
change". The term will be used hereafter in the meaning defined in this way.
        In the same manner, given g(t) fixed, if m(x) changes in quantum and not in tempo, then
the AMFR (the TMFR) and CMF do not change at all according to the same formulas.
       Hence, we can conclude more practically that the AMFR shows the change of the CMF
only in the special case where the tempos in m(x) and g(t) are both fixed. Conversely, the
change in tempo without change in quantum of m(x) or g(t) may cause changes in the AMFR
and in the TMFR as shown in formulas (3) and (4) but not in the CMF. In this case, the
AMFR cannot be used to show the level of the CMF. Such relations will be examined through
numerical simulations in the next section.
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2.2 Fertility with little voluntary control

      Concerning natural fertility or fertility with little voluntary birth control, we express the
marital fertility rate as G(x), instead of as g(x-a),  which is neither decided by age at marriage,
a, nor by marriage duration, t or x-a. This is the assumption we made, based on the finding by
historical demographers (Figure 1), and also adopted by others 8 (Page, 1977; Trussell, 1979,
1981; Trussell et al. 1982). The AMFR is, by definition, B(x) divided by M(x). Substituting
these by formulas (1) and (2) in the same way as controlled fertility, this reduced to G(x).

AMFR= B(x) / M(x) )(
)(

)()(

)(

)()(

0

0

0

0 xG
daam

daamxG

daam

daxGam
x

x

x

x

==
∫

∫
∫

∫
………………..……(7)

Though it is so obvious by the definition of G(x) itself, we followed the same definition made
for controlled fertility.
        Using this we get the TMFRa, the average number of children in the lifetime for women
who get married at age a. It is the total of age-specific marital fertility rates from age a to the
end of the reproductive period. This minimum age, a, is usually set as 20 years old for
comparison.

TMFRa = ∫
∞

a
dxxG )( ……………………………………………………………………..…(8)

       On the other hand, CMF (completed marital fertility) is expressed by formula (9).

CMF

)(/)(
0

ω
ω

MdxxB∫=

daam

dadxamxG

daam

dadxxGam
xx

∫
∫∫

∫
∫∫ == ω

ω

ω

ω

0

00

0

00

)(

)()(

)(

)()(
…………………………………………….(9)

       In fact, using this measure, CMF is very inconvenient to represent the level of marital
fertility because it depends on marriage distribution m(x), and m(x) can not be separated from
CMF though we usually want to show the marital fertility independent of marriage
distribution. That may be the reason why historical demographers use the TMFRa in (8)
rather than the CMF as representative of marital fertility in a society with little voluntary
fertility regulation in historical literature. This practice seems to have affected the studies of
controlled fertility as well, leading to careless usage of the AMFR or the TMFR, instead of
the CMF in (6) for fertility with variant control. Nonetheless, the AMFR shows the level of
the marital fertility as a part of the TMFRa if we assume the TMFRa is a representative
measure of marital fertility in a population with little deliberate fertility control.

       We have modeled the two fertility regimes as strictly different in mathematical
expression. We cannot, however, utterly deny that natural fertility also has a duration specific
characteristic to some extent, as shown in Figure 1. In fact, if the duration-specific marital
fertility, g(t), keeps high values for a fairly long marriage duration, meaning with weak
duration-dependent fertility control, then the AMFR approaches to almost the same for
different marriage ages, which is similar to natural fertility since the range of marriage age is
limited to certain ages relatively shorter than reproductive ages 9. Hence natural fertility also
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could be practically expressed by the same mathematical expression if g(t) could be
numerically set to reflect the reality. On the contrary, the sheer problem may arise when
marital fertility is expressed by the AMFR for controlled fertility. In practice, we may face the
transitionary phase of the two fertility regimes in particular societies and encounter a problem
whether or not the AMFR can be used for marital fertility measure. The key for the problem
would be the comparative observation of the AMFR with the CMF and m(x) instead of using
the AMFR alone if g(t) is not obtainable.

3 SIMULATIONS

3.1 Simulations of AMFR: How does AMFR relate to CMF?

      Hereafter, we mainly assume modern controlled fertility though the simulations here
could be also valid to a certain extent for fertility with little control if its marital fertility has
characteristics to some extent duration-dependent as mentioned in the last part of the previous
section (for a simulation of natural fertility as modeled in the last section, see Appendix A).
      In this section we conduct static simulations of the AMFR to find out the relationship
between the AMFR and the CMF (or quantum of g(t)) basically both for a cohort, which we
call "static" because we deal with only cohort rates (or period rates provided all vital rates are
constant in time) rather than both period and cohort.  We have already demonstrated in the
last section that change in the AMFR or in the TMFR can show the change in the CMF only if
tempos in m(x) and g(t) are fixed through the expression in the formulas (3) , (4) and (6). We
will specify the relationship by showing how the AMFR changes (using formula (3)) when
either of m(x) or g(t) is fixed and the other differs in tempo but not in quantum. Tempo is
defined here simply as the mean age of the function, as the higher moments of the two
functions can hardly influence the AMFR.

      We conduct five simulations; first, A1: base simulation, A2-A3: the postponement of
marital fertility, and A4-A5: marriage postponement. Note that forward shift or advancement
is the reverse of postponement, for which we need only to interpret the result reversely
without additional simulations. The result of quantum increase in g(t) or m(x) without change
in tempo is already explained in Section 2.1 and need not to be simulated.
      First, we set input data for the base simulation. The input is the hypothetical data shown in
Table 1 which describes the process of marriage and childbearing for a cohort that is 15 years
old in 1985 10. The cohort experiences these events as it grows old in the following years. As
all the variables should be discrete in a simulation model, vital rates, m(x) and B(x), are
measured in the age interval x and the marital status, M(x), is measured at the beginning of the
age interval of x. We set the data to represent the process as compressed as possible in time to
make it concise, but also so as not to lose the essential features of reality. The single year in
age and in calendar year is adopted to show effectively the mechanism of demographic
translation in dynamic simulation in the next section. Accordingly, age schedule is
compressed to 11 years (15-25 years old) 11 rather than 35 years (15-50 years old) to avoid
needless tediousness, though the level of rates remain realistic.
        The column m(x) shows the age-specific marriage rates. The age-specific births, B(x),
represents here fertility rate, since we set the number of women, N, as one for convenience
(interpret it as a unit of a large number). It is generated by the formula (2) 12, using the



10

marriage duration specific fertility rate, g(t), which is assumed to be (1,1,0), meaning that at
the duration of first year, the fertility rate is one and at the duration of the second year, one,
and the third year, 0 (Table 2). We can interpret this that all women in the cohort have their
first birth one year after the marriage and their second birth two years after the marriage. This
high value of marital fertility, g(t), is to adapt to compressed ages and to represent the
concentration at shorter duration and mostly monotonous decrease, as shown in Figure 1. (See
concentration of birth rate in duration of marriage of 5 years, for example, for Australian
women married in 1911-65 in Table 5.5 in Newell, 1988.) Meanwhile M(x), the proportion
married is directly derived from accumulating the marriage rate, m(x), from age 15 to each
age x.
      By dividing the fertility rate, B(x), by proportion married, M(x), we get the AMFR at each
age x. The AMFR at age 17 and afterward is 1.0, 1.0, 0.83, 0.7,…, monotonously declining. It
shows a maximum value of 1.0 at age 17 because at this age the births are all from women
married at age 16, all of whom have had their first child. At age 18, similarly, it becomes 1.0.
After those ages, those married with longer marriage duration will increase, making the
AMFR decrease continuously. The TMFR summing the AMFR over ages is calculated as
4.98. These four variables by age are shown in Figure 2 (Simulation A1), too.
        Note that the proportion married, M(x), should always be monotonously increasing
irrespective of the shape of m(x) and that the AMFR also, unless the shape of g(t) has a very
low value immediately after marriage (for example, g(t)=(0,1,1), Simulation A3, Figure 3)
which is not likely in reality.

      The tempo of g(t) is set to be slightly postponed in Simulation A2 (g(t) =(1, 0, 1) ) and
further postponed in Simulation A3 (g(t)=(0,1, 1)) instead of (1,1,0). Thus generated, the
AMFR at most ages except older ages drops dramatically, as shown in Figure 3, resulting in
an overall decline and the TMFR becomes 4.51 and 3.12, respectively, which is smaller than
that in the base simulation (4.98). In the same manner, if the g(t) is shifted backward as
childbearing starts after age γ (24 years old in our simulations) or the end of marriage
occurrence age, then the TMFR will be 2, equal to CMF because the denominator of the
AMFR, M(x), is all unity after age γ. On the contrary, if marital fertility is the earliest as g(t)
=(2,0,0), the TMFR becomes 6.37 which may be the maximum for CMF=2 (the graph not
shown). Thus, the earlier the tempo of marital fertility (g(t)), the greater the AMFR at most
ages except older ages. These are the results caused by the fact that the denominator of the
AMFR, the proportion married is always a monotonously increasing function. Hence, the
AMFR differs enormously depending on the relative position of births (decided by tempo of
g(t)) with M(x) even if the quantum of g(t) is constant.

        Next, we postpone the marriage rate m(x) so that the mean ages at marriage, MAM
becomes 20.4 years in Simulation A4 and 21.0 years (one year delayed) in Simulation A5
from 20.0 years in the base simulation (A1, Table 1). The results in Figure 4 show that,
though the AMFR does not decrease at youngest ages, it increases at most ages, foming the
similarly monotonously decreasing shape, resulting in augmenting the TMFR to 5.37 (A4) or
5.98 (A5) from 4.98. Note that the increase at oldest ages will be smaller if we take in the
decreasing effect in g(t) by increasing age at marriage. Nonetheless, the overall increase in
AMFR cannot be denied. These increases in the AMFR at most ages except the youngest ages
are caused not merely by the smaller denominator, the proportion married than the base
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simulation at the same ages. They are also caused by the fact that there are more women of
shorter marriage duration than the base simulation at the same age, yielding a higher birth rate
resulting in more births. For example, the percentages of one-year marriage duration are 50%
(A1), 57% (A4), and 67% (A5) at 19 years old. This positive relationship of the AMFR at
most ages with age at marriage is stated as the marriage duration effect and corroborated by
some authors (Freedman and Casterline,1982, p78; Hirosima, 1986).
       Simulation A4-A5 also implies that, comparing with baseline Simulation A1 reversely, if
m(x) is shifted forward in tempo, the AMFR decreases without any change in g(t). The earlier
the tempo of marriage rate, the smaller the AMFR at most ages. This fact shows that m(x) or
M(x) (proportion married) and the AMFR are not independent of each other. This may be
obvious if we look into the formula (3). As the change in m(x) is so common when we
analyze fertility changes, the requisite of independence of the two for the analysis often
mentioned in the textbook (e.g. United Nations, 1989) can be rarely  satisfied in more or less
controlled fertility.

        In sum, what the results imply in the observation by the AMFR of fertility decline (at
most ages except older ages) in the second and possibly even in the first demographic
transition is as follows. If we find an increase in the AMFRs, if it is accompanied by an
increase in the average age at marriage (in other words, the changes in the AMFR and age at
marriage are in the same direction), as Simulation A4-A5 describes, we should doubt that it
may be caused by an increase in age at marriage without an increase in quantum of marital
fertility (g(t)). In contrast, if the increase in the AMFR is accompanied by a constant or
decreasing average age at marriage (in other words, the changes are the opposite of each
other),  we can say the AMFR shows the real quantum increase in marital fertility, g(t), or
only its forward shift shown in Simulation A2-A3.
        Conversely, if we find a decrease in the AMFR and it is accompanied by a decrease in
the average age at marriage (changes in the same direction), then it is doubtful that a decrease
in the AMFR does not show the real decline in marital fertility (g(t)) but that it is only caused
by a decrease in marriage age, as in Simulation A4-A5. In contrast, if it is accompanied by a
constant average age at marriage or even an increase in it, the AMFR shows the real decrease
in marital fertility, g(t), or only its postponement, similarly.

3.2 Simulations of decomposition: Can AMFR identify the cause of fertility
change?

3.2.1 Period rates from cohort rates

       We conduct dynamic simulations to show what relationship the AMFR, over a period,
has with the quantum of marital fertility, the CMF or integral of g(t), for cohorts in the
analyses of change or difference in period fertility such as decomposition of change in the
TFR (by formula in note 1) (for CBR and Ig, see Appendix B and C). How does the period
AMFR express marital fertility when cohort m(x) or g(t) changes over time, when it is used in
such analyses? As we manipulate m(x) or g(t) in simulations, we can see whether the analyses
using AMFR correctly identify the causes of the changes or not. Note that though we use a
continuing change in time in simulations for the explanation of dynamic nature, only two
rates on different points are needed for decomposition.
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       We make the model in the direction from cohort to period because it is easier to describe
analytically and to understand, irrespective of the real causal relationship between the two
dimensions. Based upon the formulas for a cohort in the previous section, we will model
dynamic processes in period dimension. It is a numerical simulation model expressed by
spread sheet software, based on a rather simplified structure but with both cohort and period
dimensions which some authors expressed with more specified mathematical formulas (Inaba,
1995). Our model produces the period results with a set of cohort input so that we can observe
the mechanisms of demographic translation (Ryder, 1964) which we will explain. This
dynamic structure of the model is based on the structure of a micro-simulation model for
fertility (Kono et al., 1983). The calculations by Trussell, Menken and Coale (1982) (Figure
5, for example), based on cohorts with different parameters, are for the same purpose but
without an explicit dynamic mechanism of cohort-period translation.
       In the dynamic simulations the same vital rates shown in Table 1 first continue for
cohorts and suddenly change from a cohort. The changes are in either the quantum or the
tempo of the duration-specific marital fertility rate (g(t) ) or the age-specific marriage rate
(m(x)) of cohorts, making four cases: (B1) a decline in the marital fertility rate, (B2) a
postponement of the marital fertility rate, (B3) a decline in the marriage rate, and (B4) a
postponement of the marriage rate (Figure 5 through Figure 8).
       These cases all cause eventual or temporary fertility decline. Other cases that cause
fertility rise (marital fertility rise, forward shift of marital fertility, marriage rate rise, and
marriage rate forward shift) are the reverse of these cases so that we need not do additional
simulations. In this sense, any change in cohort fertility rates can be expressed by the
combination of these four cases.
       Table 3 and Table 4 show the mechanism of the model converting cohort rates to period
rates. We take the example of Simulation B4, because of its most interesting nature (tables for
other simulations are not shown but the mechanism is the same). In the simulations we start
from cohort rates, first in Table 3, the age-specific marriage rate m(x), and calculate the age-
specific fertility rate B(x) from marriage-duration specific marital fertility g(t)=(1,1,0) as in
static simulations. Meanwhile, in Table 4, M(x), the APM (age-specific proportion married),
and the AMFR are calculated by the same procedure as in static simulations.
      In Table 3, the TFR is calculated by summing B(x) for each year. The decompositions of
change in the TFR in each year from 1984 (one year before the beginning of the cohort
change) are conducted according to the formula shown in note 1. The change in the TFR and
the contributions by the changes in the AMFR (all age summed) and APM (proportion
married) (all age summed) are shown in Graph (A) and Graph (B) of Figure 5 to 8 for four
simulations.

     In each table, rates for a cohort are represented by a diagonal series of figures and the
period measures are presented on the vertical series. These tables are schematic Lexis
diagrams that show the relationship between cohort rates and period rates (Ryder, 1964;
Morgan, 1996). The diagram is an approximation since the time-age square does not exactly
correspond to the cohort-age parallelogram and this is exactly the case when the unit is
infinitesimal. Apparently, when all the rates are constant in time, these two series are identical
to each other.
      We assume that the change begins with the cohort aged 15 in 1985, which is shaded in the
tables. In the case shown in Table 3, this cohort suddenly shows the change in the marriage
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rate, postponed by one year. And the cohorts succeeding this cohort followed the same
schedule. Other changes in other simulations occur in the same way as this. As the real
changes occur more gradually, this model may seem to be unrealistic but can be easily
expressed and is ideal in showing the mechanism of changes.
       Before we get in the result of decomposition by simulations, we present a formalization
of a demographic translation by our model.

3.2.2 Tempo change in cohort

       As we observe period rates when cohort vital rates change, the change in cohort reflects
period rates in a certain way, and vice versa, which is called the demographic translation
(Ryder 1964). In the simulations, we set the tempo of fertility for cohort to change in two
cases, B2 and B4, where tempo in the marital fertility rate, g(t), or tempo in marriage rate,
m(x), for cohort delays, respectively. In these simulations, the quantum of these rates for the
period temporarily decreases by demographic translation. In fact, in Table 3, the total
marriage rate (TMR) decreases from 1 in 1985 to 0.8 in 1989-90 and again recovers to 1 in
1994 although the cohort ever-married rate (quantum of m(x)) always remains 1 and only its
tempo is set to be postponed from the cohort of 15 years old in 1985. This effect in marriage
rate is eventually reflected in the AFR and the TFR.
       Note that this cohort change (in tempo in this case) at one time can be the most
fundamental by our model (also, used by Morgan, 1996) though most authors have been
interested in continuing change, which fits to calculus (Ryder, 1964; Bongaarts and Feeney,
1998; Kohler and Philipov, 2001). Also, note that the decrease in the TMR in each year
caused by a one-year delay among cohorts is identical to each value of m(x), from youngest
age to oldest, i.e. 0.05, 0.10, 0.15, 0.20, … , and the maximum decrease is the maximum
value of m(x), 0.2 in 1989-90 in this case. Hence, the total loss in TMRs during the temporal
decline (1986-1993) is obviously equal to Σm(x), (�� �) or the original TMR of cohort. In
this simulation it is set as 1.0.
     This is the result caused by a one-year postponement. In general, the d year postponement
in the marriage rate will cause the total decrease of dM� �, meaning d multiplied by �� �,
over the period of temporal decline, where d can be positive or negative and the integer or
decimal (for the derivation of the relation, see Appendix D). We argue that this can be the
most fundamental and practical relation: what amount of quantum change in total in the
period quantum measure will be caused by any change in tempo of cohort rates 13.

3.2.3 Simulation of decomposition

     We simulate decomposition of change in period TFR  (by formula in note 1) as an example
of analyses using the period AMFR because its essence of the analysis is the same with other
analyses such as standardization, simulation etc. since the method of measuring the
contribution of a factor is basically by the difference between the real result and the
hypothetical result composed of the hypothetically differentiated value of the factor.
     In Simulation B1, shown in Figure 5, the duration-specific marital fertility, g(t), suddenly
changes to (1, 0.6, 0) from (1,1,0) from the cohort 15 years old in 1985. No change in m(x) is
supposed to occur. In fact the sudden decline in cohort marital fertility from 2.0 to 1.6 causes
the gradual decline in the period TFR from 2.0 to 1.6, shown in the lower part of graph (A).
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The upper part of graph (A) shows the changes in the mean age at marriage (MAM) and the
mean age at birth (MAB). There is no change in MAM because there is no change in m(x) but
there is a slight rise and decline in MAB. The eventual decline is easily understood as the
relative increase in the first births due to the decrease in second births. The temporal rise may
seem to be strange but is actually caused when earlier cohorts (older than the cohort 15 years
old in 1985) bear more second births than younger cohorts. Thus it should be noted that a
change in quantum of cohort rates causes a temporary opposite change in tempo in the period
rates (see Appendix E for more detail).
      Graph (B) shows contributions to the decline in the TFR from 2 to 1.6, -0.4. Here it is
totally attributed to the decrease in marital fertility expressed by the period AMFR, signified
by the line completely overlapping that of the TFR at any point in time. We may assess the
decomposition to be successful by itself (if we do not compare it with Simulation B2). This
may not be self-evident from the formulas (3) and (6) in Section 2.1.

     Simulation B2 shows the result of postponement of cohort marital fertility g(t) which
changes from (1,1,0) to (0, 1, 1), its quantum being constantly 2. In fact, Figure 6 shows a
gradual rise in the mean age at birth by one year, from 21.5 to 22.5, due to the one year delay
in marital fertility. The TFR shows a temporary reduction from 2.0 to minimum 1.6 due to
cohort-period translation through postponed B(x) for cohort. Note that this maximum decline
by 0.4 is equal to maximum of AFR, 0.4 (see Table 1), and that the total decrease in the TFR
from 1986 to 1996 is 2.0 as suggested by the formula (in Section 3.2.2) as the cohort total
fertility rate (completed fertility, CF) multiplied by 1 (year).
       This cohort-period translation effect is expressed in the decomposition by the negative
contribution of the change in the AMFR to that in the TFR. Fortunately, the superficial
decrease in the AMFR without change in the quantum of g(t) can play the role of depicting
the decrease in the TFR by the demographic translation even if it cannot show the real cause
of the change. Note that the TMFR by period shows a temporary decrease by the translation
and an eventual decrease by postponed g(t) without a quantum change (table not shown but
suggested by Figure 3). The decomposition shows that the TFR decline is attributed totally to
the change in marital fertility expressed by the AMFR at any point in time. In this sense, we
may assess this decomposition to be successful by itself. Given the whole process of temporal
change in the TFR, we will understand that the cause of change in marital fertility g(t) of
cohort is only in tempo not in quantum.
     However, when we are only given the period rates and the decomposition, can we
distinguish B1 and B2? Especially for B2, if we look before 1992, when the TFR is the
minimal? We may argue that decomposition by period rates may not be decisive as to whether
the decline in the TFR is caused by quantum (B1) or by tempo (B2) in marital fertility. If,
however, we carefully look into the change in mean age at birth (MAB), we may realize the
change by the former is very small.

      Simulation B3 shows the result of a decreased cohort marriage rate, m(x), where the
quantum of marriage rate, or proportion ever-married M(ω) (=Σm(x) ) declines suddenly from
1 to 0.8. No change in marital fertility, g(t), occurs. Figure 7 shows that this change causes the
gradual decline in TFR from 2 to 1.6 and the decomposition attributes the decline totally to
the marriage decline. We can assess this as successful by itself. Note that mean age at
marriage (MAM) temporarily rises by quantum decrease without any change in tempo in
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m(x), which is the same phenomenon as explained for the marital fertility rate in Simulation
B1.

    Simulation B4 simulates the postponement of cohort marriage rates. No change in marital
fertility, g(t), occurs again. We give one year delayed values of m(x), making the MAM
increase eventually from 20.0 to 21.0. Figure 8 shows the results which we have already seen
in Table 3 and 4. The MAB also increases from 21.5 to 22.5 by one year. The TFR
temporarily declines from 2.0 to minimum 1.6 according to the postponement of births for
cohort caused by postponement of marriages for cohort. This is a cohort-period translation
effect. Again, this maximum decline, 0.4, equals the maximum value of the AFR.  Note that
no cohort-period translation occurs in the AMFR as shown in Table 4 because the AMFR
maintains high values at youngest ages and does not shift to higher ages (see Figure 4, too).
Graph (B) shows that the AMFR contributed positively to the TFR change and the APM
(proportion married) contributed negatively to the TFR change, though the quantum of cohort
marital fertility (g(t)) remains constant. This result may be expected by static Simulation A4-
A5 (Figure 4) in the previous section. Also, if we look into Table 4, we understand that the
AMFR actually increases mostly at each age after the marriage postponement starts. But of
course, we cannot take it as an overall increase in marital fertility since g(t) is fixed. Thus we
should say this result of decomposition is a failure.
       However, if we are given only period data before 1991 when the TFR is minimal, the
result is very similar to the case of the decline in the marriage rate (B3). We argue that
decomposition by period rates may not be able to decide whether the decline in the TFR is
caused by quantum (B3) or by tempo (B4) in the marriage rate without knowing the marriage
age change.
      Note that the direction of changes in age at marriage (+) and the TFR (-) in demographic
transition is opposite but the direction of changes in age at marriage (+) and the AMFR (+) is
in the same direction as shown in Simulation B4.

      Since we may face in reality the mixture of the causes described in the four simulations, it
is important whether we can identify the cause by the decomposition. If we compare the
results of decomposition shown in Graph (B) of each simulation, the cause of the change in
the TFR is almost identifiable as the change in marital fertility (B1, B2) or marriage (B3, B4),
if we are given the result in B4 a little before 1991 when the TFR is minimum. As we
mention above, determining whether it is tempo or quantum, or to what extent, within marital
fertility and marriage, is impossible without the observation on the MAM and the MAB. The
most serious problem in the decomposition is the misleading rise in AMFR caused by the
change in tempo in the marriage rate (m(x)) as shown in Simulation B4. For example, when
declining marital fertility (B1) and postponed marriage (B4) are combined, the decline in the
AMFR by the former is cancelled by the rise by the latter, leading to the negligence of the
marital fertility decline if we are not careful about the MAM change, which seems to be the
case in recent East Asian societies.  If we find the change over the period in average age at
marriage (MAM), we should realize that it may be caused by the quantum change in cohort
m(x), too. Also, note that the AMFR increase by marriage age change (B4) is limited to
controlled fertility as shown in Section 2 (in contrast, for a simulation of this case for natural
fertility, see Appendix A).
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4 Discussions

4.1 AMFR increase in low fertility societies

        There have been a good many societies where marriage is one of the decisive
demographic factors of fertility because of the scarcity of births outside marriage. In such
societies, analyses of fertility decline by aggregate measures have often been conducted by
using AMFR. Recently among these, increases in the AMFR have been reported in many East
Asian societies with a remarkable increase in age at marriage, for example, in South Korea
(Eun, 2003; Jun, 2003), Hong Kong (Yip and Lee, 2002), Taiwan (Freedman et al., 1994;
Chang, 2003), and Japan (Ministry of Health and Welfare, 1998; Tsuya and Mason, 1995;
Population Association of Japan, 2002) 14.
      Hence, the decomposition almost unanimously results in that “decline in nuptiality
accounts for almost all the decline in the” fertility (the CBR or the TFR) “and declining
marital fertility for none of it” (Freedman et al., 1994). In these analyses of fertility decline
we should remember that the marriages and births have been constantly postponed. Under
these circumstances, as we have showed in Simulation B4, the decomposition of the TFR
decline using the AMFR will inevitably produce misleading results of the rising contribution
of the AMFR. Hence, this decomposition results in an exaggeration of the decline or the
postponement of the marriage rate and a negligence of the marital fertility decline as the cause
of the fertility decline.

        Let us take a closer look at the case of Japan. The percentage of illegitimate births in
Japan remained at about 1.5 percent in 2001 and all of the births are virtually from married
couples. The mean age of mothers at childbearing increased from 27.75 to 29.65 between
1970 and 2000. This is parallel to a marriage age increase for women from 24.2 to 27.0 (IPSS,
2002). According to a decomposition, the decline (-0.71) in the TFR from 1970 to 1995 (2.13
to 1.42) was decomposed into contributions of changes in marriage (proportion married) and
marital fertility (AMFR) as -0.75 and +0.05, respectively (Ministry of Health and Welfare,
1998) 15. From these kinds of results, it is widely believed in Japan that the fertility decline
since the middle of the 1970s has been caused almost solely by the postponement of
marriages and that marital fertility or the average number of children per couple has not
exerted a negative effect on fertility. This recognition has even aroused some objections and
doubts about allocating funds to support childrearing (The Wise, 2000).
          In contrast to those decompositions, if we use the CMF instead of the AMFR as a
cohort marital fertility measure, 30 percent of the recent TFR decline is attributed to (the
quantum and tempo in) marital fertility of cohort (Hirosima, 2001). Interestingly, another
simulation analysis, using the AMFR for cohort marital fertility, decomposed the fertility
decline as attributable predominantly to cohort marriage postponement and none to cohort
marital fertility (AMFR) (Takahashi, 2001). These results of two different simulations by
cohort variables that are intended to take into account cohort-period translation show that if
we represent the cohort marital fertility by the AMFR, the marital fertility doesn’t appear to
contribute to the TFR decline.  Also, Ogawa and Retherford (1993) stress the decline in
marital fertility (though explicitly mainly referring to first birth), by mostly relying on the
decomposition of the total fertility rate based on period parity progression ratios (TFRppr).
They attribute the change in TFRppr to the decline in marital fertility (period parity
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progression ratios from marriage to births) by 68.8% (from 2.09 to 1.84 in 1973-80) and
30.1% (from 1.84 to 1.70 in 1980-90) (Table 6).
          Further, in contrast to the increase in the AMFR by year, the total marital fertility rate,
the sum of the duration-specific marital fertility rate, for each year declined from 2.2 in 1980
to 1.9 in 1995 according to a representative fertility survey in Japan (National Fertility Survey
in 1997, IPSS, 1998; p.20). The ineffectiveness of decomposition using the AMFR for recent
fertility decline in these societies is obvious.

       We refer to another misleading decomposition of the TFR using the AMFR without time
change but geographical difference, where the difference between the TFR of Tokyo (1.23)
and that of all of Japan (1.52) in 1990 (-0.29) was decomposed into differences of proportion
married (–0.29) and marital fertility (AMFR) (0.00) (Ishikawa, 1992). However, the
interpretation that the marital fertility in Tokyo was as high as the average of overall Japan
has been disproved by other analyses (Hirosima and Mita, 1995). According to the analyses,
the total marital fertility rate (composed of the marriage duration fertility rate) in Tokyo was
1.876 in 1982-1986, whereas that for all of Japan was 1.997, according to data from the Ninth
National Fertility Survey, 1987 in Japan. Furthermore, the marital fertility (ever-born
children) of women aged 35-39 in Tokyo (1.637) is lower than that for all of Japan (1.811) by
0.174, according to the own children tabulation in the Population Census of 1990. We should
note that the age at first marriage of women in Tokyo was 26.7 years and that it is older than
that for all of Japan (25.9 years old) by 0.8 years in 1990 (Vital Statistics of Japan).

4.2 Two-tempo question in fertility transition

         Though our model is developed primarily for controlled fertility, it may be more or less
helpful for less-controlled fertility because it has a duration-dependent characteristic to some
extent, as commented on in Section 2 and suggested for even natural fertility in Figure 1.
         Among decompositions of fertility decline in demographic transition, in terms of the
TFR or the CBR, there have been many reports of an increase in the AMFR, where marriage
age increases. For example, in Taiwan for 15-19 and 20-24 years old from 1961 to 1970
(Freedman, Hermalin and Sun, 1972), in West Malaysia under 25 between 1960 and 1969
(Cho and Retherford, 1973), in South Korea for “younger married women” from 1960 to
1966 (Coale, Goldman and Cho, 1982 16), and in Bangladesh, Nepal and Pakistan for most of
the main age groups (15-19 to 35-39) from 1960-64 to 1980-84 (Retherford and Rele, 1989).
These increases in the AMFR were conceived by the authors as “a puzzling increase”
(Freedman, Hermalin and Sun, 1972), a “rather irregular pattern” (Cho and Retherford, 1973)
or a possible “measurement error” (Retherford and Rele, 1989).
      The increase in the AMFR at mostly younger ages in addition to the overall fertility
decline, can be interpreted as the tempo change in marital fertility (g(t)) as presented by
Donaldson and Nichols (1978). In fact, the advancement in the tempo of duration-specific
marital fertility (g(t)) was substantiated by the analyses of survey data and given substantive
explanations (Donaldson and Nichols, 1978; Freedman and Casterline, 1982; Rindfuss and
Morgan, 1983). As shown in (the reverse of) Simulation A2-A3, the increase in the AMFR
can be really caused by the advancement in the tempo of g(t) without an increase in the
quantum of g(t).
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      If one argues, however, that the increase in the AMFR is totally accounted for by this
tempo change, it may be an exaggeration. Because another tempo change in the opposite
direction (postponement) in the marriage rate (m(x)) also increases the AMFR for most ages
except the youngest ages as shown in Simulation A4-A5 if the marital fertility has the
duration dependent characteristic to a certain extent. This effect must not be overlooked.
      The increase in the AMFR at younger ages makes the contribution by decrease in the
overall marital fertility small to the fertility decline, which some demographers have found
strange. Freedman, Hermalin and Sun (1972) appropriately cast doubt on standardization
using the AMFR as exaggerating the effect of marriage change because those who postpone
marriage are likely to be those with eventually lower fertility (CMF).
      Then, what will be the result in the quantum of age-specific fertility (TFR) by such tempo
changes in age-specific marriage rate (+) and duration-specific marital fertility (-)? If the
change in the latter is smaller than that in the former, this may be called a catch-up of family
formation, resulting in a smaller decline in the TFR. On the contrary, if the TFR increases, the
advancement of tempo in g(t) should be characterized more than as a catch-up including even
an increase in the quantum of g(t). Therefore, the rise in Malay fertility in the late 1970s and
early 1980s seems to have been caused by factors other than  "primarily a short-term response
to the very sharp rise in age at marriage and (consequent later schedule of family formation)"
(Hirschman, 1986, p.179).

        Also, in China, an increase in the AMFR from 1984 to 1987 is reported but, in contrast
to the cases above, with a marriage age decrease (Zeng et al., 1991). An increase in the
AMFR may be caused by a forward shift or an increase in the duration-specific marital
fertility rate (g(t)) as simulated (B1 and B2) in the last section. Furthermore, as the reverse of
Simulation A4-A5 suggests, the advancement in marriage rate, m(x), makes the AMFR
decrease against what Zeng et al. (1991) speculated. Thus the change in marital fertility (g(t))
(in form of forward shift or increase) may be larger than observed by an increase in the
AMFR. If it is a forward shift rather than an increase in the g(t), it may not be a failure in the
family planning program.
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Appendix A: Simulation for natural fertility

In natural fertility marital fertility can be modeled basically as an age-specific function G(x) =
AMFR as shown in Section 2. By this model, the influence of marriage on marital fertility is
clearly shown in formulas (7) and (8) (no influence) but rather that on age-specific fertility
rate (AFR) and the TFR is of some importance.
The AFR is a multiplication of G(x) by the APM (age-specific proportion married). Thus the
TFR for a cohort or completed fertility (CF) is expressed as follows, using G(x) instead of
g(x-a) in formula (2),
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 This formula shows that CF is swayed by whether proportion married is high or not over the
ages where G(x) is large. Since marital fertility in natural fertility G(x) monotonously
decreases with age as shown in Figure 1, the later the age at marriage, the smaller the CF, as
shown in Figure 9 (C) . In dynamic simulation for natural fertility, we postulate that the age at
marriage suddenly changes from a cohort in the same manner as it does in the dynamic
simulations in Section 3. The result in the period TFR looks the same as the case of quantum
reduction in g(t) (Simulation B1, Figure 5) or in m(x) (Simulation B3,  Figure 7) because no
shift at all occurred in the AFR over later ages. But the temporary decrease in the total
marriage rate is the same as Simulation B4 in Figure 8. This means that tempo change in m(x)
causes demographic translation in the total marriage rate but not in the TFR for natural
fertility. Trussell, Menken and Coale (1982; Figure 5) shows the same decrease in the TFR
depicted with a more controlled fertility which approaches the case with marriage delay of
Simulation B4.
     The values of G(x) are set as 0, 0, 1, 1, 0.9, 0.8, 0.75, 0.7, 0.5, 0.1 for age 15 to 26 (for
corresponding real ages, see note 11), referring to "average" natural fertility in Henry (1961),
and setting m(x) the same as in Simulation B4.

Appendix B: Simulation for CBR

      We have examined the analysis by decomposition of only TFR change in Section 3.2. As
the relationships, however, of the AMFR to the CMF shown in Section 2 and 3.1 are the same
in any kind of analyses, the result referring to decomposition of the TFR can also be relevant
to any analyses using the age-specific fertility rate (AFR) and the AMFR. Why? We show the
reason using the case of the CBR.
       The CBR can be expressed as follows.
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∑
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where N denotes total population and x, reproductive age.
        This equation shows that the CBR is a kind of weighted total of the AFR, similar to the
TFR where the weights are all unity. Thus if the weights are all constant in time, demographic
translation holds for the CBR, too, as an extension for the TFR. In reality the weight may
change in time, and the effect can be modified. The modifier or weight is the proportion of
women in reproductive ages and the proportion of reproductive age women to population. In
certain extreme conditions, these weights may cancel out the effect by demographic
translation. Hence, since the CBR for cohort is hardly meaningful, we actually argue that the
change in the TFR (completed fertility) or in the AFR for cohort affects the (period) CBR by
cohort-period translation.
       Further, the discussion above holds for simulations of the CBR with the AMFR and the
APM as well, if we divide the AFR into these two elements, since the AMFR and the APM
have no direct relation with weights shown above,

Appendix C: Distortion in Ig and Ig ’ by marriage age change
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       We examine the marital fertility index, Ig by Coale (1967) because it is based on age-
specific rates including the AMFR and has been used as an important measure in many
historical and contemporary studies (see, for example, articles in Ruzicka, 1982; Coale and

Watkins, 1986).

It is defined as follows (Coale, 1967).
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where hi denotes the fertility of married Hutterite women in each five-year age interval in the
reproductive span, fi, the observed fertility rate of married women (AMFR) in each age
interval in the specified population, and Mi, the number of married women in the age interval.
(From Mi , age-specific marriage rate m(x) can be estimated.) This can be expressed as
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where Pi denotes number of women in age interval i. We can express the numerator as
B=ΣfiMi, a sum of products of the AMFR by Mi, and apply different tempos in g(t) producing
a different AMFR in Ig. This procedure obviously does not affect B and hence Ig at all. Thus Ig

has the virtue of not being affected by tempo in g(t).
       Then how about tempo in the age-specific marriage rate, m(x)? The conclusion is that Ig

is really affected by the change in tempo of m(x).  This seems to have been known by
demographers (Freedman and Casterline, 1982; Guinnane et al. , 1994). But their arguments
are not convincing.
       As we see in the formula above, the numerator is constant, B. The denominator is a sum
of Mi weighted by hi. The weight, hi has a declining shape after age 20-24. If we express Mi as
the product of proportion married (Mi / Pi) (M(x) in our text) and Pi , then the denominator is
expressed as a sum of proportion married weighted by hiPi. Pi has the tapering shape unless
the population is decreasing with very low fertility and it only accelerates the declining shape
of hi. For convenience hereafter, we assume Pi as constant at any age interval because it only
accelerates the effect we discuss. Then we can regard Mi as proportion married as in the text
(M(x)).  Hence if the tempo of Mi delayed then the integral becomes small and Ig becomes
higher for the same marital fertility, fi. Thus, we conclude that the change in age at marriage
and its effect on Ig are positively correlated, i. e.  if age at marriage increases, Ig increases for
the same fi. It looks like the property of the AMFR in controlled fertility, though it has no
direct connection with the AMFR. We can refer to this problem as the marriage age problem
too. In this sense, we may be able to say that Ig indirectly involves the AMFR in connection
with Ig ’ which, we will show, directly uses the AMFR.
        Coale and Tready (1986; p.161), however, argue just the opposite. “Clearly, when
fertility is highly controlled, Ig is higher with a given age schedule of marital fertility in an
early marrying population than in a late marrying population”. This assertion seems not to be
based on calculation and the error seemingly happened from another expression of Ig in the
very complicated form shown in their text.
       In fact, Ig in Sweden in 1950-60 would be 1.49 times higher had the age schedule of
marital fertility of 1950-60 occurred with an age distribution of married women the same as in
1900-10 (late marrying population, not early marrying population), calculated using nuptiality
rates in Bogue (1969), Table 17-6.
       Also, note that the explanation shown above should not be limited to controlled fertility.
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       At the same time, the index of proportion married, Im will be skewed in the opposite
direction. Im is defined as follows (Coale, 1967).
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As shown in the formula, the numerator is the sum of products of hi (Hutterite fertility rate),
the proportion married and the proportion of population by age interval. As we argue on the
decreasing shape of hi, it is convenient to assume Pi is constant at any age interval since the
proportion of population by age interval only accelerates the decreasing shape of hi. If we
assume Pi is constant at any age interval, then we can regard Mi as the proportion married as
in the case of Ig.
The numerator and denominator are weighted sums.  If there were no weight, it would be not
affected by the distribution of Mi or Pi . The distribution of hi has a declining shape as aging
so that the later marriage has a negative effect in the numerator. In spite of the same quantum
of marriage rate, the tempo of marriage rate affects the index Im in the opposite direction.
Hence, when marriage is being postponed, the decline of proportion married by Im is
exaggerated and marital fertility decline by Ig is underestimated.

       To avoid the arbitrariness of Mi in Ig, Ig ’ based upon direct standardization is proposed

(Knodel, 1986) as 
∑
∑=

ii

ii
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I ’  where Si is the number of married women in the standard

population. The influence of marriage age is avoided by using the same married women
population of Si for Ig ’. Then the influence of marriage age on fi (AMFR) discussed in this
paper is introduced. Actually, Ig ’ is a weighted sum of the AMFR as shown below. Thus it
has the same problem with the AMFR shown in this paper.
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        Hence, we can conclude that the marriage age problem cannot be avoided in using Ig or
Ig ’ because of its indirect or direct use of AMFR. Nevertheless, if the fertility is natural
fertility, Ig ’ can express the quantum of marital fertility rate as it is not affected by marriage
age, as stated in Section 2.2. If we want to detect the onset of demographic transition,
however, Ig ’ has the same problem with Ig.

       That Ig is affected by marriage age notwithstanding the fertility regime may cause a
serious problem. When marriage is stable or getting later, if we detect the decline in Ig, we can
interpret it as the decline of g(t) because marriage change in this case does not deflate Ig. But
when marriage is getting later, which is very likely in demographic transition, it is very
difficult not to miss the decline in marital fertility because the delay in marriage inflates Ig. In
this situation, we will find the increase of marital fertility even if the g(t) does not change or
even decline to a certain degree. Also, we may find the decline later than the reality.
Fortunately it seems not to be the case in the West because "the demographic transition in the
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West resulted mainly from a decline in marital fertility, while nuptiality levels were relatively
stable" (Freedman, 1982). Obviously, this was not the case in Asian countries (Coale,
Goldman and Cho, 1982; Freedman and Casterline, 1982; Kobayashi, 1982). For example, in
Japan, the contention that "the proportion married was falling before the major decline in
marital fertility occurred" in the demographic transition (ca 1920-1960) measured by Ig and Im

(Tsubouchi, 1970) may be reexamined to know to what extent the decline in marital fertility
was really delayed.

Appendix D: Derivation of total effect on quantum of period rate by tempo
change in cohort rate

         The theorem about the tempo change by real number can be proved in two ways.

Proof 1. Let us take 1/H years as a unit of the Lexis diagram and a change of one unit (1/H)
from the first unit of a year from a cohort by the unit (instead of a one year change on the
Lexis diagram of a one year unit, as explained in the text). Think, for example, of a diagram
with grids by month and a one-month delay from the first cohort by month of a year (H=12).
Then the diagram will look almost similar to that shown in Table 3, filled with many more
figures by month. Then, the tempo change for a unit (month) change for cohort (by month)
obviously results in the total change of T because the TFR for a cohort is represented by T.
But the weight of a (month) cohort in a year is 1/H, so that the total change in quantum of
period rate is T *1/H  =T/H over the period of reproduction starting from the beginning of the
change. QED.

Proof 2. We discuss the question using as an illustrative example, the change in marriage rate
in Table 3. We set the age-specific marriage rate m(x) for cohorts until 1984 and after 1985
(at age 15) as ai and bi, respectively, where i=1,2, 3, …,10,  and age x=14+i. We set life time
cohort marriage rate as T=Σ ai  =Σ bi, and the difference between the two average ages of
marriage rate as d. In  Table 3, d is set as 1 year. But now we set it as a certain decimal,
positive or negative. Thus bi should be different from the values shown in Table 3 to satisfy
the condition mentioned above.
      As average ages of ai and bi are expressed by Σiai / Σ ai +14.5 and Σibi / Σ bi+14.5,
respectively, then d=Σibi / Σbi - Σiai / Σai or dT=Σibi - Σiai… ………..………… …………(a)
The total marriage rate for each year in the period that is influenced by the tempo change in
the cohort rate is expressed as follows;
1985: a2+a3+a4+a5+a6+a7+a8+a9+a10     +b1      =T+(a2-b2)+(a3-b3)+(a4-b4)+…+(a10-b10)
1986: a3+a4+a5+a6+a7+a8+a9+a10     +b1+b2      =T+(a3-b3)+(a4-b4)+(a5-b5)+…+(a10-b10)
1987: a4+a5+a6+a7+a8+a9+a10     +b1+b2+b3      =T+(a4-b4)+(a5-b5)+(a6-b6)+…+(a10-b10)
…
1991: a8+a9+a10     +b1+b2+b3+b4+b5+b6+b7=T+(a8-b8)+(a9-b9)+(a10-b10)
1992: a9+a10     +b1+b2+b3+b4+b5+b6+b7+b8=T+(a9-b9)+(a10-b10)
1993: a10     +b1+b2+b3+b4+b5+b6+b7+b8+b9=T+(a10-b10),
Note that b1=T-b2-b3-b4-b5-b6-b7-b8-b9-b10,
         b1+b2= T-b3-b4-b5-b6-b7-b8-b9-b10, and so forth.
Then the total of these from 1985 to 1993 is
 9T+a2-b2+2(a3-b3)+3(a4-b4)+…+8(a9-b9)+9(a10-b10)
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=9T+a1-b1+2(a2-b2)+3(a3-b3)+…+9(a9-b9)+10(a10-b10) - Σ ai  + Σbi

=9T + Σiai  - Σibi  - Σ ai  + Σbi

=9T-dT                                         (substituting by dT using formula (a))          QED.
Note that the figure, 9, comes from the span of rates (for birth, the period of reproduction, 35
years in reality).
This result means that the total amount of loss caused by the delay, d, of cohort rates over the
specific period (e.g. reproductive period) is dT. This applies even if d is negative as noted
above.

Appendix E: Tempo change in period caused by quantum change in cohort

      We take Simulation B1 (Figure 5) for explanation. The eventual change in the mean age
at birth is caused by the change in composition of births by order. Thus if we calculate the
mean age at birth by birth order in each year, the eventual change in the mean age at birth will
not appear. But the temporal change (rise) in the mean age at birth in about 1990-91 is caused
by the compositional change in births by cohort (decrease in births of younger cohorts), not
by the compositional change in order-specific birth rate. Hence the rise does appear even if
the mean age at birth is calculated by birth order. Such procedure by birth order proposed by
Bongaarts and Feeney (1998) ignores this effect and assumes the change in tempo of period
fertility as being only caused by a change in tempo of cohort fertility. Even a pure quantum
change (decrease) in cohort causes a temporary tempo change (delay) in period as Wunsch
and Termote (1978) writes, “synthetic period tempo measures do not usually correspond to
true cohort measures, as they are also influenced by cohort intensities”. Note that the
influence is opposite or negative, meaning that the decrease in any order birth rate for cohort
causes a temporary rise, not drop, in the average age at birth in period as in this case and
increase in birth rate for cohort causes its temporal drop. (Ryder (1983), Keilman (2001) and
Suzuki (2002) give similar relations in quantitative terms in continuous changes.)
      If we adjust the TFR by the delay in period derived from the cohort quantum decrease, as
proposed by Bongaarts and Feeney (1998), the adjusted quantum will be distorted to be larger
and underestimate the decrease in it.

Notes
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where denoted as )(xf = )(/)( xMxB  (AMFR), )(/)()( xPxMxn = (APM), and interpreted

the first term as a contribution of difference in marital fertility rate, and the second term as a
contribution of difference in proportion married.

2) According to Blake (1985) and Wilson et al. (1988), the AMFR at every age is slightly
higher for a marriage cohort that married at later ages because of their shorter duration from
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marriage at the same ages in natural fertility, too (see Figure 1). The increases are, however,
relatively small compared to the high level of fertility.

3) Tachi (1936) expressed his critical view, possibly among the first in the world, about
standardization of the CBR using the AMFR, introducing the discussions through Kuczynski
(1935). Against his own remarks, he used the standardization for Japanese fertility in 1920,
1925, and 1930, which may be inappropriate since the fertility was departing from natural
fertility by spreading fertility control over the period.

4) For period observation, a fertility measure corresponding to completed marital fertility
(CMF) is usually called the total marital fertility rate, which is a sum of the duration-specific
marital fertility rate over the duration of marriage in a specific year. This is different from the
TMFR defined in formula (4).

5) On the contrary, Ruzicka (1974) postulates the AMFR (f(m) by his notation) as the
fundamental marital fertility rate as we model for natural fertility in formula (7) (G(x)), and
analyzes the CMF for Australian cohort 1906-1941 by our formula (9) (C[a]45 by his
notation). We argue that unless the fertility of these cohorts can be modeled as natural fertility
(marital fertility variant by age but constant by marriage age), his arguments may not be
justified.

6) This formula corresponds to formula (8) in Trussell (1981) and in Trussell et al. (1982)
which includes age (x) and duration (t)-specific marital fertility, g(x, t)=Tn(x) exp(-st), where
Tn(x) denoting age-specific natural fertility level and s, degree of fertility control. This model
can neatly express fertility both natural and controlled. By this model, however, it is difficult
to express tempo change (or difference) in duration-specific marital fertility without quantum
change, which is likely to occur in demographic transition. If fertility-related behavior itself
may change in the process of demographic transition in certain societies (Rindfuss and
Morgan, 1983), it may be problematic to model such controlled fertility based upon a natural
fertility model.

7) For the analysis of period data, we can define the CMF as follows, analogously to formula
(5),
CMF=TFR/TFMR,
using the total fertility rate (TFR) and the total first marriage rate (TFMR) because these are

equivalent to ∫
ω

0
)( dxxB  and �� �, respectively if the vital rates are constant in time.

If we decompose the TFR decline by these period measures, the decomposition may produce
better results than that using the AMFR, even if the time constant assumption does not exactly
fit the reality (Inaba, 1995), since it does not involve the problem described in this paper.

8) The formula shown in note 6 by Trussell (1981) and Trussell et al. (1982) reduces to
g(x)=Tn(x) if we set the degree of fertility control, s=0.

9) In Figure 4 in Section 3, if we give g(t), for example, as (1,1,1) instead of (1,1,0) then the
declining curves become convex and more similar to curves for natural fertility in Figure 1.
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10) For convenience, we define the rates for all women of a cohort rather than for single
population or parity specific population in the cohort. Note that age-specific rates for all
(status combined) population of a cohort can be easily converted to occurrence-exposure rate
if it is given from the youngest age.

11)If the rates should be more realistic, take the age from 15 to 26 in Table 1 as 0-14, 15-19,
20-22.5, 22.5-24, 25-27.5, 27.5-29, 30-32.5, 32.5-34, 35-37.5, 37.5-39, 40-44, 45-49,
respectively.

12) To illustrate the calculation of B(x), let us take B(18) as an example, which is the sum of
second births of those married at age 16, i.e. 0.05 (marriage rate) multiplied by 1 (marital
fertility rate at duration of the second year) and the first birth of married at age 17, 0.10
(marriage rate) multiplied by 1 (marital fertility rate at duration of the first year), yielding
0.15.

13) If we know the tempo changes dt of a certain range of cohorts (t=1,2,3,…), we can exactly
quantify the total amount of change in quantum of period rates over the period of its
influence, which will be ΣdtMt, expressing quantum of cohort rates as Mt given no change in
the age pattern. (By this formula, the lost fertility rates for the Japanese cohorts born in 1950-
1989 was estimated to be 3.91, Hirosima, 2000)
       If the same tempo change (d years) continues successively for consecutive cohorts with
the same quantum of the TMF, then the decrease in quantum measure per year will be
approximately TMF-dTMR or (1-d)TMR which coincides with Ryder’s argument (1964), as,
needless to say, this discussion holds for the TFR as well, where we exchange the TMR with
the TFR, m(x) with B(x), and �� � with the cohort completed fertility.

14) More specifically, rises in the AMFR were reported in South Korea, for women aged 25-
29, 30-34 and 35-39 between 1985 and 2000 (Eun, 2003; Jun, 2003), in Hong Kong, for 20-
24, 30-34, and 35-39 between 1986 and 1996 (Yip and Lee, 2002), in Taiwan for 15-19 to 35-
39 from 1985-2000 (Chang, 2003; except 20-24 from 1983 to 1991, Freedman et al., 1994),
and in Japan for 15-19 to 45-49 except 20-24 from 1970 to 2000 (Ministry of Health and
Welfare, 1998; Tsuya and Mason, 1995; Population Association of Japan, 2002). Singulate
mean age at marriage of women in Korea was 23.2 in 1981 and 27.0 in 2002 (Eun, 2003), and
median age at first marriage of women in Hong Kong was 23.9 in 1981 and 27.0 in 2000 (Yip
and Lee, 2002). Percentage of births outside marriage in Hong Kong was 1-2 per cent in
1987-1997 (Yip and Lee, 2002).

15) Tsuya and Mason (1995) decomposed the change in the TFR, -0.395 (-100%) from 1975
to 1990, as -149% by marital composition and 49% by marital fertility.

16) Actually, Coale, Goldman and Cho (1982) refers to Ig rather than the AMFR. We include
it here due to similar nature of Ig to the AMFR for convenience (see Appendix C).

References



26

Barclay, George W. 1958. Techniques of Population Analysis, New York, John Wiley &
Sons, Inc.

Billari, Francesco C., Piero Manfredi, Alessandro Valentini. 2000. “Macro-demographic
effects of the transition to adulthood: multistate stable population theory and an
application to Italy,” Mathematical Population Studies 9 (1): 33-63.

Blake, Judith. 1985. “The fertility transition: Continuity or discontinuity with the past?” In
International Union for the Scientific Study of Population, International Population
Conference, Florence 1985 , Liège, Vol. 4, pp. 393-405.

Bogue, Donald J. 1969. Principles of demography. New York: John Wiley and Sons.
Bongaarts, John. 2002. “The end of the fertility transition in the developed world, Population

and Development Review 28 (3): 419-443.
Bongaarts, J. and G. Feeney. 1998. “On the quantum and tempo of fertility,” Population and

Development Review 24 (2): 271-291.
Chang, Ming-Cheng, 2003, “Demographic Transition in Taiwan,” Journal of Population and

Social Security : Population Study, Supplement to Volume 1.
http://www.ipss.go.jp/English/WebJournal.files/Population/2003_6/22.Chang.pdf

Cho, Lee-Jay, and R. P. Retherford. 1973. “Comparative analysis of recent fertility in East
Asia.” In International Union for the Scientific Study of Population, Proceedings of
International Population Conference, Liege, Vol. 2, pp. 163-181.

Coale, Ansley J. 1967. “Factors associated with the development of low fertility: An historic
summary.” In Department of Economic and Social Affairs, United Nations (ed.)
Proceedings of the World Population Conference. Belgrade, 30 August - 10 September
1965 ; Volume 4: Selected Papers and Summaries, Migration, Urbanisation, Economic
Development, New York, pp. 205-209.

Coale, Ansley J. and T. James Trussell. 1974. “Model fertility schedules: Variations in the
age structure of  childbearing in human populations,” Population Index 40 (2): 185-258.

Coale, Ansley J., Noreen Goldman, and Lee-Jay Cho. 1982. “Nuptiality and fertility in the
Republic of Korea.” In Lado T. Ruzicka, (ed.) Nuptiality and Fertility, Belgium: Ordina
Editions, pp.43-60.

Coale, Ansley J., and Susan Cotts Watkins (eds.). 1986. The Decline of Fertility in Europe:
The Revised Proceedings of a Conference of the Princeton European Fertility Project,
Princeton: Princeton University Press.

Coale, Ansley J., and Roy Treadway. 1986. “A summary of the changing distribution of
overall fertility, marital fertility, and the proportion married in the provinces of Europe.”
In Ansley J. Coale and Susan Cotts Watkins (eds.) The Decline of Fertility in Europe:
The Revised Proceedings of a Conference of the Princeton European Fertility Project,
Princeton: Princeton University Press, pp.31-181.

Donaldson, Peter J. and Douglas J. Nichols. 1978. “The changing tempo of fertility in Korea,”
Population Studies 32 (2): 231-249.

Eun, Ki-Soo. 2003. “Understanding Recent Fertility Decline in Korea,” Journal of Population
and Social Security : Population Study, Supplement to Volume 1.
http://www.ipss.go.jp/English/WebJournal.files/Population/2003_6/20.Eun.pdf

Feeney, Griffith. 1991. “Fertility decline in Taiwan: a study using parity progression ratios,”
Demography, 28 (3): 467-479.



27

Feeney, G., Feng Wang, Mingkun Zhou, and Baoyu Xiao. 1989. “Recent fertility dynamics in
China: results from the 1987: One Percent Population Survey,” Population and
Development Review 15(2): 297-322.

Freedman, Ronald, Albert Hermalin, and T. H. Sun. 1972. “Fertility trends in Taiwan: 1961-
1970,” Population Index 38 (2): 141-166.

Freedman, Ronald. 1982. “Introduction.” In Lado T. Ruzicka (ed.) Nuptiality and Fertility,
Belgium: Ordina Editions, pp.1-6.

Freedman, Ronald and John Casterline. 1982. “Nuptiality and fertility in Taiwan.” In Lado T.
Ruzicka (ed.) Nuptiality and Fertility, Belgium: Ordina Editions, pp. 61-99.

Freedman, R., M. C. Chang, and T. H. Sun. 1994. “Taiwan's transition from high fertility to
below-replacement levels,” Studies in Family Planning 25 (6): 317-331.

Guinnane, Timothy W., Barbara S. Okun, and James Trussell. 1994. “What do we know
about the timing of fertility transitions in Europe?,” Demography 31 (1): 1-20.

Henry, Louis. 1961."Some data on natural fertility", Eugenics Quarterly 8: 81-91.
Henry, Louis. 1976. Population: analysis and models, London: Edward Arnold.
Hirschman, Charles. 1986. “The recent rise in Malay fertility: A new trend or a temporary lull

in a fertility transition?,” Demography 23 (2): 161-184.
Hirosima, Kiyosi. 1986. “Does rise in age-specific marital fertility rate mean rise in fertility of

couples?: A mathematical analysis of marital fertility,” Jinko Mondai Kenkyu (The
Journal of Population Problems), No. 179: 35-48. [in Japanese with English Summary]

Hirosima, Kiyosi. 2000. “Decomposition of the decline in the total fertility rate since 1970's
in Japan: Has not married fertility affected?” Jinko Gaku Kenkyu (The Journal of
Population Studies), No. 26: 1-20. [in Japanese with English Summary]

Hirosima, Kiyosi. 2001. “Decomposing recent fertility decline: How have nuptiality and
marital fertility affected it in Japan?” Paper presented at the Session S51: Mathematical
demography of the 24th IUSSP General Population Conference, Salvador, Brazil, 18-24
August, 2001. http://www.eco.shimane-u.ac.jp/`hirosima/KOJIN/ronbun/decomp.html

Hirosima, Kiyosi, and Mita, Fusami. 1995. “Prefectural differentials in recent fertility,” Jinko
Mondai Kenkyu (The Journal of Population Problems) 50 (4): 29-30. [in Japanese with
English Summary] http://www.ipss.go.jp/English/Jinkomon/50_4_p29-30.html
(Abstract)

Inaba, Hisashi. 1995. “Human population reproduction via first marriage,” Mathematical
Population Studies 5 (2): 123-144.

IPSS (National Institute of Population and Social Security Research of Japan). 1998. Report
of 11th Fertility Survey of Japan, 1997. [in Japanese]

IPSS (National Institute of Population and Social Security Research of Japan), 2002,
Demographic Statistics: 2002. [in Japanese]

Ishikawa, Akira. 1992. “Kinnen niokeru chiiki syussyo hendo no yoin (Components of recent
regional changes and differences in fertility),” Jinko Mondai Kenkyu (The Journal of
Population Problems) 48 (3): 46-57. [in Japanese]

Jun, Kwang-Hee. 2003. “Fertility.” In Kim, Doo-Sub, Sang-Tae Park, and Ki-Soo Eun (eds.)
Population of Korea. Korea National Statistics Office. [in Korean]

Keilman, Nico, 2001, “La transition démographique: des indicateurs du moment aux
indicateurs de génération et réciproquement.” In Graziella Caselli, Jacques Vallin, et
Guillaume Wunsch (eds.) 2001. Démographie: analyses et synthèse I: La dynamique des
populations, L’Institut National D’Etudes Démographiques, Paris, pp.359-378.



28

Kitagawa, Evelyn M. 1955. “Components of a difference between two rates,” Journal of the
American Statistical Association 50 (272): 1168-1194.

Knodel, John. 1986. “Demographic transitions in German villages,” In Ansley J. Coale and
Susan Cotts Watkins (eds.) The Decline of Fertility in Europe : The Revised Proceedings
of a Conference of the Princeton European Fertility Project, Princeton: Princeton
University Press, pp. 337-359.

Kobayashi, Kazumasa. 1982. “Fertility implications of nuptiality trends in Japan.” In Lado T.
Ruzicka (ed.) Nuptiality and Fertility, Belgium: Ordina Editions, pp. 29-41.

Kohler, Hans-Peter and Dimiter Philipov. 2001. “Variance effects in the Bongaarts-Feeney
formula,” Demography 38 (1): 1-16.

Kohler, Hans-Peter, Francesco C. Billari, and José Antonio Ortega. 2002. “The emergence of
lowest-low fertility in Europe during the 1990s,” Population and Development Review
28  (4): 641-680.

Kono, Shigemi, Kiyosi Hirosima, Yoshikazu Watanabe, Shigesato Takahashi, and Ryuichi
Kaneko, 1983, “A bio-demographic analysis of the Japanese fertility via micro-
simulation,” Jinko Mondai Kenkyu (Journal of Population Problems), No. 168: 1-29. [in
Japanese with English Summary]

Kuczynski, Robert R. 1935. The Measurement of Population Growth: Methods and Results,
London, Sidgwick & Jackson, LTD.

Ministry of Health and Welfare, Japan. 1998. Jinkou Gensyou Syakai, Mirai eno Sekinin to
Sentaku: Syousika wo  Meguru Giron to Jinkou-mondai Shingikai Houkokusyo
(Population Decreasing Society,  Responsibility and Choice: Debates on Population
Issues and Reports of Population Council of Japan), Tokyo: Gyousei. [in Japanese]

Morgan, S. Philip. 1996. “Characteristic features of modern American fertility,” Population
and Development Review 22, Supplement: Fertility in the United States: New Patterns,
New Theories, pp. 19-63.

Newell, Colin, 1988, Methods and Models in Demography, New York:Wiley.
Newsholme, Arthur, and T. H. C. Stevenson. 1905. “An improved method of calculating

birth-rates,” The Journal of Hygiene 5: 175-184.
Ogawa, Naohiro, and Robert D. Retherford. 1993. “The resumption of fertility decline in

Japan: 1973-92,” Population and Development Review 19 (4): 703-741.
Page, H. J. 1977. “Patterns underlying fertility schedules: A decomposition by both age and

marriage duration,” Population Studies 31 (1): 85-106.
Population Association of Japan. 2002. Encyclopedia of Population, Tokyo: Baihukan. [in

Japanese]
Pressat, Roland. 1972. Demographic Analysis, New York: Aldine. [French version, 1961,
1969]
Preston, Samuel H., Patrick Heuveline, and Michel Guillot. 2001. Demography : Measuring

and Modeling Population Processes, Oxford: Blackwell Publishers.
Rallu, Jean-Louis, and Laurent Toulemon. 1994. “Period fertility measures: The construction

of different indices and their application to France, 1946-89,” Population: An English
Selection 6: 59-93.

Retherford, Robert D., and J. R. Rele. 1989. “A decomposition of recent fertility changes in
South Asia,” Population and Development Review 15 (4): 739-747.

Rindfuss, Ronald R., and S. Philip Morgan. 1983. “Marriage, sex, and the first birth interval:
The quiet revolution in Asia,” Population and Development Review 9 (2): 259-278.



29

Ruzicka, Ladislav T. 1974. “Nuptiality and fertility of birth cohorts,” Demography 11 (3):
397-406.

Ruzicka, Lado T. (ed.) 1982. Nuptiality and Fertility: Proceedings of a Seminar Held in
Bruges (Belgium), 8-11 January 1979; International Union for the Scientific Study of
Population, Liège: Ordina Editions.

Ryder, Norman B. 1964. “The process of demographic translation,” Demography 1: 74-82.
Ryder, Norman B. 1980. “Components of temporal variations in American fertility.” In R. W.

Hiorns (ed.) Demographic Patterns in Developed Societies, London: Taylor and Francis,
pp. 15-54.

Ryder, Norman B. 1983. “Cohort and period measures of changing fertility.” In Rodolfo A.
Bulatao and Ronald D. Lee (eds.) Determinants of Fertility in Developing Countries,
Vol2, Academic Press, pp.737-756.

Shryock, Henry S., Jacob S. Siegel, and Associates. 1973. The Methods and Materials of
Demography : Volume II. U.S. Department of Commerce (eds.)  2nd printing (rev.),
Washington, D.C.: U. S. Government Printing Office.

Sutton, Gordon F., Gooloo S. Wunderlich. 1967. “Estimating marital fertility rates by
educational attainment using a survey of new mothers,” Demography 4 (1): 135-142.

Suzuki, Toru. 2002. “Basic models of demographic translation”, Jinkogaku Kenkyu (Jounal of
Population Studies) 31: 1-17. [in Japanese with English Summary]

Tachi, Minoru. 1936. “Waga kuni jinkou no tihoubetu zousyokuritu ni kansuru jinkou
toukeigakudeki iti kousatu (jou) : Wagakuni hyoujunka syussyou ritu ni tuite” (A
demographic study on regional reproductivity of Japanese population: On Standardized
birth rates in Japan) Jinkou mondai (Population Problems) 1 (4): 453-483, Jinkou mondai
kenkyuukai (Research Association of Population Problems). [in Japanese]

Takahashi, Shigesato. 2001. “Demographic investigation of the process of declining fertility
in Japan.” International Perspectives on Low Fertility: Trends, Theories and Policies,
Working Paper Series. International Union for the Scientific Study of Population. Tokyo.

Takahashi, Shinichi. 1979. “A re-examination of the fertility model by age and marriage
duration: using estimated Japanese data,” Kobe University Economic Review 25: 47-66.

The Wise, Thinking on Social Security Systems (Syakai Hosyou Kouzou no Arikata nituite
Kangaeru Yuusikisya no Kai), 2000, “ 21 Seiki ni muketeno Syakai-hosyou (Social
Security toward 21st  Century)”. [in Japanese]

Trussell, James. 1979. “Natural fertility: measurement and use in fertility models.” In Henri
Leridon and Jane Menken (eds.) Natural Fertility: Patterns and Determinants of Natural
Fertility; Proceedings of a Seminar on Natural Fertility, Liege: Ordina Editions, pp.29-
64.

Trussell, James. 1981. “A simple model of marriage and fertility,” International Population
Conference, Manila 1981, Vol.1. Liege: IUSSP, pp. 499-508.

Trussell, James, Jane Menken, and Ansley J. Coale. 1982. “A general model for analyzing the
effect of nuptiality on fertility.” In Lado T. Ruzicka (ed.) Nuptiality and Fertility,
Belgium: Ordina Editions, pp. 7-27.

Tsubouchi, Yoshihiro. 1970. “Changes in fertility in Japan by region: 1920-1965,”
Demography 7 (2): 121-134.

Tsuya, Noriko O., and Karen O. Mason. 1995. “Changing gender roles and below-
replacement fertility in Japan.” In Karen O. Mason, and An-Magritt Jensen (eds.) Gender



30

and Family Change in Industrialized Countries, Oxford, England: Clarendon Press, pp.
139-67.

United Nations. 1989. “The methodology of measuring the impact of family planning
programmes on fertility.” In Manual IX, New York, pp. 7-34.

Wilson, C., J. Oeppen, and M. Pardoe. 1988. “What is natural fertility?” Population Index 54
(1): 4-20.

Wunsch, Guillaume J., and Marc G. Termote. 1978. Introduction to Demographic Analysis:
Principles and Methods, New York; London: Plenum Press.

Yip, Paul S. F., and Joseph Lee. 2002. “The impact of the changing marital structure on
fertility of Hong Kong SAR (Special Administrative Region),” Social Science &
Medicine 55 (12): 2159-2169.

Zeng, Yi, Tu Ping, Liu Guo, and Xie Ying. 1991. “A demographic decomposition of the
recent increase in crude birth rates in China,” Population and Development Review
17(3): 435-58.



31

Figure 1.   AMFR (age-specific marital fertility rate) for natural fertility and
controlled fertilty, by age at marriage, and aggregate AMFR.
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The beginning points at the left-hand side of each line show the age at marriage except aggregate AMFR.
Natural fertility: For 14 English parishes, 1600-1799 (Wilson et al. 1988, Figure 8). Married at 15-19 years excluded.
Controlled fertility: Women married at 20-22.5, 25-27.5 and 30-32.5 years in Great Britain in 1919 (Henry, 1976). 
CMF=3.29, 2.28, and 1.76. 
Aggregate AMFR: (Broken line with small circles) Japan, 2000 (Vital Statistics and Population Census). 
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Table 1 Marriage rates and fertility rates for cohort 15 years old in 1985 (hypothetical data)
Year Age AMR AFR APM AMFR
1985 15 0 0 0 -
1986 16 0.05 0 0 -
1987 17 0.10 0.05 0.05 1.00
1988 18 0.15 0.15 0.15 1.00
1989 19 0.20 0.25 0.30 0.83
1990 20 0.20 0.35 0.50 0.70
1991 21 0.15 0.40 0.70 0.57
1992 22 0.10 0.35 0.85 0.41
1993 23 0.05 0.25 0.95 0.26
1994 24 0 0.15 1.00 0.15
1995 25 0 0.05 1.00 0.05
1996 26 0 0.00 1.00 0.00

Total rates 1.0 2.0 4.98
Average age 20.0 21.5
Marriage rates and birth rates are what a cohort aged 15 in 1985 experiences.
AMR: m(x), age-specific marriage rates.
AFR: B(x). Fertility rates are derived from the marital fertility g(t)= (1,1,0). Formula (5).
APM: M(x).  Proportion married is measured at the beginning of a year. Formula (4).
AMFR: age-specific marital fertility rate.
Total rates are lifetime proportion ever-married, completed fertility (cohort TFR) and TMFR.

Table 2 Duration-specific marital fertility rate
t g(t)
1 1
2 1
3 0

t : marriage duration (year).
g(t ): duration-specific marital fertility rate.
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Figure 2  Simulated AMFR: Simulation A1: Baseline 
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Figure 3 Simulated AMFR with different tempo in g(t) : Simulation A1, A2, A3
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Figure 4 Simulated AMFR with different tempo in m(x): Simulation A1, A4, A5
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Table3 Simulation B4: Calculation of rates (AMR and ABR) 
Age 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
AMR (age-specific marriage rate)

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0.05 0.05 0.05 0.05 0.05 0 0 0 0 0 0 0 0 0 0 0
17 0.10 0.10 0.10 0.10 0.10 0.10 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
18 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10
19 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20 0.20
21 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.20 0.20 0.20 0.20 0.20 0.20
22 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.10 0.15 0.15 0.15 0.15 0.15
23 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.10 0.10 0.10 0.10
24 0 0 0 0 0 0 0 0 0 0 0 0.05 0.05 0.05
25 0 0 0 0 0 0 0 0 0 0 0 0 0
26 0 0 0 0 0 0 0 0 0 0 0 0

MAM (mean age at marriage) 20 20.2 20.3 20.4 20.5 20.5 20.6 20.7 20.8 21 21 21
Total marriage rate 1.00 0.95 0.90 0.85 0.80 0.80 0.85 0.90 0.95 1.00 1.00 1.00
AFR ( age-specific fertility rate)

15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
17  0.05 0.05 0.05 0.05 0 0 0 0 0 0 0 0 0 0
18  0.15 0.15 0.15 0.15 0.15 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05
19  0.25 0.25 0.25 0.25 0.25 0.25 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
20 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.25 0.25 0.25 0.25 0.25 0.25 0.25
21 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.35 0.35 0.35 0.35 0.35 0.35
22 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.35 0.4 0.4 0.4 0.4 0.4
23 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.25 0.35 0.35 0.35 0.35
24 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.25 0.25 0.25
25 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.15 0.15
26 0 0 0 0 0 0 0 0 0 0 0 0.05

MAB (mean age at birth) 21.5 21.5 21.6 21.8 21.9 22 22 22 22.1 22.2 22.4 22.5
TFR 2.00 2.00 1.95 1.85 1.75 1.65 1.6 1.65 1.75 1.85 1.95 2.00
The shade shows the cohort aged 15 years in 1985.
Marriage rates are  delayed by 1 year beginning with that cohort.
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Tab le4 S im u lation B 4 (con t’d ): C a lcula tion  of ra tes  (APM  and  AM FR )
A ge 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996
A P M  (ag e-specific  p roportion  m arr ied )

15 0 0 0 0 0 0 0 0 0 0 0 0
16 0 0 0 0 0 0 0 0 0 0 0 0
17 0.05 0 .05 0 0 0 0 0 0 0 0 0 0
18 0.15 0 .15 0 .15 0.05 0 .05 0 .05 0.05 0.05 0 .05 0.05 0.05 0 .05
19 0 .3 0.3 0.3 0 .3 0 .15 0 .15 0.15 0.15 0 .15 0.15 0.15 0 .15
20 0 .5 0.5 0.5 0 .5 0.5 0.3 0 .3 0.3 0.3 0 .3 0 .3 0.3
21 0 .7 0.7 0.7 0 .7 0.7 0.7 0 .5 0.5 0.5 0 .5 0 .5 0.5
22 0.85 0 .85 0 .85 0.85 0 .85 0 .85 0.85 0.7 0.7 0 .7 0 .7 0.7
23 0.95 0 .95 0 .95 0.95 0 .95 0 .95 0.95 0.95 0 .85 0.85 0.85 0 .85
24 1 1 1 1 1 1 1 1 1 0.95 0.95 0 .95
25 1 1 1 1 1 1 1 1 1 1 1 1
26 1 1 1 1 1 1 1 1 1 1 1 1

A M FR  (ag e-specific  m arita l fe rtility  ra te )
15 - - - - - - - - - - - -
16 - - - - - - - - - - - -
17 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1
19 0 .833 0.833 0.833 0 .833 1 1 1 1 1 1 1 1
20 0 .7 0.7 0.7 0 .7 0.7 0.833 0 .833 0 .833 0.833 0.833 0 .833 0.833
21 0 .571 0.571 0.571 0 .571 0.571 0.571 0 .7 0.7 0.7 0 .7 0 .7 0.7
22 0 .412 0.412 0.412 0 .412 0.412 0.412 0 .412 0 .571 0.571 0.571 0 .571 0.571
23 0 .263 0.263 0.263 0 .263 0.263 0.263 0 .263 0 .263 0.412 0.412 0 .412 0.412
24 0.15 0 .15 0 .15 0.15 0 .15 0 .15 0.15 0.15 0 .15 0.263 0 .263 0.263
25 0.05 0 .05 0 .05 0.05 0 .05 0 .05 0.05 0.05 0 .05 0.05 0.15 0 .15
26 0 0 0 0 0 0 0 0 0 0 0 0 .05

T M FR 4.98 4 .98 4 .98 4.98 5 .15 5 .28 5.41 5.57 5 .72 5.83 5.93 5 .98
S ee notes on  T able  3 .
T M FR  (to ta l m arita l fe rtility) is  the sum  o f A M FR . 
A M FR  at 17  is  1  a fte r 1987 because A M R  at 15  is  se t as a  very  sm a ll num ber ins tead o f 0  a fte r 1986.
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Figure 5   Simulation B1: Decline of marital fertility.

Total and AMFR are on the sam e line.

D ecreased marital fertility from the cohort 15 years old in 1985: g(t)=(1,1,0) ->(1,0.6,0).
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Figure 6  Simulation B2:  Postponement of marital fertility.

T otal and AMFR are on the same line.

Delayed marital fertility from the cohort 15 years old in 1985: g(t)=(1,1,0) ->(0, 1, 1).

(A) Simulated marriage and birth rate by year
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Figure 7 Simulation B3: Decline of marriage rate

Decreased marriage rate from the cohort 15 years old in 1985 (lifetime ever-married rate: 1 ->0.8).

(A) Simulated marriage and birth rate by year
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F igure  8   S im u la tion  B 4: P o s tp on em e nt o f m arriage  ra te .

O n e ye a r de la ye d  m a rria ge  ra te  fro m  th e  co ho rt 1 5  ye a rs  o ld  in  19 8 5  (m e a n  a ge  a t m a rria ge :2 0 .0  ->  21 .0  yr. ) .

(A ) S im u la ted  m arriag e  an d  b irth  ra te  by  ye ar
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(B ) S im u la ted  
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Figure 9 Simulation for natural fertility: postponement of marriage

Total and APM are on the same line.

One year delayed marriage rate (MAM=21.0) from cohort 15 y. in 1985 with constant AMFR in time.

 (C) Cohort AFR, B(x) with different 
tempo in m(x)
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