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Analytic Expressions for Life Expectancy in

Gamma-Gompertz Mortality Settings

Trifon Ivanov Missov

Max Planck Institute for Demographic Research

Abstract

In a population with Gamma-distributed individual frailty and Gompertz-
distributed mortality there is a closed-form analytic expression for calculating
the life-expectancy integral. Several simplifications of the resulting formula
serve as plausible approximations.

Analytic Expression for Gamma-Gompertz Life Expectancy

Let X ∈ [0, +∞) be a lifespan with a probability density function p(x), sur-
vival function S(x), and hazard µ(x). Assume hidden individual-specific mor-
tality peculiarities are captured by a heterogeneity parameter Z ∈ [0, +∞),
known as frailty, with a probability density function π(z). In line with [4],
we index individuals’ p(x), S(x), and µ(x) by Z to construct a proportional
hazards model:

p(x, Z) = Z SZ−1(x)p(x) S(x, Z) = SZ(x) µ(x, Z) = Z µ(x) (1)

As a result, the population’s survival functionwill be

S̄(x) =

+∞∫

0

SZ(x)π(z)dz (2)

Suppose the individual lifetime distribution is Gompertz(a, b), i.e.
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p(x) = aebxe
a
b (1−ebx) S(x) = e

a
b (1−ebx) µ(x) = aebx (3)

and the frailty distribution is Gamma(k, λ), i.e.

π(z) = zk−1λk eλx

Γ(k)
(4)

Then, the population’s survival function will be

S̄(x) =
(
1 +

a

bλ

(
ebx − 1

))−k

(5)

Life expectancy at birth e0 can be expressed by several equivalent formulae,
among which we will consider the one that depends just on the population’s
survival function S̄(x), i.e.

e0 =

+∞∫

0

S̄(x)dx =

+∞∫

0

(
1 +

a

bλ

(
ebx − 1

))−k

(6)

Then, life expectancy at birth e0 is given explicitly by the following formula:

e0 =
1

bk
2F1

(
k, 1; k + 1; 1− a

bλ

)
(7)

where 2F1(α, β; γ; z) is the Gaussian hypergeometric function, i.e.

2F1(α, β; γ; z) =
+∞∑
j=0

α(α + 1) . . . (α− j + 1) β(β + 1) . . . (β − j + 1)

γ(γ + 1) . . . (γ − j + 1) j!
zj (8)

which is defined for γ > β > 0 (see, for example, [1]).

Proof. We will prove an even more general result. Namely, we will show that
the indefinite integral corresponding to the right-hand side of (6) equals:

− 1

bk

(
bλ

a
e−bx

)k

2F1

(
k, k; k + 1;

(
1− a

bλ

)
e−bx

)
(9)

Thus, (7) will follow directly from (9) as

lim
x→+∞

{
− 1

bk

(
bλ

a
e−bx

)k

2F1

(
k, k; k + 1;

(
1− a

bλ

)
e−bx

)}
= 0 (10)
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and, in addition, 2F1(α, β; γ; z) = (1 − z)−α
2F1

(
α, γ − β; γ; z

z−1

)
(see [3],

p.247). Let us represent e0 in the following way:

e0 =

∫ (
1 +

a

bλ

(
ebx − 1

))−k

=

∫ (
bλ

a
e−bx

)k (
1−

(
1− bλ

a

)
e−bx

)−k

(11)
A y = e−bx substitution will result in

e0 = −1

b

(
bλ

a

)k ∫
yk−1

(
1−

(
1− bλ

a

)
y

)−k

(12)

Taking into account

(
1−

(
1− bλ

a

)
y

)−k

= 2F1

(
k, C; C;

(
1− bλ

a

)
y

)
∀C ≡ const (13)

(see [3], p.258) and

2F1(α, β; γ; z) = 2F1(β, α; γ; z) , (14)

which follows directly from (8), we have

(
1−

(
1− bλ

a

)
y

)−k

= 2F1

(
k, k; k;

(
1− bλ

a

)
y

)
(15)

Finally, using

zγ−1
2F1(α, β; γ; z)dz = zγ

2F1(α, β; γ + 1; z)dz (16)

(see [1]), we reduce (12) to (9). Q.E.D.

The analytical closed-form solution (7) of the life-expectancy integral has
helpful properties and implications, as well as distinct drawbacks. The find-
ings are classified into the following remarks.

Remark 1 (On dropping the maximum-age assumption):

In Demography it is often assumed there exists a highest, yet unknown, age
ω to which one can live. In this case the life-expectancy integral simplifies
as its upper boundary is no longer infinite. Following this argument, Keyfitz
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and Caswell ([2], 2005) derived a number of ω-dependant relationships, which
illustrate the sensitivity of e0 to mortality changes. Expression (7), on the
other hand, allows for extending these (and other e0-related) findings to the
case when there is no upper boundary for life expectancy. The resulting
formulae will no longer contain the unknown ω.

Remark 2 (On dropping the assumption of Gamma frailty with unit expec-
tation):

Gamma(k, λ) frailty models usually, for simplicity of interpretation, assume
unit expectation, i.e. k = λ. Formula (7) provides an expression for life
expectancy at birth for any Gamma-distribution parameters k and λ, not
necessarily equal to each other.

Remark 3 (Simplification in the special case of integer k):

The case when k is an integer (k ∈ Z) deserves special attention for at least
two reasons. First of all, the derivation of e0 in this case is easier as the right-
hand side of (6) can be integrated k times by parts. Thus, the expression for
life expectancy at birth takes the following form:

e0 =
1

b

[(
1− a

bλ

)−k

ln
bλ

a
−

k−1∑
j=1

1

j

(
1− a

bλ

)j−k
]

(17)

Secondly, if the k ∈ Z assumption is supported by a certain mortality dataset,
we might use the simpler, in terms of calculation, expression (17) as an
approximation of (7).

Remark 4 (On some properties of the hypergeometric function):

Expression (7) deserves three additional technical remarks regarding the hy-
pergeometric function 2F1(α, β; γ; z) appearing on the right-hand side. First
of all, it is finite as the sufficient condition γ > β > 0 ([3], pp.239-240) is
fulfilled. Indeed, in our case we have γ = k + 1 > 1 = β > 0. Secondly, if
k is integer, expression (17) follows directly from (7) by reorganizing the hy-
pergeometric series appropriately. Namely, as the β-parameter of 2F1 equals
1, (8) simplifies to

2F1

(
k, 1; k + 1; 1− a

bλ

)
= 1 + k

(
1− a

bλ

)−k
∞∑

j=1

1

k + j

(
1− a

bλ

)k+j

(18)
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Furthermore, as k ∈ Z, we can represent e0, as it follows:

e0 =
1

bk

(
1 + k

(
1− a

bλ

)−k
∞∑

j=1

1

j

(
1− a

bλ

)j

− k

k∑
j=1

1

j

(
1− a

bλ

)j−k
)

(19)

The series in the parentheses constitute the Taylor-series representation of
the function ln bλ

a
, and the term in the negative sum corresponding to j = k

equals 1. As a result, (19) is equivalent to (17). Finally, for human popula-
tions the z-argument of the hypergeometric function approaches 1. In this
case the Gauss’s theorem postulates that

lim
z→1− 2F1(α, β; γ; z) =

Γ(γ)Γ(γ − α− β)

Γ(γ − α)Γ(γ − β)
(20)

given γ − α− β > 0. However, the latter necessary condition is not fulfilled
for 2F1

(
k, 1; k + 1; 1− a

bλ

)
as γ − α− β = k + 1− k − 1 = 0. Thus, formula

(20) cannot serve as approximation of (7). As a result, although formula (7)
represents the solution of the life-expectancy integral in a closed analytical
form, it contains a term, 2F1

(
k, 1; k + 1; 1− a

bλ

)
, that can be evaluated only

numerically. In general, the hypergeometric function is a complex object
to work with in practical applications. That is why it would be reasonable
to study (17), or some other approximation of (7), which would be easier
for computation, on the one hand, and assessment of the Gamma-Gompertz
parameters’ impact on e0, on the other. The latter question will be discussed
in detail in the following section.

Remark 5 (On extending the Gompertz mortality model to Gompertz-
Makeham):

When the mortality pattern is Gompertz-Makeham with a µ(x) = aebx + c
hazard, the corresponding life-expectancy integral

e0 =

+∞∫

0

(
1− a

bλ
+

c

λ
x +

a

bλ
ebx

)−k

dx (21)

cannot be solved analytically, even for integer values of k. As a result, life
expectancy in mortality models with a significant non-zero Makeham term c
can be approximated only numerically.
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Plausible Approximations of Gamma-Gompertz Life Expectancy

Roland Rau studied the Gamma-Gompertz model for Swedish female mortal-
ity data on a both period and cohort basis for different decades. He focused
on ages 80+ and assumed a Gamma frailty distribution with unit expecta-
tion, i.e. k = λ. The results of this study were first presented by James
W. Vaupel during his Johann Süßmilch Lecture ”Supercentenarians and the
Theory of Heterogeneity” on October 21, 2008 at the Max Planck Institute
for Demographic Research. Table 1 presents the maximum likelihood esti-
mates for the Gompertz parameters a and b, as well as the Gamma parameter
k for the indicated data types, decades of interest, and ages.

Case Type Decades Ages a b k = k (est.)
1 Cohort 1780-1790 80-105 1.44 · 10−6 0.147 4.71
2 Cohort 1880-1890 80-111 3.22 · 10−6 0.129 5.46
3 Period 1895-1905 80-104 3.00 · 10−7 0.163 4.30
4 Period 1995-2005 80-111 4.70 · 10−7 0.143 4.90

Table 1: Gamma-Gompertz maximum-likelihood parameter estimates for
Swedish female mortality data (Data source: Human Mortality Database,
www.mortality.org; estimation performed by Roland Rau).

Table 2 presents the life expectancies at birth corresponding to the Gamma-
Gompertz parameter estimates in these four cases. In addition, assuming
λ = k(est.), it compares e0 values resulting from formulae (7) and (17). It
turns out that using (17) instead of (7) is justified as the relative estimation
error is in the 0.21%–0.46% range.

The results would not differ significantly even if we take in (17) λ = k(est.)
and k = k(rounded) (see Table 2). The relative errors in this approximation
are bigger than the ones for λ = k = k(rounded) for cohort data, and vice
versa for period data. Further approximation accuracy can be attained by
taking the respective weighted average of e0 values, calculated for bkc and
dke. For instance, taking this average by using (17) for period data reduces
the relative errors to less than 0.1%. Note that for human populations the
ratio 1 − a/bλ is very close to 1 as a/bλ ∝ 10−6. As a result, if we further
assume 1− a/bλ ≈ 1, we can simplify (17) even more. Namely,
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Case
e0

by(7)
k

(rd.)
e0

by(17)
e0rd.
e0real

k(rd.)
λ = k(est.)
e0(λ)by(17)

e0(λ)

e0real

1 75.22 5 75.24 1.000279 74.83 0.994876
2 78.37 5 78.48 1.001498 79.17 1.010202
3 78.63 4 78.27 0.995452 78.72 1.001095
4 84.69 5 84.98 1.003344 84.84 1.001676

Table 2: Life expectancy e0 values, based on formulae (7) and (17), in the
four cases presented in Table 1. When applying formula (17), we round the
estimated k to its closest integer value.

e0 ≈ 1

b

[
ln

bλ

a
−

k−1∑
j=1

1

j

]
(22)

Life-expectancy values, calculated by (17) and (22) will differ just after the
fifth decimal (as a/bλ ∝ 10−6). Note that formula (22) not only provides
plausible approximation for (7), but also allows for easier interpretation of the
Gamma-Gompertz parameters’ impact on e0. For instance, it turns out that
b is more important than a. Indeed, life-expectancy is inversely proportional
to b, whereas the effect of changes in a on e0, no matter how small a’s values
are, is weakened on the logarithmic scale.
Finally, it is not surprising that the life-expectancy estimates in Table 2 ex-
ceed the corresponding values in the Human Mortality Database as Gamma-
Gompertz parameters (a, b, and k = λ) were estimated for ages 80+.
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