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Abstract.  We consider hazard (mortality) rates in populations consisting of ordered 

(in the defined stochastic sense) subpopulations. This setting can be interpreted via the 

fixed frailty models with one or more frailty parameters. The shape of the hazard rate 

is of the main interest in this paper. Specifically, the deceleration and leveling off in 

the hazard rates (mortality plateaus) are discussed and some examples of lifetime 

distributions that can result in asymptotically flat hazard rates are considered. These 

examples are based on vitality models when an organism’s initial vitality (resource) is 

‘consumed’ in the course of life in accordance with a simple stochastic process (e.g., 

Wiener process with drift or the gamma process).  

 

Key words: Hazard rate, frailty, mortality plateau, Wiener process, gamma process, 

inverse-Gaussian distribution, Birnbaum-Saunders  distribution. 

 

1. Introduction 

 

The shape of the hazard rate (force of mortality) at advanced ages especially for 

human populations has attracted a considerable interest in the last decades when more 

and more centenarians and supercentenarians have been recorded. The International 

Database of Longevity offers the detailed information on thoroughly validated cases 

of supercentenarians.  Gampe (2010) has used these data to estimate the human force 

of mortality after the age  of 110. Her analysis revealed that human mortality between 

ages 110 and 114 levels off regardless of gender. The most popular explanation of this 

fact is by considering the corresponding fixed frailty models that account for 

heterogeneity of populations. Vaupel et al (1979) (see also Beard (1959, 1971)) has 

considered the Gompertz (baseline)-gamma frailty model, which results in the 

asymptotically flat hazard rate. Note that, the exponentially increasing hazard rate of 

the Gompertz distribution is the only baseline function that can ‘produce’ this shape in 

the framework of the multiplicative (see later) frailty model, which can be considered 

as another justification of the uniqueness and importance of this distribution for 

human mortality modeling. Finkelstein and Esaulova (2006) have proved that the 

gamma distribution of frailty is not so critical in this respect: all densities that behave 

as 1, >ααz  when 0→z  are equivalent in this sense (see also Steinzalts and Wachter 

(2006)).  Missov and Finkelstein (2011) have extended this result to the case of 

regularly varying at 0→z  densities. 

     The intuitive meaning of the deceleration of mortality at advanced ages in this 

context is simple and meaningful at the same time: the oldest-old mortality in 

populations with ‘properly’ (see Section 2) ordered subpopulations is defined by the 

small values of frailty, as the subpopulations with larger values of frailty (and, 
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therefore, larger values of the hazard rate) are dying out first. Note that, apart from 

statistical explanations of mortality plateaus based on frailty models (and stochastic 

vitality models to be discussed in Section 4), there also exist biologically motivated 

approaches (see, e.g., Mueller and Rose (1996)).  

     The first question to be answered is what common statistical distributions are 

characterized by the asymptotically flat hazard rate? The exponential distribution that 

is often used for statistical analysis of non-degrading objects is obviously not relevant 

for our topic. The most popular distribution of the desired type is the inverse Gaussian 

distribution. It is well-known that it describes the distribution of the first passage time 

for the Wiener process with drift. Although its sample paths are non-monotone and 

even can be non-positive, the inverse Gaussian distribution was widely used, e.g., in 

reliability analysis of stochastic deterioration (aging) in engineering objects. It was 

also applied in vitality models for modeling the lifespan of organisms (Anderson, 

2000; Li and Anderson, 2009), where the initial vitality (resource) of organisms is 

‘consumed’ in the course of life in accordance with the Wiener process with drift. 

This model was also studied in the path-breaking papers by Aalen and Gjessing 

(2001) and Steinsaltz and Evans (2004) as an example highlighting the meaning and 

properties of the corresponding quasistationary distributions for this particular case. 

Our goal in this paper is more modest: to exploit further some relevant distributional 

properties in the context of stochastic ordering of lifetimes of subpopulations in 

heterogeneous populations.  

     The other example of a distribution with asymptotically flat hazard rate is the 

Birnbauum-Saunders distribution (Birnbaum and Saunders, 1969) that was also 

derived as a distribution of the first passage time for the corresponding deterioration 

process and therefore, is a good candidate for vitality models as well.  We also 

consider the gamma process as a possible model of deterioration (with monotone 

sample paths!), although the hazard rate in this case is decreasing to  0  as ∞→t . It 

should be noted, however, that the initial increase in hazard rates for all of these 

models is not exponential, as in the case of the Gompertz distribution, and therefore, 

the possibilities of the corresponding mortality modeling for human populations for 

‘intermediate ages’ (30-100 years) are obviously limited.  

     The paper is organized as follows. In Section 2 relevant stochastic orderings of 

subpopulations in terms of lifetimes are described. We also discuss the notions of 

fixed and evolving heterogeneity (frailty) in the context of heterogeneous populations. 

Section 3 deals with mixtures as a convenient tool for analysis of heterogeneity in the 

univariate and bivariate settings. In Section 4, we consider the first passage time 

problems for the vitality modeling and analyze it further from the ‘classical’ 

distributional point of view, which can complement to a certain extent the 

corresponding analysis from the process point of view that can be found in the 

literature (Aalen and Gjessing,2001; Steinsaltz and Evans, 2004; Li and Anderson, 

2009). Specifically, we use the fact that randomization of some parameters of lifetime 

distributions can be interpreted in terms of the corresponding heterogeneous 

populations with (fixed) frailties when the suitable stochastic ordering of lifetimes 

with respect to these parameters holds. We consider the inverse Gaussian and the 

Birnbaum-Saunders distributions with asymptotically flat hazard rates and show that 

when parameters of these distributions are randomized, the population hazard rate is 

vanishing as ∞→t .  In Section 5, some concluding remarks are given. 

     Finally, we want to mention that our intention is not to perform a comprehensive 

review of relevant results in the literature (see, e.g., Li and Anderson (2009) and 
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Yashin et all (2000) for that), but rather to refer to the sources that are necessary and 

important for our presentation. 

 

2. Fixed and evolving (changing) heterogeneity  

 

Let )(),( tftF  and )(tµ  be the Cdf, the pdf and the hazard rate (force of mortality) for 

some infinite homogeneous population that characterize the corresponding random 

lifetime 0≥T . However, one can hardly find homogeneous populations in real life 

and therefore, neglecting existing heterogeneity can lead to substantial errors and 

misconceptions in stochastic analysis in demography, survival and risk analysis as 

well as other disciplines. By heterogeneity of a population we mean that it consists of 

a finite or non-finite number of homogeneous subpopulations that differ in some 

respect to be discussed. A popular way to model heterogeneity is based on a notion of 

a non-negative random unobserved parameter (frailty) Z . The term “frailty” was 

suggested in Vaupel et al. (1979) for the gamma-distributed Z  and the multiplicative 

hazard rate model of the form )(),( tZZt µµ = , which should be understood in terms 

of realizations zZ = . We see that the difference between subpopulations is modeled 

directly by the differences in mortality rates, e.g., for two realizations 12 zz > , this 

difference is  )()( 12 tzz µ− . Thus, the multiplicative frailty model describes the 

ordering of subpopulations in the sense of the hazard rate ordering: 

),0[,);,(),( 2121 ∞∈≤≤ tzzztzt µµ ,                                   (1) 

which obviously leads to the (weaker) ordering in the sense of the usual stochastic 

ordering (stochastic dominance): 

),0[,);,(),( 2121 ∞∈≤≤ tzzztFztF ,                                 (2) 

as                                         








−−= ∫
t

ii duzuztF
0

),(exp1),( µ .  

Thus, the smaller is the value of z , the larger is the lifetime of the subpopulation zT  

in the appropriate stochastic sense (e.g., (1) or (2)): 

21;
21

zzTT zz ≤≥ .                                                     (3) 

Thus,we will understand the fixed heterogeneity (frailty) of a population as: 

Heterogeneity in lifetimes of the corresponding homogeneous subpopulations that is 

defined by the appropriate stochastic ordering (mostly, but not necessarily the hazard 

rate ordering (1)).  

This also means that, if randomization of a parameter (parameters) of a lifetime 

distribution leads to the corresponding stochastic ordering, which formally is not 

always the case, then this operation can be also interpreted in terms of the fixed frailty 

modeling.  For example, the Gompertz Cdf )),,( batF  is a function of two parameters, 

and the corresponding hazard rate is:  

btaebat =),,(µ                                                      (4) 
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If we randomize a , whereas b  is fixed, then (taking care, of course, of the 

corresponding baseline constant), we obviously arrive at the multiplicative frailty 

model (and to the asymptotically flat rate when the distribution of frailty is, e.g., 

gamma), which illustrates ordering (1). We just want to emphasize the fact that in this 

specific model, frailty acts multiplicatively and ‘directly’ on the hazard rate, which is 

not the case in general even when ordering (1) holds. Some relevant aspects of frailty 

modeling for the bivariate case will be considered in the next section.  

     Finkelstein and Esaulova (2006) have extended multiplicative frailty model to a 

rather general class of survival models that includes also additive ( ZtZt += )(),( µµ ) 

and accelerated life (AL) models. The shape of the hazard rate for the AL model  that 

is defined by the scale transformation )(ZtF  was not considered in the literature 

before, however the ‘physical’ motivation that the degradation processes in objects 

are heterogeneous due to ‘fluctuations’ in the time scale of the baseline distribution 

)(tF , is quite appealing.  The striking result of this paper states that the hazard rate in 

this case behaves as )(/1 ∞→tt  regardless of the distribution of frailty Z . This 

specifically means that the AL frailty model can never end up in the mortality plateau! 

Note that, as )(),( ZtZZt µµ =  in this case, ordering (1) does not necessarily hold, 

however, ordering (2) always holds. 

     In accordance with our definition, the fixed heterogeneity (frailty) is described 

only by ordered subpopulation lifetimes. The hazard rate, which is of the main interest 

in this paper, is obviously uniquely defined by the population lifetime distribution. 

What can happen, if apart from the information on failure times (the black box point 

of view), we possess some information or adopt a model on a failure process or 

‘mechanism’ (the process point of view)? In this case, another type of heterogeneity, 

which is usually referred to as evolving (or changing) (see, e.g., Li and Anderson, 

2009) comes into play. This type of heterogeneity usually does not lead to ordering of 

lifetimes in the described here sense. However, it characterizes an important feature of 

a model, which can be useful for further analysis. 

     In order to illustrate our point consider the model for vitality loss (fixed initial 

value) that will be treated in detail in Section 4. The loss of vitality of an organism 

(deterioration) is modeled by the Wiener process with negative drift, in which the 

time to death is determined by the first passage time to the zero boundary. It is well 

known that the variance of the Wiener process is increasing linearly in time and if the 

drift is positive, the mean is also linearly increasing. However, due to the boundary, 

the most ‘vulnerable’ organisms are dying out first and linear functions that 

correspond to the non-boundary case ‘decelerate’. Actual shapes depend on 

parameters of the model (see the graphs in Li and Anderson (2009) for the 

corresponding shapes for the specific values of parameters). Thus we do not see here 

any frailty parameters or ordered (in the defined in this section sense) lifetimes, but 

we observe the changing in time mean and variability in the survived population. And 

this is how the evolving heterogeneity should be understood: variability in sample 

paths of the underlying process of deterioration. Another model that usually is 

referred to in the literature as an example of changing frailty (Yashin et all, 1976) is 

the Le Bras (Le Bras, 1976) model, where the corresponding continuous Markov 

chain describes the ‘process of moving to the absorbing state’ (see also Horvitz and 

Tulpukar (2008) for somehow related approach). Note that, all three mentioned above 

models result in the asymptotically constant hazard rate. 

    In this study, however, we are mostly interested in the fixed heterogeneity of 

lifetimes and the evolving heterogeneity of processes will be ‘hidden’ in lifetime 
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distributions. We feel that this ‘distributional approach’ in the context of 

randomization of parameters and of the corresponding ordering of lifetimes was not 

sufficiently elaborated in the literature so far.  For instance, for the first passage time 

models of Section 3, randomization of the initial vitality of an organism and of the 

corresponding drift parameter of the Brownian motion definitely illustrates this 

ordering, as the larger is the vitality and (or) the smaller is the drift parameter, the 

larger is the lifetime in some suitable stochastic sense to be discussed. Note that, there 

can be other situations when randomization is relevant but does not lead the ordered 

subpopulations. As follows from the title of the paper, this is not our case. 

     As was stated in the introduction, we will mainly focus on the qualitative analysis 

of the hazard rates and specifically on the possibility of mortality plateaus. Before 

considering specific models, we must formulate some general results on mixture 

modeling. 

    

3. Mixtures for modeling heterogeneity 

 

First, we describe our setting in a formal way. Consider a population of identically 

distributed items with lifetimes ,...2,1, =iTi . Each item is ‘affected’ by a non-

observable univariate frailty parameter iZ  and the lifetimes iT  are conditionally 

independent given the values of parameters ii zZ = . Assume that these parameters are 

i.i.d with a common pdf )(zπ  and with support in ),0[ ∞ . (The general support 

∞≤<≤ baba 0),,[  can be considered as well). Then, obviously, ,...2,1, =iTi  are also 

i.i.d.. For convenience, the sub index “ i ” will be omitted and therefore, the lifetimes 

and frailties for all items will be denoted by T  and Z , respectively. Thus, the lifetime 

T  is characterized by the following mixture (population) Cdf and pdf 

∫

∫
∞

∞

=

=

0

0

,)(),()(

,)(),()(

dzzztftf

dzzztFtF

π

π

                                              (4) 

respectively, where ]|Pr[)|(),( zZtTztFztF =≤=≡ , ),(),( ztFztf ′=  are the 

corresponding conditional characteristics for realization zZ = , which can be 

interpreted as the Cdf and the pdf  for the corresponding homogeneous subpopulation, 

respectively. Then the mixture (population) hazard rate )(tµ  is defined as (see, e.g., 

Finkelstein (2008)) 

)(

)(
)(

tF

tf
t =µ  

∫
∫

∫ ∞

∞

∞

==
0

0

0 )|(),(

)(),(

)(),(

dztzzt

dzzztF

dzzztf

πµ

π

π

,                           (5) 

where )|( tzπ  is the conditional pdf of Z  (on condition that tT > ) 
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∫
∞

≡

0

)(),(

),(
)()|(

dzzztF

ztF
ztz

π

ππ ,                                        (6) 

and FF −≡ 1 . Accordingly, denote by tZ |  the conditional frailty at time t  (on 

condition that tT > ). Another (Bayesian) interpretation of )|( tzπ  (for a single item) 

is the posterior pdf of frailty Z , which corresponds to the prior pdf )(zπ .  

     The foregoing definitions describe the ‘standard’ statistical mixture (or fixed 

frailty) model for an item and for the collection of items (population) as well. As was 

discussed in the previous section, we understand heterogeneity as the property of a 

population that consists of ordered homogeneous subpopulations (ordered lifetimes  

zT , as defined in (3)). But what type of ordering is sufficient for our reasoning? As we 

are looking at hazards rates, the first guess would be ordering (1).  How in this context 

can we mathematically interpret the well-known and intuitively clear property: “the 

weakest populations are dying out first” and the corresponding mortality deceleration 

with time?  To answer this question, denote by )(zΠ  the Cdf of Z  and by )|( tzΠ  

the Cdf that corresponds to the density )|( tzπ . Therefore, the deceleration can be a 

consequence of the increasing in t  distribution function )|( tzΠ  (Finkelstein, 2008). 

This would mean that )|( tzΠ  tends to be more concentrated around small values of 

0≥Z  as time increases, which corresponds to stronger populations. The following 

theorem proves this result. 

 

Theorem 1.  Let ordering (1) hold. Then )|( tzΠ  is an increasing function of t  for 

each fixed z . 

Proof.  It follows from (6) that 

∫

∫
=Π

b

a

z

a

duuutF

duuutF

tz

)(),(

)(),(

)|(

π

π

 

It is easy to see that the derivative of this function is positive if  

∫

∫

∫

∫ ′

>

′

b

a

b

a

t

z

a

z

a

t

duuutF

duuutF

duuutF

duuutF

)(),(

)(),(

)(),(

)(),(

π

π

π

π

.   

Therefore, it is sufficient to show that the function: 

∫

∫ ′

=
z

a

z

a

t

duuutF

duuutF

ztA

)(),(

)(),(

),(

π

π
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is increasing in z . As ),(),(),( ztFztztFt µ−=′ , inequality  0),( >′ ztAz  is equivalent 

to the following one: 

∫ ∫>
z

a

z

a

duuutFutduuutFzt )(),(),()(),(),( πµπµ , 

which obviously follows from ordering  (1). 
■ 

 

     Consider now the bivariate frailty model. We will need the following 

considerations for analyzing asymptotic hazard rates for vitality models of the next 

section.  Let 1Z  and 2Z  be interpreted as non-negative random variables with 

supports in ),0[ ∞ . Similar to the univariate case: 

),,(],|Pr[],|Pr[ 2121221 zztFzztTzZzZtT =≤≡==≤  

and  

),,(

),,(
),,(

21

21
21

zztF

zztf
zzt =µ . 

Assume that 1Z  and 2Z  have the joint pdf ),( 21 zzπ . The mixture failure rate is 

defined in this case as (Finkelstein, 2008): 

∫ ∫

∫ ∫
∞ ∞

∞ ∞

==

0 0

212121

0 0

212121

),(),,(

),(),,(

)(

)(
)(

dzdzzzzztF

dzdzzzzztf

tF

tf
t

π

π

µ  

∫ ∫
∞ ∞

=
0 0

212121 )|,(),,( dzdztzzzzt πµ ,                                   (7) 

where the corresponding conditional pdf (on condition: tT > ), is 

∫ ∫
∞ ∞

=

0 0

212121

21
2121

),(),,(

),,(
),()|,(

dzdzzzzztF

zztF
zztzz

π

ππ  .                      (8) 

Equation (7) is a general result and can be analyzed for some specific cases. For 

instance, it can be easily shown that when we assume the independence of frailties:  

)()(),( 221121 zzzz πππ =  

and the competing risks for the failure  model: 

),(),(1),,( 221121 ztFztFzztF −= , 
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the population hazard rate is just the sum )()()( 21 ttt µµµ +=  of the corresponding 

‘univariate hazard rates’. 

     Although it is difficult to analyze )(tµ  in (7) in full generality, certain qualitative 

considerations that will be very helpful in the next section can be stated. Indeed, let us 

first fix the second frailty 22 zZ = . Then the corresponding hazard rate is defined by 

the univariate frailty model (5): 

∫
∞

=
0

121212 )|,(),,(),( dztzzzztzt πµµ .                                 (9) 

Thus, at the first stage, we’ve selected from our overall heterogeneous population the 

heterogeneous subpopulation that corresponds to 22 zZ =  ( 2222 dzzZz +≤< ) and 

have defined its hazard rate. As our goal is to analyze the hazard rate, at the second 

stage, we consider our overall population as a ‘continuous collection’ of 

homogeneous subpopulations with hazards rates given by (9). Then we can analyze  

)(tµ  again in the univariate manner. For instance, assume that the family ),( 2ztµ  is 

ordered in 2z  (the smaller values of 2z  correspond to the smaller values of   ),( 2ztµ ). 

Therefore, the deceleration in mortality due ‘to the weakest populations are dying out 

first’ takes place. Specifically, let  ),( 2ztµ  for each 2z   decreases (non-increases) at 

least asymptotically,  as ∞→t .  It is well-known that the corresponding population 

(mixture) hazard rate is strictly decreasing in this case (see, e.g., Ross (1996)). Thus, 

we have described the following result: 

 

Theorem 2. Let frailty 11 zZ = ( 22 zZ = ) in the bivariate frailty mode be fixed. 

Assume that the corresponding univariate frailty model (with respect to 2Z ( 1Z ) results 

in decreasing (non-increasing) ordered hazard rates for all values of )( 21 zz . 

Then ‘releasing (randomizing)’ 1Z ( )2Z  , results in the strictly decreasing population 

hazard rate. 

 

The formal proof  of the validity of the two-stage procedure is straightforward and is 

based on the representation of the bivariate density ),( 21 zzπ  as a product 

)()|( 222211 zzZz ππ =  and on the similar representation for the conditional density: 

)|,( 21 tzzπ )|(),|( 222211 tztTzZz ππ >== . 

The latter seems intuitively evident, and can be immediately obtained formally 

(keeping in mind our notation (e.g., )|()|( tztTz ππ ≡> ))  from equations (6)-(9). 

Theorem 2 then follows, as the (univariate) mixture of distributions with decreasing 

(non-increasing) hazard rates is characterized by the strictly decreasing hazard rate. 

 

Example 1. An important conclusion that illustrates Theorem 2 deals with the 

Gompertz law of mortality (4).  It is well known that randomization  of a  (e.g., via 

the gamma distribution of the frailty) results in the mortality plateau. Thus, 

randomization of  b  (second stage) results in the decreasing force of mortality as 

∞→t , Therefore, if we observe the mortality plateau for some population that 

follows the Gompertz-gamma model, then there should not be noticeable 

heterogeneity in this population  due to parameter b !  
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     The described ‘multistage approach’ obviously can be applied to the case when 

there are more than 2 frailties or parameters of distributions that can be randomized in 

a similar way. Note that, it is possible that all failure rates from the ordered family 

converge asymptotically (as ∞→t ) to one curve (specifically, to a constant). 

Therefore the population hazard rate will also tend to this curve (vanishing fixed 

frailty), which will also be illustrated in the next section. 

 

 Remark 1. As we emphasized, heterogeneity of a population in this paper is 

understood as the property that characterizes the differences in lifetimes of 

stochastically ordered homogeneous subpopulations. A natural question arises: what 

is the measure for these differences? Obviously, the variance of frailty Z  can be 

considered as such. More generally, consider stochastic comparison of two frailty 

random variables  1Z  and 2Z  via the variability ordering: we say that 1Z  is more 

variable than 2Z  and write 21 ZZ v≥  if  (Ross, 1996): 

)]([)]([ 12 ZhEZhE ≥      for all increasing convex )(⋅h .                 (10) 

Specifically, when ][][ 21 ZEZE =  it can be shown that (10) holds for all convex 

functions ).(⋅h . For instance, as 2)( xxh = , we would have that  )()( 12 ZVarZVar ≥ .  

 

 Remark 2. Variability dynamics of the conditional frailty tZ |  (i.e., frailty among 

survivors at time t ) can be rather complex and is not fully investigated for the general 

case so far. However, it follows from Theorem 1 that  ]|[ tZE  is decreasing with 

time, which is obviously also an indication of the “weakest populations are dying out 

first” process. It seems from the first sight that )|( tZVar  should also decrease, but 

surprisingly (at least, for us) this is not true for a general case. The counter-example 

can be found in Esaulova (2006), which shows that the conditional variance for some 

specific distribution ( ]1,0[;2)( ∈= zzzπ ) of tZ |  and for the additive frailty model is 

increasing in the neighbourhood of 0 regardless of the baseline distribution. It is also 

shown that )|( tZVar  is decreasing in ),0[ ∞  when Z  is gamma-distributed.  

      

     The discussion of this section will help us to analyze the shape of the hazard rate 

for some examples of vitality models. We will focus mostly on the vitality model 

described by the Wiener process with drift (Anderson, 2000; Weitz and Frazer, 2001; 

Li and Anderson, 2009). The parameters of the corresponding lifetime distribution 

after randomization will act as fixed frailties that define the corresponding ordered 

subpopulations. We hope that this interpretation will add some simple useful 

additional reasoning from the distributional point of view to the process point of view 

approach developed by by Aalen and Gjessing (2001) and Steinsaltz and Evans 

(2004). 

 

4. Vitality models and lifetime distributions  

 

a. Linear process of degradation 

We start with the simplest vitality model that will be used as an explanatory example 

for highlighting certain properties and approaches. 
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     Let 00 >v  be the deterministic initial (at 0=t ) vitality of an organism, which is 

monotonically decreasing with t  in accordance with the simplest stochastic process: 

RtvVt −= 0 ,                                                      (11) 

where R  is a positive random variable with the Cdf )(tS . For each realization rR = , 

(11) can model the linear decline in physiological functions of organisms noted by 

Strehler and Mildvan (1960) and in numerous subsequent publications. However, 

exponential and logarithmic models for this decline can be also considered. 

     Death occurs when  tV  reaches 0. Denote the corresponding lifetime by RT . 

Therefore, the Cdf  )/(1]/Pr[]Pr[)( 00 tvStvRtTtF RR −=≥=≤= . Assume that R  is 

gamma-distributed with the pdf  )(/1 ηηη Γ−− axexa  with the scale parameter 0>a  and 

the shape parameter 0>η .  Then the pdf )()( tFtf RR
′=  has an inverse gamma 

distribution form: 

tav

R et
av

tf
/10 0

)(

)(
)(

−−−

Γ
= η

η
    .                                       (12) 

We will analyze the shape of the corresponding hazard rate using the ‘classic’ 

Glazer’s theorem (Glazer, 1980), formulated in a slightly more general form by 

Marshall and Olkin (2006). We will intensively use this result and other relevant 

considerations in what follows. 

    The essential fact to be exploited is that the behavior of the hazard rate )(tµ  is 

related to the behavior of the derivative of the logarithm of the density of a lifetime 

distribution )(tF , namely, 

)(

)(')(log
)(

tf

tf

dt

tfd
tg −=−= . 

The rationale behind this statement becomes apparent when 0)(lim =∞→ tft . Indeed, 

by using L’Hopital’s rule: )(/)('lim)(/)(lim)(lim tftftFtft ttt −== ∞→∞→∞→ µ .    

Theorem 3 (Marshall and Olkin, 2007). Let the density )(tf  of a lifetime random 

variable be strictly positive and differentiable on ),0( ∞ , such that 0)(lim =∞→ tft . 

Then 

(i) If )(tg  is increasing, then the hazard rate )(tµ  is also increasing. 

(ii) If )(tg  is decreasing, then  )(tµ  is also decreasing. 

(iii) If there exists 1t  for which )(tg  is decreasing in 1tt ≤  and increasing in  1tt ≥ , 

then there exists 2t : 120 tt ≤≤ , such that )(tµ  is decreasing in 2tt ≤  and increasing 

in 2tt ≥ . 

(iii) If there exists 1t  for which )(tg  is increasing in 1tt ≤  and decreasing in  1tt ≥ , 

then there exists 2t : 120 tt ≤≤ , such that )(tµ  is increasing in 2tt ≤  and decreasing 

in 2tt ≥ . 

 



 11 

     The hazard rate )(tRµ  that corresponds to (12) can be easily analyzed with the 

help of this theorem. Indeed, as   0)(lim 0 =→ tfRt , it follows that 0)(lim 0 =→ tRt µ , 

whereas   

0
)(log

lim)(/)(lim)(lim =−== ∞→∞→∞→
dt

tfd
tFtft R

tRRtRt µ  

and  )(tRµ  is “bell-shaped” with a maximum at )1/(0 +< ηavt .  

    This simple example, however, can be helpful for discussing the notion of 

heterogeneity that we adopt. If we consider the model as a black box with the lifetime 

described by the Cdf )(tFR , then by definition, the corresponding population is 

homogeneous. However, in view of the model (11), we can identify the corresponding 

subpopulations for each value of rR =  that will be definitely ordered in the sense (3) 

(in this case the lifetimes that correspond to each realization rR =  are deterministic, 

and therefore, can be ordered accordingly). Thus, our infinite population can be 

considered as heterogeneous in the described sense. 

     The considered vitality model results in the vanishing at the infinity hazard rate. If 

we are interested in explaining mortality plateaus that has been observed in human 

and other populations, then we must look at more realistic vitality models. The first 

candidate for that is when the simplest stochastic process in (11) Rt  is substituted by 

the more advanced stochastic model given by the Wiener process with drift. 

 

4b. Wiener process with drift. 

We modify the degradation model (11) with the fixed initial vitality 0v  to  

,

,0

tt

tt

WrtR

RvV

+=

−=
                                                           (13) 

where 0, ≥tRt  is the Wiener process with drift, r  is a drift parameter and 0, ≥tWt  is 

the standard Wiener process with normally distributed values (for each fixed t ) with 

mean 0  and variance t
2σ . 

     It is well-known (see, e.g., Cox and Miller, 1965) that the probability distribution 

for the first passage time (when tR  reaches the boundary 0v  for the first time) is 

defined by the inverse Gaussian distribution with the pdf: 

 







 −
−=≡ −

t

rtv
t

v
rvtftf RR 2

2

02/30
0

2

)(
exp

2
),,;()(

σπσ
σ .                              (14) 

 

The exact expression for the corresponding hazard rate, ),,;()( 0 σµµ rvtt RR ≡ , is 

complicated and therefore, as our goal is just to analyze its shape, we will use 

Theorem 3. It is easy to derive from (14) that 

22

2

0

2

2

222

3)(log
)(

t

vr

tdt

tfd
tg R

R
σσ

−+=−=  .                                    (15) 
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Note that, (14) is written in parameterization σ,,0 rv . However, reparameterization: 
22 /σλ r= , 2

0 /σω rv=  leads to the standard two-parameter form of the inverse 

Gaussian distribution (which we need for stating some useful properties): 







 −
−= −

t

t
ttfR

λ

λω
λ

πσ

λω
ωλ

2

)(
exp)(

2
),;(

2
2/3 .                          (16) 

It immediately follows from (15) that the hazard rate tends to a constant when 

∞→t (mortality plateau): 

2

2

22

)(log
lim)(lim

σ

λ
µ

r

dt

tfd
t R

tRt ==−= →∞→∞                               (17) 

It is also obvious that 0)(lim 0 =→ tRt µ . The ‘rest of the shape’ of )(tRµ  is defined by 

Theorem 3: )(tRµ is increasing for ]0[ 2tt ≤∈ , where 22

012 3/2 σvtt =≤  and is 

asymptotically decreasing to the plateau for 2tt ≥ . This form of the hazard rate for the 

inverse Gaussian distribution was first described by Chhikara and Folks (1977) using 

straightforward calculus and asymptotic bounds. We, however, rely on a general 

Theorem 3 that can be used for analysis of other distributions as well. 

     Although the ‘underlying physics’ of the inverse Gaussian distribution is given by 

the Wiener process with drift, unlike Subsection 4a, we cannot identify the 

corresponding subpopulations in the sense that we have defined earlier. Therefore, the 

corresponding population in this ‘black-box’ analysis should be considered as 

homogeneous and there is no (fixed) heterogeneity in the defined sense so far. 

Moreover, as the sample paths of the Wiener process are non-monotonic, this process 

is often criticized in the engineering literature as a stochastic model for monotonic 

deterioration (see the next subsection for the Gamma process that is monotonic). Note 

that, the process point of view with evolving heterogeneity was briefly discussed in 

Section 2.  

     From (16) it follows that λ  is the scale parameter. Therefore, obviously, the 

corresponding lifetimes are decreasing in λ  in the sense of the usual stochastic 

ordering (2), i.e., for the fixed ω : 

),0[,);;();( 2121 ∞∈≤≤ ttFtFR λλωλωλ .                       (18) 

This is a simple general fact. However, for the specific case of inverse Gaussian 

distribution it can be shown that the stronger hazard rate ordering (1) also takes place 

(Marshall and Olkin, 2007), which means: 

),0[,);,;();();(),;( 2122221111 ∞∈≤=≤= ttttt RRRR λλωλµωλµλωλµλωλµ . 

     As 22 /σλ r= , the distribution of the first passage time ),;( ωλtfR  does not 

change when we change r  and  σ  proportionally. Thus the mechanism of the failure 

process driven by the Wiener process with drift is such that, e.g., the increase in the 

drift parameter is compensated by the proportional increase in the standard deviation 

σ . This is a rather unexpected observation, however as stated, it is a consequence of 

the considered specific setting. 
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     After discussing the issue of stochastic ordering, we can now qualitatively analyze 

the shape of ),;( ωλµ tR  for large t  with respect to the randomized parameters r   and  

σ  ( 0ν  is fixed so far) to be denoted by R  and  Σ , respectively. Note that, Aalen and 

Gjessing (2001), have performed the necessary derivations assuming that R  is 

normally distributed and σ  is fixed. However, as the drift ( r− ) can be positive in this 

case, the resulting survival distribution is defective. These distributions are often used 

for describing the corresponding ‘cure models’. 

     Assume that R  and Σ  are non-negative random variables with supports in ),0[ ∞ . 

Thus, the bivariate frailty model discussed in Section 3 can be applied. We proceed as 

described there: fixing σ=Σ  and considering subpopulations with one frailty 

parameter R  (see equation (9) and the description after it). At the first stage, we 

select from the overall heterogeneous population the heterogeneous (with respect to 

different values of r ) subpopulation that corresponds to σ=Σ  and define its hazard 

rate. As the corresponding homogeneous ‘sub-subpopulations’ (for different fixed 

values of r ) are ordered in the sense of the hazard rate ordering and ‘have’ the shapes 

of hazard rates described above (increasing and then decreasing to a plateau), this 

heterogeneous subpopulation has asymptotically decreasing to 0  hazard rate (Ross, 

1996). Now, at the second stage, as these hazard rates are ordered with respect to the 

values of the second frailty σ=Σ , we can use Theorem 2, which means that the 

population hazard rate is also decreasing as ∞→t  (and in our specific case, it is 

decreasing to 0 ). 

     Thus, mortality plateaus cannot occur in the described frailty model! However, 

this can still happen, if the supports of frailties R   and  Σ  are modified to ],[ ∞a  and 

],0[ b , respectively. Then the population hazard rate tends to the failure rate of the 

strongest subpopulation which is, in accordance with (17) (Finkelstein, 2009), 

2

2

2
)(lim

b

a
tRt =∞→ µ .                                                (19) 

     Alternatively, we can define the ordered subpopulations for the specific case under 

consideration in the ‘univariate way’ via parameter σ/r . Note that, for our qualitative 

considerations, we do not need the distributions of neither R , Σ , nor Σ/R . Thus, the 

points in a positive σ,r  quadrant are ordered in accordance with the coefficient k , 

i.e., 0, >= kkr σ . The shape of the hazard rate for each fixed k  has the shape of the 

hazard rate of the inverse Gaussian distribution. Therefore, the population hazard rate 

is decreasing as ∞→t , as it should be, because the result should be the same. 

Similar, when the supports of frailties R   and  Σ  are modified to ],[ ∞a  and ],0[ b , 

respectively, then (19) holds. Aalen and Geising (2001) (see also Whitmore (1986)) 

have shown explicitly that for the specific case of normally distributed R  and fixed 

σ , the population hazard rate decreases to 0  as 2/1 t . This perfectly conforms with 

our qualitative results for a general setting.  

     We are ready now to add variability to the initial vitality. Denote the corresponding 

random variable by  00 ≥V  (fixed frailty). It immediately follows from (17) that, 

distinct from the other considered fixed frailties, the effect of the initial vitality 

vanishes as  ∞→t . Therefore, it has no effect asymptotically on the shape of the 

hazard rate. This was analytically shown and discussed using the concept of 

quasisationary distributions in (Aaalen and G, 2000, Steinsaltz and Evans (2004), Li 

and Anderson,2009). There is not much more to say about that in our analysis except 
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the fact that the subpopulations that correspond to different values of vitality (when 

other parameters are fixed) are also ordered in the sense of the hazard rate ordering: 

the larger values of vitality correspond to the smaller values of the hazard rate. As 
2

0 /σω rv= , we can extend the bivariate frailty procedure of the previous section to 

the case of three frailties, but as stated, adding frailty  0V  will not change  the 

asymptotic behavior of the population hazard rate. 

 

c. Gamma process and the Birnbaum-Saunders distribution. 

The Wiener process is often criticized as a model for degradation and ageing as its 

sample paths are not necessarily positive and strictly increasing. On the other hand, 

the gamma process always possesses these properties. Therefore,  let 0, ≥tRt  be now 

the stationary gamma process with the following density for each t : 

)/,/|()( 222 σσ rtrxGaxf
tR = , 0, >σµ ,                                (20) 

tRVarrtRE tt

2)(,][ σ== , 

where ),|( βαxGa  denotes the gamma distribution with shape parameter α  and scale 

parameter β  .  We see that the mean and the variance of this process have the same 

functional form as for the corresponding Brownian motion with drift. The first 

passage time distribution function for the vitality model with initial value 0v    is  

∫
∞

Γ

Γ
==

≥=≤=

0

,
)/(

)/,/(
)(

]Pr[]Pr[)(

22

2

0

22

0

v

R

tRR

tr

rvtr
dxxf

vRtTtF

t

t

σ

σσ                                          (21) 

where dzezxa
z

x

a −
∞

−

∫=Γ 1),(     is the incomplete gamma function for 0≥x  and 0>a .   

    This function can be calculated numerically (Noortwijk, 2009). It is shown by Liao 

et al (2006) that the corresponding hazard rate is increasing, whereas Abdel-Hameed 

(1975) proves that it tends to infinity as ∞→t , which means that the  mortality 

plateau cannot occur in accordance with this model. 

     Park and Padget (2005) have derived a very complex exact expression for the pdf 

)(tfR . Therefore, a simpler meaningful approximation for (21) was suggested by 

these authors in the form of the Birnbaun-Saunders distribution that can be already 

effectively analyzed. In a general form, this distribution is given by  

0)),((),;( 1 >Φ= −
tthtFBS λααλ ,                                          (22) 

where 0, >αλ ; )(⋅Φ  is a standard normal distribution function and 2/12/1)( −−= ttth . 

For our specific case (21), the corresponding approximation reads (Noortwijk, 2009): 

 


















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


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σ
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It was obtained by Park and Padget (2005) via discretization of the first passage time 

and then using the central limit theorem. The error of the approximation was not 

assessed, however it was stated that it can be used at least for the case when σ>>r . 

On the other hand, it should be noted that approximation of distribution functions 

does not necessarily mean that the tails of the hazard rate functions are also 

approximated. Therefore, given our interest in asymptotic behavior of hazard rates, 

why not to start directly from distribution (23) that, similar to the inverse-Gaussian 

distribution, also has a meaningful process point of view interpretation. To see this,      

consider the following damage accumulation model. Let tR  in (13) be modeled by the 

following shock process: suppose that shocks occur at regular intervals at times 

,...3,2, ∆∆∆  . Let each shock causes a random damage 0>iY : i.i.d with 
2)(,][ σµ ∆=∆= ii YVarYE .  Damages accumulate additively and the k-th shock is 

survived if the accumulated damage is less than the initial vitality 0v , i.e., ∑ ≤
k

i vY
1 0 . 

Then, letting 0→∆  and using the central limit theorem, after straightforward 

derivations (Marshall and Olkin, 2006) one can obtain the lifetime distribution (22), 

where 

00 /,/ vv µλµσα == .                                          (24) 

Differentiation of (22) results in the following density 
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
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
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
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22
),;(

2
.               (25) 

Obviously, 0),;(lim 0 =→ αλµ tBSt . Using Theorem 3, it can be shown that the hazard 

rate is bell-shaped and is decreasing to a constant as ∞→t (mortality plateau): 

2

2

2 22

),;(log
lim),;(lim

σ

µ

α

λ

αλ
αλµ

==

−= ∞→∞→
dt

tfd
t BS

tBSt

                               (26) 

It follows from (26) that, as previously, the effect of initial vitality 0v  is vanishing as 

∞→t . Similar to the case of the inverse Gaussian distribution, it can be seen from 

(25) that ov/µλ =  is a scale parameter and therefore, the usual stochastic ordering 

(and the hazard rate ordering) holds, i.e., if  ov  ( µ ) is fixed, then the larger values of 

µ ( ov ) will result in larger (smaller) values of the hazard rate in ),0[ ∞ . Alternatively, 

as previously, we can order with respect to the quotient kvo =/µ . However, when 

∞→t  , the ordering is only in accordance with the values  of µ .   

     The possibility of ordering with respect to the values of σ  for a general case is not 

clear (it is an open question in the theory of this distribution). On the other hand, as 

follows from (26), this ordering exists asymptotically. Assume now that µ  is a 

realization of a random variable Μ , whereas σ  is a realization of a random variable 

Σ  with supports in ],0[ ∞ . Then, similar to the case of the inverse Gaussian 

distribution, the randomization results in the asymptotically decreasing to 0  



 16 

population hazard rate. Mortality plateaus are theoretically possible in this model only 

when the supports of the frailties M   and  Σ  are ],[ ∞a  and ],0[ b , respectively. 

5. Concluding Remarks  

We define the fixed heterogeneity as a property of populations that consist of 

subpopulations with stochastically ordered subpopulations, as given by equation (3). 

As far as we know, this formal definition of heterogeneity was not considered in the 

literature so far. As we are discussing the shapes of hazard rates (with an emphasis on 

asymptotic behavior and mortality plateaus), it is natural to apply here the specific  

hazard rate ordering (1). When it holds, we prove that the conditional frailty 

distribution )|( tzΠ  tends to be more concentrated around small values of the frailty 

0≥Z  as time increases, which corresponds to stronger populations and can be 

interpreted as “the weakest subpopulations are dying out first”. 

    Our Theorem 2 justifies the two-stage procedure in considering heterogeneity that 

corresponds to the bivariate frailty models. Under certain assumptions, it means that 

at the first stage, one can ‘create’ a heterogeneous subpopulation of the entire 

population that correspond to the univariate frailty (with the fixed second frailty) and 

then at the second stage, consider the collection of these subpopulations. Specifically, 

when the hazard rate at the first stage is asymptotically flat (mortality plateau), the 

population hazard rate is decreasing as  ∞→t  (no mortality plateau). Therefore, if 

we observe the mortality plateau for some population that follows the Gompertz-

gamma model, then there should not be noticeable heterogeneity in this population  

due to parameter b !  

     As examples for ordered subpopulations, we consider several vitality models with 

the main focus on the Wiener process with drift that describes the decrease of vitality 

of organisms. This model was intensively studied in the literature, but we interpret the 

results on the shape of the hazard rate via the randomization of the parameters of the 

inverse Gaussian distribution and the corresponding ordering of subpopulations. We 

also show that the initial vitality has no effect on asymptotic behavior of the hazard 

rate and that only a non-randomized version of this distribution can end up in the 

asymptotically flat rate. We also briefly discuss the notion of evolving heterogeneity 

as variability in sample paths of the underlying process of deterioration, which 

obviously differs from our understanding of the fixed heterogeneity as variability of 

lifetimes in homogeneous subpopulations. 

     It should be noted that our discussion on asymptotically flat (or decreasing) hazard 

rates applies usually to really advanced ages of organisms, as, e.g., in the case of 

human populations, when the deceleration in mortality rates start to be obvious only 

after the age of 100. However, as follows, e.g., from Carey et al (1992), the decrease 

in mortality rates can happen relatively earlier for fruitflies. In Finkelstein (2006), it 

has been reported on the experiment with a population (heterogeneous) of only 700  

miniature light bulbs with recorded times of failures. It is known that the lifetime of 

these objects for a homogeneous case is described by the Weibull distribution with the 

increasing hazard rate. However, the experiment showed the bell-shaped hazard rate 

with ‘observed’ maximum, which totally conforms with the fixed frailty model for 

this case.       
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