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Introduction 

Fertility has experienced long-term declines in many developed countries, but recent 

studies have noted small increases in some parts of Europe, North America, and Asia  

(Goldstein, Sobotka and Jasilioniene 2009; Luci and Thevenon 2010; Myrskylä, Kohler and 

Billari 2009; Sobotka 2008; Myrskylä, Goldstein and Chen 2013). The future size and age 

structure of national populations depend largely on birth rates, so governments and planners are 

naturally interested in knowing whether fertility decline is slowing or reversing.    

Answering that question with current data is complicated. Statistical agencies estimate 

the most common fertility index – the total fertility rate (TFR) – by aggregating the age-specific 

fertility rates of a calendar year. Thus a TFR such as 1.16 children per woman (for the Czech 

Republic in 1998) does not correspond to average lifetime childbearing by any real women, but 

rather to a fictitious group who experience 1998 age-specific rates over their reproductive 

lifetimes. This kind of period measure is vulnerable to what demographers call tempo distortion. 

In particular, an increase in TFR does not necessarily mean that women are beginning to have 

larger families. It could instead mean that postponement of fertility to higher maternal ages is 

slowing (Bongaarts and Feeney 1998; Van Imhoff and Keilman 2000; Kohler and Philipov 2001; 

Zeng and Land 2002; Goldstein et al. 2009). 

Simply put, standard fertility indices derived from current annual birth and population 

information cannot tell us the future.  Estimating the final fertility of cohorts (i.e., real groups of 

women, such as those born in 1970, 1980, or 1990) requires either waiting for those women to 

reach the end of reproductive ages, or making forecasts. The waiting strategy has produced a few 

recent examples of increased cohort fertility in Scandinavia (Andersson et al. 2009), but in most 
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countries the cohorts of women whose lifetime fertility might be increasing are still young, and 

their final fertility levels depend on future rates (Frejka and Calot 2001).  

Our objective in this paper is to produce useful forecasts of completed cohort fertility for 

women born in the 1970s and 1980s, by using a combination of new methods and a large new 

fertility database. Figure 1 shows an example forecasting problem, using data from the Czech 

Republic1. Precise rate estimates are available for Czech women by single years of age for 

calendar years through 2009 from the Human Fertility Database (HFD 2011, described in detail 

later).  This yields complete rate histories over ages 15-44 for women born 1956-1965, and 

partial histories for cohorts of women born after 1965. The data indicate a radical change in 

Czech fertility patterns in the post-Communist era. The top edge of the figure contains values for 

the cohort total fertility rate (CFR), which is the average number of children ever born to women 

with a particular birth year. The previous Czech pattern of early births and replacement-level 

cohort fertility (CFR≈2.1) has given way to later births and a still-unknown level of completed 

fertility. The central question that a forecast must address is whether women in the later cohorts 

are reducing fertility, or merely postponing it. The same question arises in other developed 

countries. 

                                                 
1 In our data the Czech Republic and Slovakia are separated, even for the period during which they were politically 
united. 
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Figure 1. Czech Republic HFD (2011) fertility estimates by cohort year of birth and single year of age, for women born after 
1955. Darker cells indicate higher rates. Cells in the upper right, such as (born in 1980, age 40), will occur in the future. Cohort 
fertility rates (CFR) appear above the plot, and are incomplete for cohorts born after 1965.  

 

Demographic Forecasting 

Recent changes in fertility levels and timing make our forecasting question especially 

timely, but of course the basic problem is not new to demography. There is a growing literature 

in forecasting mortality, much of it derived from Lee and Carter’s (1992) singular value 

decomposition approach for period mortality forecasts (e.g., Renshaw and Haberman 2006; 

Booth and Tickle 2008; Girosi and King 2008; Hyndman and Booth 2008).  Girosi and King’s 

(2008) recent proposals for Bayesian models in mortality forecasting are especially important: 

they are a main inspiration for the cohort fertility models that we develop in this paper.  
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 Fertility forecasting is a far more difficult problem. Unlike death, childbearing is both 

optional and repeatable. Its timing is strongly affected by conscious decisions. In addition, 

mortality rates change predictably in one direction over time, while fertility rates fluctuate. 

Despite these difficulties, there is a sophisticated literature, parallel to that for mortality, on 

forecasting period fertility rates and the completed fertility of cohorts (Bloom 1982; de Beer 

1985; Thompson et al. 1989; Chen and Morgan 1991; Lee 1993; Li and Wu 2003; Goldstein 

2008; Hyndman and Booth 2008; Chen 2010; Cheng and Lin 2010; Alkema et al. 2011; 

Myrskylä, Goldstein and Chen 2013).  Booth (2006) offers an excellent overview and history of 

demographic forecasting in general, including a discussion of approaches to cohort fertility 

completion. 

Models for cohort fertility forecasts can extrapolate over time, over ages, or both. In 

Figure 1, a time series approach would extrapolate available age-specific rates from West to 

East, while a cohort approach would fit models to data for incomplete cohorts and extrapolate 

from South to North over ages. A principal challenge for any model is to produce coherent 

forecasts, in which both time trends and cohort schedules are demographically plausible. In 

particular, it is essential to use recent trends (particularly on postponement to higher maternal 

ages) in a way that avoids forecasts with demographically implausible age patterns for cohorts.   

Another important forecasting challenge is the evaluation of uncertainty. Deterministic 

models that employ simple cohort extrapolations or parametric trajectories for future age-specific 

rates do not come with straightforward and well-developed methods for evaluating forecast 

uncertainty.  

In this paper we extrapolate over both time and age, combining what demographers 

already know about plausible age patterns of fertility with recent trends in age-specific rates.  We 
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build a Bayesian model for surfaces such as those in Figure 1, with priors constructed from a 

large archive of historical fertility data.  As described in the next sections, our model uses 

improper normal priors and a normal likelihood, so that calculation of posterior maxima and 

posterior uncertainty is straightforward.   

Our approach uses available information without imposing rigid models or making strong 

assumptions about the object of the forecast. Our goal is to use Bayesian methods with priors 

that explicitly incorporate some of the knowledge that is implicitly used by existing forecasts 

methods. We expect that such methods may find better compromises between recent trends in 

observed data and known age, period, and cohort fertility patterns. In developing this model, our 

main tasks are to define qualitative priors that include existing demographic knowledge about 

fertility patterns over age-time Lexis surfaces, to devise appropriate mathematical specifications 

for those priors, and to design appropriate computational methods.  

 

Human Fertility Database and Supplemental Data Sources 

We base our analysis on a new public dataset, the Human Fertility Database (HFD 2011). 

The HFD is a cooperative project of the Max Planck Institute for Demographic Research and the 

Vienna Institute of Demography. We downloaded data comprising 44400 estimated fertility rates 

for 24 countries or regions in Europe and North America, categorized by single-year of age 

(12,13,…,55) and single calendar year of data collection, over periods of up to 120 years ending 

near 2009.2  HFD (2011) protocols carefully allocate these data to women by their year of birth. 

                                                 
2 Our HFD period data are for Austria 1951-2008,  Bulgaria 1947-2009,  Canada 1921-2007, Switzerland 
1932-2007, Czech Republic 1950-2009, Germany [East, West, combined] 1956-2010, Estonia 1959-2009, Finland 
1939-2009, France 1946-2009, UK [N.Ireland 1974-2009, Scotland 1945-2009, England &Wales 1938-2009, 
combined 1974-2009)], Hungary 1950-2009, Lithuania 1959-2009, Netherlands 1950-2009, Portugal 1940-2009, 
Russia 1959-2009, Slovakia 1950-2009, Slovenia 1983-2009, Sweden 1891-2010, USA 1933-2007. 
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We combined HFD data with period rates collected by Myrskylä  and colleagues for 12 

additional countries (Australia, Belgium, Denmark, Greece, Iceland, Italy, Japan, Korea, 

Luxembourg, New Zealand, Romania,  and Singapore; data sources are listed in Myrskylä et al. 

2013, Table 1), and also with period rates for Brazil 1966-2010 provided by Dr. Everton Lima 

(personal communication).  This produced a final data set covering 37 countries, which is 

heavily European but also includes data from North America, South America, Asia, and Oceania.  

In this data set, we call the vector of rates for a cohort at ages 15-44 its cohort fertility 

schedule, and define a schedule as complete if rate estimates are available at all 30 ages. As an 

example, in Figure 1 the schedule for Czech women born in 1960 is complete, while the schedule 

for women born in 1980 is not. We have data from 3223 cohort schedules, of which 1015 are 

complete. The earliest complete schedule is for Swedish women born in 1876; the latest are for 

women born in the mid-1960s in each country.   

We separate our data into two non-overlapping subsets: 

• Contemporary data for forecasting exercises over surfaces such as Figure 1.  

• Historical data, for use as a source of a priori information. Historical data 

comprise all complete fertility histories for cohorts born earlier than those 

appearing in any forecast surface. 

The historical data set contains S=469 complete cohort schedules for women born in any country 

between 1900 and 1949.3 We organize the historical dataset as a 30x469 matrix HIST, with each 

column containing one complete historical schedule.  Contemporary data for each country (such 

as that for the Czech Republic in Figure 1) comprise fertility schedules, both complete and 

incomplete, for all women born after 1949.   
                                                 
3 Only Swedish data are available for cohorts born before 1906. Choosing 1900 as a lower bound ensures that priors 
come from a more equally weighted mix of countries. The upper bound of 1949 ensures that, as in Figure 1, we have 
enough complete cohorts to observe pre-forecast trends in rates by age.   
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The HFD represents an unprecedented collection of coherent and comparable fertility 

data. Combining the HFD with supplemental data creates a contemporary data set that is an 

excellent testbed for comparative forecasts.  Furthermore, the historical portion of the data set is 

an ideal source of a priori information on the nature of cohort fertility schedules and their 

changes over time. The use of a large collection of historical data to inform and construct 

improper priors about age and time patterns of cohort fertility is one of the main novelties in our 

forecasting exercise.  

 

Notation, Model, and Methods 

For contemporary data in a country, we have C birth cohorts of interest (c=1…C) over A 

reproductive ages (a=1…A). For this country, define (with all vectors as columns): 

• Rca ∈θ , the true fertility rate for cohort c between exact ages a and a+1 

• ,)( 1
A

cAcc R∈′= θθθ K  the fertility schedule for cohort c,  

• ,)( 1
C

Caaa R∈′= θθθ K  the time series of rates at age a,  

• CA
C R∈′′′= )( 1 θθθ L , the vector of all rates, sorted by age within cohort, 

• [ ] CAA
Ac R x∈= 0I0G KK , a matrix such that θθ cc G=  

• CAC

thaCa R x)010( ∈⊗=
−
KKIH , a matrix such that θθ aa H=  

• RCFR cc ∈= θ)11( K , the completed fertility of cohort c 

• nRy ∈ , a vector of published estimates for some subset of θ 

• CAnR x∈V ,  a matrix of ones and zeroes such that nR∈θV  is the subset of parameters 

corresponding to y 
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In the forecasting problem, y is a set of external estimates of past fertility rates, provided by a 

national statistical agency. As in Figure 1, the CxA grid θ (also called a rate surface or a  Lexis 

surface) is a larger set that not only includes those past rates, but also extends into the future.  

We model parameters θ and observations y in a Bayesian framework 

(1)  )(ln)|(ln)|(ln θθθ fyLconstyP ++=  

where  P( ) , L( ), and f( ) represent, respectively, the posterior density, the likelihood function, 

and the prior density. Const is a term that does not vary with θ. Fertility rates published by 

national statistical agencies typically come from very large risk populations. This justifies a 

normal approximation for the likelihood, 

(2)  )()()|(ln 1
2
1 θθθ VΨV −′−−= − yyconstyL  

where ( )[ ]iii
ni

Wyydiag −=
=

1
..1

Ψ  and Wi is the number of a-year-old women in the (c,a) cell 

corresponding to the i-th rate. In most cases Wi values are very large, so that sampling variances 

are near zero and estimates y are almost always extremely close to the true fertility rates in the 

pre-forecast period.  

As we describe in detail below, we use a log prior density of the form 

(3)   θθθ K′−= 2
1)(ln constf   

where the constants in CA x CA matrix K are estimated from patterns in historical data. In 

combination with the normal likelihood function (2), this prior implies, conditional on K, a 

multivariate normal posterior for θ|y, with CAx1 mean vector  

(4)  [ ] [ ]ypost
111 −−− ′+′= ΨVKVΨVμ  

 
and CAxCA covariance matrix 

(5)  [ ] 11 −− +′= KVΨVΣ post  
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The posterior distribution over each country’s Lexis surface,  

(6)   ),(~)|( postpostcountry Ny Σμθ , 

serves as a probabilistic forecast for its future age-specific fertility rates.  Because 

θθ cccCFR G1′== )11( K is a linear function of θ , the posterior distribution also provides a 

probabilistic forecast for our primary measure of interest, completed cohort fertility. 

The critical part of this model is the very large penalty matrix K that specifies the 

improper prior. Our basic approach, similar to that in Girosi and King (2008) or Wood (2000), is 

to build K from the bottom up, by additively combining many sub-penalties that apply to the 

individual cohort schedules and to the time series of fertility rates at each age. The process of 

repeated penalties builds a scaffolding for a partially-complete rate surface like that in Figure 1, 

with vertical (cohort) and horizontal (time-series) beams that extend from the past into the future.  

We construct these sub-penalties by combining demographic knowledge with empirical 

patterns in historical fertility data. In particular, we assign lower a priori probabilities to 

historically implausible θ surfaces that have (1) age patterns in cohort fertility schedules θ1… θC 

that are unlike those in the historical data [via cohort penalties], and (2) patterns in time series of 

age-specific rates θ15… θ44 that are unlike corresponding series in the historical data [time series 

penalties].  Details are in the next subsections.  

 

Cohort Penalties 

In all of the examples and calculations for this paper, we deal with rate surfaces over 

exactly A=30 ages (15…44) and C=40 cohorts (women born in 1956…1995), and we will 

assume those values from this point forward. For each cohort schedule θc we define historically 
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unlikely age patterns via the singular value decomposition (SVD) of the historical data array, 

HIST=UDV΄. Call X the 30x3 matrix constructed from the mutually orthogonal U columns 

corresponding to the three largest singular values in D. Figure 2 shows these three X columns, 

which have clear demographic interpretations. Weights on components 1-3 affect the overall 

cohort fertility level, the mean age of childbearing, and the variance of childbearing ages, 

respectively. Increases in component 2 correspond to fertility postponement, with rates 

decreasing before age 25 and increasing at higher ages.   
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3
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X

1
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Figure 2. First three principal components X, from the singular value decomposition of historical cohort schedules. These three 
components account for > 95% of deviations of historical rates from their age-specific means.  

 
Any cohort schedule θc can be decomposed into a part lying in the column space of X and an 

orthogonal remainder: 

 (7)  ( ) ccccc εθεβθ +′′=+= − XXXXX 1  

where the remainder vector is 

(8)  ( )[ ] ccAc θθε MXXXXI =′′−= −1  

Because X contains schedule components with large singular values, remainder vectors should 

typically be small. We can define “small” by constructing residual vectors for all complete 

cohort schedules in the historical array HIST, and calculating their average outer product: 
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(9)  ∑ ′=
s

ssS εε1Ω   

These historical data allow us to establish a scalar penalty for the “badness” of each cohort 

schedule’s shape 

(10)  
[ ]
[ ]

θθ
θθ

θθ

εεπ

c

cc

cc

ccc

K
GMΩMG

MΩM

Ω

′=

′′=

′=

′=

+

+

+

  

where the + superscript represents the Moore-Penrose pseudo-inverse (Penrose 1955), necessary 

because rank(M)=A-3=27. By construction, the empirical average of πc across the cohort 

schedules in HIST equals 27.  

In our forecasting problem we deal with surfaces, like that in Figure 1, for which we have 

precise rate estimates at every age for the first 10 cohorts 1956…1965. We therefore use the 

shape penalties for cohorts with at least some unknown rates, namely for the 30 cohorts born in 

1966…1995.   

An important feature of this cohort shape penalty πc is that it is improper, in the sense that 

an uncountably infinite number of fertility schedules correspond to any given level of the 

penalty.  To take the simplest example, the minimum penalty πc=0 occurs for any schedule that is 

an exact linear combination of X columns, regardless of the specific weights on the columns. In 

other words, by applying this penalty we assume no a priori knowledge of the specific shapes or 

levels of cohort fertility schedules. We assume only that, in the cohort dimension, a surface θ can 

be well-approximated by the same components that best approximate historical schedules. An 
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important benefit of this approach is that a rate surface could have cohort schedules with shapes 

and levels not seen in the historical data, without heavy penalties.4 

Figure 3 illustrates the shape penalty. It contains the observed cohort schedule for USA 

1942-born women from the HFD (dark solid line), the projection of that schedule onto the 

column space of SVD components X (solid squares), and the residuals ε that cannot be explained 

via the X components (thick grey line along horizontal axis).  After calculating the overall 

covariance matrix of shape residuals as in equation (9), the calculated penalty for this observed 

schedule is πc=27.07. This penalty is very close to the empirical average of 27, so that the size 

and pattern of the USA 1942 residuals are in some sense typical of historical data. The most 

interesting feature in Figure 3 are the three dashed lines, which represent other hypothetical 

schedules with identical penalties πc=27.07. By design, our improper cohort shape penalty cannot 

distinguish any of these four very different age patterns as more or less likely than any other.  

 
Figure 3. Observed cohort fertility schedule for US women born in 1942 (solid dark line), and best approximation of that 
schedule using the 3 SVD components in Figure 2 (dark squares). The approximation residuals, represented by a thick grey line, 
generate a shape penalty of 27.07. Dashed lines represent hypothetical schedules with identical values for shape penalty. 
 

                                                 
4 Because there are no priors on the component weights, a three-component approach is flexible enough to allow 
many shapes that are not well represented in the historical data.  Perhaps most importantly, our measure does not 
heavily penalize the bimodal age patterns that may be emerging in English-speaking countries (Sullivan 2005). 
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Time Series Penalties 

Our second set of penalties concerns change and stability in the time series of rates at 

each age. Current demographic forecasting models use two main methods for extrapolating 

observed fertility rates into the future, which we will call the freeze-rate and freeze-slope 

approaches. The freeze-rate method assumes that the most likely future value for the fertility rate 

at age a is simply the last observed rate at that age. The freeze-slope method assumes that trends, 

measured as fitted slopes over some recent period, will continue into the future. In terms of 

residuals, these two methods suggest that 

Freeze-Rate:   0,1, ≈−+ caca θθ  

Freeze-Slope:   ( )[ ] 0,,ˆ
,,,1, ≈+− −+ ncacacaca θθβθθ K  

where )(β̂ is a slope estimator based on the recent history of rates at age a. As with the shape 

residuals in the previous subsection, one can construct penalties for a given rate surface, based 

on standardized residuals from rules of this type.  The larger these time series residuals are, the 

less plausible is the rate surface θ a priori. 

There is wisdom in both of the standard forecasting approaches: age-specific rates do 

trend steadily upward or downward over periods of five or ten years (favoring freeze-slope), but 

biological constraints and the impossibility of negative rates also mean that such trends cannot 

continue indefinitely (favoring freeze-rate). In a Bayesian framework a researcher does not have 

to make an explicit choice between these competing models.  Because the models are not 

mutually exclusive (a sequence of rates can be both constant and smooth) we can incorporate 

both probabilistically, and then calibrate the errors appropriately.  

At each age, we define a vector of 30 freeze-rate residuals for cohorts 1966…1995: 
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and a similar vector of 30 freeze-slope residuals 

(12)  
[ ]

[ ]
θθ

θθβθθ

θθβθθ

aSaS

aaaa

aaaa

av HWW ==
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

+−

+−
=

),...(ˆ

),...(ˆ

1990,1994,1994,1995,

1961,1965,1965,1966,

M  

For the freeze-slope case we estimate a local regression slope from the model nncaca βθθ =− − )( ,, , 

by least squares fitting over a five-year period using n=0…4.  This produces slope estimates 

4,30
4

3,30
3

2,30
2

1,30
1

,30
10

−−−− −−−−= cacacacaca θθθθθβ
)

and freeze-slope residuals that are weighted 

sums of θs, such as va,1966 = )( 1961,30
4

1962,30
3

1963,30
2

1964,30
1

1965,30
40

1966, aaaaaa θθθθθθ ++++− for the 

1966-born cohort. These more complex β-weights appear in the appropriate cells of the WS 

matrix.  

 
Figure 4. Freeze-rate residuals (u) and Freeze-slope residuals (v) at age 25, for 1936-born women in the Netherlands. 
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Figure 4 shows a simple example: freeze-rate and freeze-slope residuals at age 25, for women in 

the Netherlands who were born in 1936.  In this particular example both residuals are small, as 

they typically are in the historical data, given the smoothness and short-term predictability of 

rates at any given age across adjacent cohorts.  Both residuals are positive because the two 

models underpredict the observed rate. In this specific case the freeze-slope residual is smaller in 

magnitude, but one can see that for other cohorts (e.g. 1938) the freeze-rate residual is smaller. 

Figure 4 illustrates residual calculation at age 25 for a single cohort; each ua and va vector contain 

30 such residuals, for cohorts 1966-1995. 

 We calibrated the time series penalties by estimating all freeze-rate and freeze-slope 

residuals at each age in the historical data. The mean residuals of both methods are near zero at 

all ages, so that the average squared residuals for each (age, method) combination serve as 

estimates of residual variance – call these empirical estimates 2
Ra

s and 2
Sa

s . As we did for shape 

residuals, we standardize before constructing penalties. The freeze-rate penalty at age a therefore 

equals 

(13)  [ ]
θθ

θθ

π

Ra

aRRaRa

aaRaRa

s

uus

K
HWWH

′=

′′′=

′=
−

−

2

2

 

and the analogous freeze-slope penalty is   

(14)  [ ]
θθ

θθ

π

Sa

aSSaSa

aaSaSa

s

vvs

K
HWWH

′=

′′′=

′=
−

−

2

2

 

It is useful to contrast these penalties with common Bayesian priors for smoothness over 

age and time (e.g., Breslow and Clayton 1993; Berzuini and Clayton 1994; Ogata et al. 2000; 

Bray 2002; Schmid and Held 2004; Girosi and King 2008). In general, smoothness priors assign 
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high probabilities to series with slowly changing slopes. The most common model in the 

literature (called RW2 by Schmid and Held 2004) assumes that second differences in a series 

follow a random walk with small, independent perturbations. RW2 is therefore equivalent to a 

freeze-slope model in which each time series value is predicted with error from the two 

preceding values (Breslow and Clayton 1993:17-18, Berzuini and Clayton 1994:Fig. 3). When 

examining the historical data, we found that RW2 models that were appropriately smooth (i.e., 

with expected one-year-ahead prediction residuals similar to our historical data) were also too 

volatile (expected five- or ten-year-ahead differences were much larger than the corresponding 

historical averages). As a consequence, we adopted the variant described above: we use five, 

rather than two, years of earlier data to estimate the expected slope, and we also add freeze-rate 

penalties in order to identify less-volatile series as more plausible a priori. 

 

Weighting Multiple Shape and Time Penalties in the Prior Distribution 

 The complex matrix notation in the previous subsection tends to obscure a relatively 

simple structure, so it is useful to pause and remember that there are three basic categories of a 

priori information, and that each penalty term has been standardized using empirical variance 

information from pre-1950 cohorts.  By using this information to construct a prior distribution 

for θ, we implicitly assume that general features of past rate surfaces (measured in terms of the 

frequencies of different values for shape and time series penalties) will persist into the future in 

the countries for which we will forecast age-specific rates and CFRs.  

 Table 1 summarizes the logic and the notation that we have developed so far regarding 

penalties over a 30x40 surface of fertility rates for ages 15…44 and cohorts 1956…1995.  
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Table 1. Summary of Sub-Penalties for 30x40 Rate Surfaces  
 

Schedule Shapes 
Time-Series 
(Freeze Rate) 

Time-Series 
(Freeze Slope) 

# of Penalties 30 30 30 
Penalty Terms π1966 … π1995 πR,15 … πR,44 πS,15 … πS,44 
Residuals εc =M θc ua = WR θa va = WS θa 
Penalty Matrices K1966 … K1995 KR,15 … KR,44 KS,15 … KS,44 

A Priori Assumption 

Schedules well 
approximated by 
SVD basis 
functions X 

Next cohort’s rate at 
age a well predicted by 
current rate 

Next cohort’s rate at age 
a well predicted by recent 
trend 

Calibration 
Information from 
Historical Data 

Projection errors 
from X 

One-ahead freeze-rate 
prediction errors 

One-ahead freeze-slope 
prediction errors 

# of elements in each 
residual 30 30 30 
Expected value of 
each penalty (=rank 
of M or W) 27 30 30 

 

Our prior distribution additively combines all 90 of the penalty terms in its log likelihood, using 

a set of weights to adjust the contribution of each penalty j=1…90.   

(15)  

θθ
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πθ

K

K
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∑
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wconst
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Non-unit weights are necessary because the residuals on which we base the penalties are not 

mutually independent – merely as an example, if cohort shape residuals for a surface are all very 

small, then large time series residuals may be less likely. We demonstrate in the Appendix that 

for a weighted prior distribution, the expected value of the jth penalty given {wj} is 

(16)      ( ) ( )+= KK jj wE trace|* π  

where E* is a special operator for the expectation when θ is restricted to the column space of K 

(see Girosi and King 2008),  and K+  is the generalized Moore-Penrose inverse of the weighted 

sum K. 
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Our strategy for selecting weights to match historical data is as follows.  By construction, 

we know the empirical average for each penalty term in the historical data: 27 for cohort shape 

penalties and 30 for time series penalties. Our objective is to find weights w1…w90 such that  

(17)  ( ) ( ) 90...1for trace| j* === + jtargetwE jj KKπ  

where targetj represents the historical average for the penalty. 

In practice, the following elementary search procedure converged quickly to good solutions: 

0. Initialize all weights at unity:  w1=w2=…=w90=1 

1. Calculate jjw KK ∑= , and its generalized inverse +K  

2. Calculate ( ) ( ) 90...1 allfor trace|* == + jwE jj KKπ  

3. Update weights as 
( )

90...1 
|* =⋅= j

target
wE

ww
j

j
j

new
j

π
 

4. Stop if converged; otherwise return to step 1  

 

Table 2 summarizes the results of the joint weighting procedure, showing the range of 

weights and expected values of the penalties before and after 30 iterations.  These weights 

produce a K matrix for a prior distribution for which the a priori expected values of each penalty 

match the historical average very closely.  

 

Table 2. Iterative Penalty Weighting 
  

Schedule Shapes 
Time-Series 
(Freeze Rate) 

Time-Series 
(Freeze Slope) 

Target value E*(π|w) 27 30 30 
Range of w 
    Before Iteration 1 
    After Iteration 30 

1.000 – 1.000 
0.644 – 0.886 

       1.000 – 1.000 
0.069 – 0.535 

1.000 – 1.000 
0.338 – 0.600 

Range of E*(π|w) 
    Before Iteration 1 
    After Iteration 30 

5.611 – 15.304 
27.000 – 27.000 

5.611 – 15.304 
29.997 – 30.000 

10.238 – 14.913 
30.000 – 30.001 
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Joint calibration produces the model that we use for forecasting, via the conditional 

posterior normal described in Equation (6):  

(18)  
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where K is the weighted sum from Equation (15) using the jointly calibrated weights. 

The maximum a posteriori (MAP) estimator of true rates θ is the CAx1 mean vector μpost, 

and the CAxCA matrix Σpost quantifies posterior uncertainty. The n elements of θ that occur 

before the forecast date will have very low posterior variances, because we have precise HFD 

estimates for those rates from national statistical agencies.  The remaining CA-n elements 

comprise the forecast. 

 

Improper Priors and CFR Forecasts 

We emphasize two important points about the historically-calibrated prior distribution.  

First, it captures features of fertility surfaces that are remarkably robust to changes in the 

historical data from which it is constructed. In constructing and calibrating priors, we 

experimented with many subsets of the HFD, using different periods and different subsets of 

countries. In all cases the principal components in Figure 2, and the empirical error patterns in 

time series residuals, were quite similar. This consistency of results increases our confidence that 

the specific prior distribution that we have developed from the historical data truly captures 

robust qualitative patterns of fertility surfaces.  

Second, the prior is completely uninformative about absolute fertility levels. The 

improper shape priors introduce information only about the relative levels of cohort fertility at 

different ages. Similarly, improper time series priors introduce information only about short-term 
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smoothness and stability of rates. For all but the youngest women (for whom we have little or no 

fertility history at the time of the forecast), CFR forecasts come mainly from the data, not from a 

priori assumptions.  

 
Coverage Validation & Comparisons with Alternative Models 

As in any forecasting problem, it is important to understand the degree to which our 

model adequately estimates forecast uncertainty. In order to test coverage performance, we 

withheld post-1985 period data and simulated the forecasts that would have been produced in 

calendar year 1985.   

An ideal simulation would move the entire forecast algorithm back in time by about 25 

years: it would redefine the historical part of the HFD to include cohorts born 1875-1924, 

reconstruct and recalibrate a weighted penalty matrix K from those data, and so on. 

Unfortunately, we lack sufficient historical data for this ideal procedure: only Sweden has 

complete data for any cohorts born before 1906, and for many countries in our set data collection 

began late enough that the earliest complete cohort was born after 1925.  

Because of these data limitations, for the 1985 simulation we use the K matrix derived 

for the 2010 forecasts in the previous section. This implies that, unlike in our actual forecasts, in 

the simulations there is some overlap between the data used to develop the prior and the own-

country data used in the likelihood. The practical consequences of this overlap are slight: as 

mentioned previously, the improper prior is remarkably insensitive to the choice of training data. 

Using the prior distribution based on K, we calculated the posterior mean and covariance 

of θ for each country over a grid including the 1931-1970 cohorts, based on data that would have 

been available in 1985. We then compared the posterior means and credibility intervals from this 

simulated forecast to the known fertility of those same cohorts over the next 25 years. Table 3 
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summarizes results and coverage of CFR forecasts for all of the countries for which we could 

produce 1985 forecasts, disaggregated by the age of the cohort at the 1985 forecast horizon.5  

Table 3 shows imperfect, but reasonable, coverage for posterior credibility intervals. In 

particular, the 90% intervals perform well: they contain 92% of true future CFRs, with fairly 

good results by age at forecast. In contrast, 50% intervals are generally too wide for cohorts near 

the end of reproductive life at the forecast, and too narrow for cohorts who are 25 or 30 on the 

forecast date. The table also shows that most CFR forecast errors are small for cohorts that have 

completed fertility through age 25. In 1985, there would have been a small but definite bias in 

long-range forecasts of future fertility: for most of the cohorts then in their 20s, CFRs forecasts 

would have been slight underestimates.  A Bayesian forecast with our relatively weak priors 

would have slightly over-extrapolated the downward trends in fertility across the cohorts born in 

the 1930s, because their continuation did not imply unusual shapes for cohort schedules.  This 

problem occurred in the worst of the simulated 1985 forecasts, where the 90% posterior 

probability interval for the CFR of Portuguese women born in 1965 (and thus age 20 on the 

forecast date) was [1.11, 1.71], compared to a realized CFR of 1.83.  

 

                                                 
5 Simulated forecast plots for all countries can be viewed at WEBSITE://sim1985.html 
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TABLE 3 
Simulated 1985 Forecasts compared to observed* CFR, by age of cohort in 1985. 
Error = (Posterior MAP CFR – Observed CFR)  
   % of Observations in Posterior Probability Intervals 

Age at  
Forecast 

Mean 
Error 

Mean Abs 
Error 5 to 95%ile 

5 to  
25%ile 

25 to  
75%ile 

75 to  
95%ile 

20 -.09 .15 85 8 54 23 
25 -.03 .09 81 13 31 38 
30 +.01 .03 94 38 38 19 
35 +.00 .01 100 19 75 6 
40 +.00 .00 100 12 88 0 

       
ALL -.02 .05 92 18 57 17 

Target 0 0 90 20 50 20 
*For coverage evaluation we treat CFR data from complete cohorts as observed constants. In fact 
they are very precise estimates from large national samples. The CFR1960 column in Table 5 shows 
typical standard errors. Results are aggregated over 1985 simulations for the 15 countries in which a 
1985 forecast was possible: Austria, Bulgaria, Canada, Czech Republic, Denmark, England & 
Wales, Finland, France, Hungary, Netherlands, Portugal, Slovakia, Sweden, Switzerland, USA. 

 
It is also useful to compare alternative models, in order to evaluate the degree to which 

using both time and shape priors improves forecast coverage. Table 4 repeats the fourth column 

of Table 3, which reports the proportion of post-forecast observations falling in the 90% 

posterior interval for the full Bayesian model. The table also includes coverage calculations for 

two alternative forecast procedures. The first alternative model is a Bayesian model with time 

series priors only [i.e., wj=0 for all cohort shape penalties in Equation (15)].6 The second 

alternative is a forecast produced by fitting independent ARIMA(1,1,0) models to the time series 

of available rates at each age.  

Coverage in a Bayesian model with only time series priors (Alternative 1) is notably 

worse than in the full model that includes shape penalties for cohort schedules. There is clearly 

considerable value added from the inclusion of shape priors that prioritize time trends that lead to 

more plausible shapes in the cohort dimension. A simple ARIMA model (Alternative 2) 

produces CFR confidence intervals that are too narrow for women who are younger than 35 on 

                                                 
6 We omit a model with only a shape prior from the list of alternatives. Li and Wu (2003) noted that such models 
become unstable for women under 30 on the forecast date, with negative predicted rates at some ages and very large 
differences in the fitted schedules across adjacent cohorts.  After confirming their observations in the historical data, 
we opted to exclude a shape-only model as a serious alternative.  
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the forecast date. This may occur because positive covariances in fertility rates at similar ages 

make the sum of age-specific rates (i.e., CFR) more variable than one would expect under an 

assumption of independent time series by age. The broad comparative coverage information in 

Table 4 does not highlight another problem with the independent ARIMA model – namely, a 

systematic negative bias in CFR forecast bands, with 84% of realized CFRs for the 1941-1966 

cohorts falling above the posterior medians predicted by the ARIMA model, and 53% falling 

above the posterior 75th percentile.  

 
Table 4. Coverage of three alternative simulated 1985 forecasts 
       Percent of CFR Observations* in 90% probability interval 

Age at Forecast 
Forecast Model 

Bayes (Shape+Time) 
Alternative Model 1 
Bayes (Time Only) 

Alternative Model 2 
ARIMA(1,1,0) 

20 85 62 54 
25 81 50 69 
30 94 56 75 
35 100 94 81 
40  100 100 100 

    
ALL 92 73 77 

Target 90 90 90 
*See notes for Table 3. 

 
 
 We conclude from this simulation exercise that the Bayesian model with shape and time 

parameters is likely to perform well in terms of forecast coverage. It has good coverage 

properties across the 15 country forecasts that we were able to produce for 1985, and it clearly  

outperforms the tested alternatives. 

 

2010 Fertility Forecasts from Contemporary Data 

 Using our model with the rate estimates available in 2010 for each country produces a 

joint posterior distribution for each fertility surface θ, via Equation (@17).  With @24 countries, 

30 ages, and hundreds of cohorts, this produces a very large set of output that we can only briefly 
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summarize in this article. We focus here on a few cases of interest. Readers can find a larger 

volume of summary graphics for the entire data set on our project website.7 

 One important feature of our model is the way in which priors for the shape of cohort 

schedules constrain the projected time series of age-specific rates. Linear time series 

extrapolations that would produce implausibly-shaped cohort schedules have low prior 

probability, so effectively the forecast must compromise between observed rate levels and trends 

in the period just before the forecast, and regularly-shaped fertility schedules for cohorts. As a 

result, projected trends in age-specific rates can sometime deviate substantially from freeze-rate 

or freeze-slope extrapolations.   

 Figure 5 shows an example, for Czech women at ages 25, 30, and 35. The solid points in 

the three time series correspond to horizontal slices across the surface in Figure 1, and illustrate 

dramatic changes in fertility timing. Prior information suggests that a combination of continued 

decline at age 25 with continued increases at ages 30 and 35 is very unlikely, however, because 

those changes would imply highly implausible shapes for the schedules of still-incomplete 

cohorts. In fact, the maximum a posteriori compromise between cohort shapes and trends for 

future Czech rates predicts fairly stable rates at ages 25, a reversal of recent increases at age 30, 

and less-than-linear increase in the rate at age 35.  

                                                 
7 We have provided an offline copy of part of the website for reviewers, in the file CohortFertility.zip . To see the 
full set of results, unzip the file and open the index.html file in any browser. If the paper is published, we will make 
the full project web site, including all data and R code, available to readers on the web. 
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Figure 5. Czech fertility forecasts at ages 25, 30, and 35. Light and dark bands are 90% and 50% posterior probability intervals, 
respectively.  Dots are HFD estimates, dark horizontal lines are freeze-rate forecasts using the last observed age-specific rate, 
grey solid lines are freeze-slope forecasts based on last 5 observed rates. 
 

If extrapolated linearly, Czech fertility for the 1995 cohort at age 30 would reach levels 

near the 90th percentile of all rates ever observed at that age, while rates at age 25 for that cohort 

would be below the 1st percentile.8 Although our improper priors do not penalize a high level at 

age 30 or a low level at age 25 per se, they do say that combination is very unlikely, especially 

together with historically moderate rates at age 35. In short, a priori knowledge about relative 

fertility at different ages within cohorts implies, in this case, strong constraints on time patterns 

of age-specific rates across cohorts. 

We have a special interest in completed cohort fertility. For cohort c the posterior 

distribution of completed fertility is 

(19)  )11,1(~11 cpostcpostcccc NCFR GGGG ′Σ′′′=′= μθθ  

                                                 
8Linear extrapolation would eventually predict negative rates for any age group with a negative trend. Negative rates 
are also possible in our model, but in practice they turned out to be rare over our forecast period: of 42000 estimated 
rates for cohorts born 1956-1995, only 7 had negative posterior means and only 230 had 90% probability intervals 
containing zero. 



Bayesian Forecasting of Cohort Fertility 26

from which one can calculate the MAP estimator and posterior probability intervals. More 

plausible patterns in cohort schedules and time series should translate into more plausible trends 

for completed cohort fertility.  

Figure 6 illustrates four of the @35 CFR forecast series – for the USA, Netherlands, 

Czech Republic, and Singapore. The very narrow posterior probability intervals show that it is 

easy to forecast precisely the completed fertility for women who are already 30 and older, but 

much harder for younger women. Probability intervals for cohort CFR are extremely narrow for 

the cohorts with nearly complete fertility histories at the forecast date: biology makes it certain 

that cohorts of women in their late 30s and early 40s are already very close to their average 

completed family sizes.  

 

Figure 6. Posterior distributions of completed fertility -- USA, Netherlands, Czech Republic, and Singapore – conditional on rate 
estimates available in 2010.  Light and dark bands are 90% and 50% posterior probability intervals, respectively. Dots are 
posterior estimates for cohorts with complete fertility histories through age 44.  
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Posterior uncertainty about the completed fertility of the later-born cohorts is small 

enough, however, to allow some important qualitative predictions about the likely fertility levels 

of women born in the 1980s in our sample of countries. A Bayesian approach allows us to make 

probabilistic statements about our main research questions:  After steady declines in many 

countries, is cohort fertility likely to rebound or increase? The forecasts in Figure 6 provide 

visual answers: future increases are almost certain in the US (where completed CFRs are already 

rising), probable in the Netherlands, improbable in the Czech Republic (although the decline 

appears likely to stop), and almost certain not to occur in Singapore.   

Table 5 presents a more systematic evaluation, showing for each country9 the posterior 

mean of CFR1960, and posterior means of the forecast differences between CFR for pairs of 

cohorts born 10 years apart. Values in the last three columns are positive if the later-born cohort 

is forecast to have higher completed fertility. Shaded cells have greater than 90% posterior 

probability of being positive (dark shading) or negative (light shading).  

There are some unique country trajectories in Table 5.  Most notably, Denmark and the 

US are the only countries in which women born in 1970 are likely to have more children on 

average than women born in 1960. The opposite holds in every other country in our data set. 

Note that these 1960-1970 changes are virtually certain, because women born in 1970 were 

already 40 in 2010, so that their final fertility levels can be forecast very precisely.    

The most notable feature of Table 5 is the high probability of positive CFR change 

between the 1970 and 1980 cohorts in many countries. Our forecasts suggest that it is highly 

likely that in the near future, as women born in the 1970s reach their 45th birthdays, most 

countries will observe slight rebounds in completed fertility. Very few are likely to see continued 

                                                 
9 In this table we report results for Germany as a whole only, and we omit Slovenia and Luxembourg because 
missing data for the 1956-1965 cohorts at young ages made a 2010 forecast impossible with our procedure. 
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decreases. However, taken as a whole the forecasts suggest that the decline in family sizes will 

probably stop, or even reverse itself, in many of the world’s rich countries. 

The general pattern does not apply everywhere, of course. CFR forecasts show continued 

decreases across cohorts born in the 1970s in several European countries (Portugal, Hungary, 

and Slovakia), in Asia (Singapore and Korea), and in Brazil (which is a special case because 

CFR is still falling due to rapid economic progress and a classical transition from high to near-

replacement fertility levels).  

Forecast uncertainty is much higher across the cohorts born in the 1980s, on whom we 

have shorter histories with little data on whether or not women are postponing childbearing. 

Although none of the 1970-1980 changes are significantly different from zero using the 90% 

probability threshold in Table 5, there are several countries (Sweden, Bulgaria, Russia) in which 

there is a fairly high posterior probability of sustained increase in average family sizes as women 

born in the 1980s ‘cross the finish line’ on their 45th birthdays. Similarly, continued decreases are 

fairly likely over the 1980s cohorts for Singapore, Portugal, Korea, Hungary, Estonia, Romania, 

and Brazil.  
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Table 5. Posterior means of CFR for women born in 1960, and for CFR changes between cohorts (standard deviations of changes in 
parentheses). Shaded cells have >90% probability of being negative (light shading) or positive (dark shading). Countries are sorted in 
ascending order of CFR1960. 
 

Expected CFR increase between birth cohorts 
Country CFR1960 1960-1970 1970-1980 1980-1990 
Germany 1.66 (.002) -.15 (.00) +.12 (.04) -.07 (.17)  
Italy 1.69 (.002) -.21 (.00) +.01 (.05) +.02 (.18)  
Austria 1.70 (.005) -.07 (.01) -.02 (.06) -.08 (.20)  
Switzerland 1.77 (.006) -.12 (.01) +.02 (.05) -.04 (.18)  
Canada 1.83 (.003) -.03 (.01) +.15 (.07) +.01 (.21)  
Japan 1.84 (.002) -.36 (.00) +.06 (.05) -.01 (.18)  
Russia 1.85 (.001) -.24 (.00) +.09 (.05) +.08 (.18)  
Netherlands 1.86 (.004) -.10 (.01) +.31 (.05) +.06 (.18)  
Belgium 1.87 (.005) -.05 (.01) +.23 (.05) -.02 (.18)  
Scotland 1.87 (.007) -.11 (.01) +.17 (.05) +.04 (.18)  
Denmark 1.88 (.007) +.10 (.01) +.18 (.04) -.03 (.17)  
Singapore 1.88 (.008) -.29 (.01) -.15 (.05) -.17 (.18)  
Lithuania 1.91 (.008) -.16 (.01) +.20 (.05)  .00 (.18)  
Portugal 1.92 (.005) -.24 (.01) -.19 (.05) -.11 (.18)  
Bulgaria 1.95 (.006) -.27 (.01) +.17 (.05) +.12 (.18)  
Finland 1.96 (.007) -.07 (.01) +.12 (.05) +.05 (.18)  
Greece 1.96 (.005) -.34 (.01) -.05 (.04) -.04 (.17)  
England & Wales 1.97 (.002) -.06 (.00) +.21 (.05) +.05 (.18)  
USA 2.01 (.001) +.12 (.01) +.27 (.07) -.01 (.21)  
Hungary 2.02 (.005) -.16 (.01) -.27 (.05) -.14 (.18)  
Czech Republic 2.03 (.006) -.14 (.01) -.06 (.05) -.05 (.18)  
Sweden 2.05 (.006) -.06 (.01) +.15 (.04) +.13 (.17)  
Estonia 2.06 (.013) -.18 (.02)  .00 (.05) -.18 (.18)  
Korea 2.08 (.002) -.33 (.00) -.07 (.04) -.07 (.17)  
France 2.11 (.002) -.11 (.00) +.17 (.05) -.04 (.18)  
Romania 2.16 (.004) -.54 (.01) +.05 (.05) -.08 (.18)  
Australia 2.17 (.004) -.14 (.01) +.07 (.05) -.04 (.18)  
Slovakia 2.17 (.007) -.24 (.01) -.21 (.05) +.03 (.18)  
New Zealand 2.37 (.009) -.19 (.01) +.13 (.04) +.07 (.17)  
Northern Ireland 2.42 (.014) -.29 (.02) +.23 (.05) -.06 (.18)  
Iceland 2.45 (.034) -.13 (.04) +.12 (.06) -.04 (.18)  
Brazil 2.86 (.002) -.48 (.00) -.13 (.04) -.10 (.17)  
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As the widening probability intervals in Figure 6 and the increasing posterior standard 

deviations in Table 5 make clear, forecasts become far more speculative as we move to later-

born cohorts on whom we currently have shorter fertility histories. A great advantage of 

Bayesian modeling over many other demographic forecasting methods is that we can quantify 

the uncertainty about these speculative results.   

 
Discussion 

Over the last decade period fertility rates have risen in many developed countries, in part 

due to a decelerating shift of births to older maternal ages. The impact of these changes on cohort 

fertility is unclear, because the cohorts responsible for most births during this time of recent 

increase are still ten to twenty years from completing their childbearing. To know if cohorts that 

have postponed childbearing will ultimately have fewer children, one needs to forecast, but 

forecasting fertility is notoriously difficult (Booth 2006). 

We have developed new Bayesian forecasting methods for completed cohort fertility, and 

applied them to the countries in the Human Fertility Database and to a number of additional 

countries.  Past efforts to forecast completed cohort fertility have typically relied exclusively on 

time trends, or on parametric models for rate schedules. We combine these two approaches, 

borrowing strength from recent time trends and also from historical patterns in cohort age 

profiles. Our forecasts suggest that cohort fertility is likely to stabilize or even increase slightly 

in several countries.  Among women born in the 1970s and early 1980s, current rate trends 

suggest historically plausible age patterns of fertility that would lead to slightly larger average 

family sizes for the women born later.  The pattern appearing recently in several Scandinavian 

countries (Andersson et al. 2009) may be spreading elsewhere. 
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Our method not only provides forecasts, but also quantifies uncertainty.  From the 

column labeled “1970-80” in Table 5, for example, we see that for women born in the 1970s, 

downward trends in cohort fertility appear to be slowing or reversing in many countries. The 

youngest of these women are not quite 30 at our forecast horizon, but posterior probabilities 

show that we know enough to predict with high confidence that their completed fertility will be 

greater than that of women born 10 years earlier. For women born in the 1980s, the oldest of 

whom were in their late 20s at the forecast horizon, forecasts become much more uncertain and 

the posterior distribution tells us so: from standard deviations one can see that probability 

intervals for CFR1990-CFR1980 in the third column of Table 5 would be approximately three to 

four times as wide as those for the CFR1980-CFR1970 difference in the second column.  

Quantifying uncertainty also shows that one can predict the final fertility of older cohorts 

very precisely. This occurs not only because completing the fertility of older women involves a 

short forecast period, but also because their future fertility paths are very well known a priori.  

The very narrow probability intervals shown in Figure 6 for cohorts born as recently as 1980 

indicate that demographers already know quite a lot about the average completed fertility of 

women who are today in their 30s.  

Our methods are quite general. The same approach could be applied, with only minor 

modifications, to many demographic problems. These include forecasting childlessness and 

parity-specific fertility, and forecasts of first marriage and never-marrying. Beyond demography, 

the technique of SVD decomposition with penalized projection residuals is adaptable across 

many domains. The idea of using simultaneous penalties in overlapping dimensions is similarly 

applicable to many problems. Quadratic penalties and multivariate normality could be used in a 

variety of forecasting and other missing-data problems. The quadratic penalty approach is 
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computationally convenient, because it does not require extensive sampling from the posterior 

distribution. It is also relatively easy to explain to researchers who are unfamiliar with Bayesian 

vocabulary, because posterior means can also be explained as penalized least-squares solutions, 

as ridge regressions, or even as variants of smoothing splines (Wood 2000).  

Probabilistic forecasting methods have become standard in mortality forecasting, since 

the introduction of Lee and Carter's (1992) approach combining singular value decomposition of 

rates by age and time with classical time series methods. Girosi and King (2008) and Soneji and 

King (2011) have recently used Bayesian methods to add additional structure to mortality 

forecasts, by using prior information on age patterns to make forecasts demographically more 

coherent.  Bayesian models also allow forecasts from sparser and lower-quality data, such as that 

available for cause of death.  

Although uncertainty is inherently greater for fertility forecasts, statistical agencies and 

demographers studying cohort trends have generally relied on deterministic projections and 

forecasts. Our hope is that developments in probabilistic fertility modeling, in combination with 

the public availability of high quality data sets like the Human Fertility Database, will increase 

understanding of fertility trends and help demographic researchers to express more precisely how 

much we do – and don’t – know about the future. 
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Appendix 
 

As described in Girosi and King (2008), an improper prior of the form 

θθθ K′−= 2
1)(ln constf  

can be understood through eigen-decomposition of the rank-deficient matrix K. Specifically, 

write that decomposition as 
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where U’s columns are orthonormal eigenvectors, rank(K)=r, U0 contains eigenvectors 

corresponding to the zero eigenvalues, D1 is an r x r diagonal matrix of positive eigenvalues, and 

U1 is a 1200 x r matrix containing the eigenvectors corresponding to the positive eigenvalues. 

Adopting a new orthogonal coordinate system (γ) based on the columns of U yields   
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where γ0=U0΄θ and γ1=U1΄θ. In terms of the γ-coordinates, a prior based on K implies  
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In other words, the improper prior based on K tells us that θ’s γ1 coordinates have a normal 

distribution with mean zero and covariance matrix D1
-1 , while the remaining (1200-r) γ0 

coordinates are completely unrestricted. 

 Under a weighted, combined prior with K=Σj(wjKj), the j-th penalty is  
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If we define a special expectation operator E* that always conditions on γ0=0, then it is possible 
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to calculate 
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where K+
 is the generalized (Moore-Penrose) inverse of K.  The relationships between weights w 

and expected penalties are complex and nonlinear. However, this expression for E*(πj|w) allows 

us to quickly calculate the implications of a given set of weights, and therefore to construct a 

prior distribution for which all penalties have expected values that match their empirical 

averages in historical data.   

 


