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Abstract

A number of indices exist to calculate lifespan variation, each with
different underlying properties. Here we present new formulae for the
response of seven of these indices to changes in the underlying mortal-
ity schedule (life disparity, the Gini coefficient, the standard deviation,
the variance, Theil’s index, the mean logarithmic deviation, and the
inter-quartile range). We derive each of these indices from an ab-
sorbing Markov chain formulation of the life table, and use matrix
calculus to obtain the sensitivity and the elasticity (i.e., the propor-
tional sensitivity) to changes in age-specific mortality. Using empirical
French and Russian male data we compare the underlying sensitivities
to mortality change under different mortality regimes in order to test
under which conditions the indices might differ in their conclusions
about the magnitude of lifespan variation. Finally, we demonstrate
how the sensitivities can be used to decompose temporal changes in
the indices into contributions of age-specific mortality changes. The
result is an easily computable method for calculating the properties
of this important class of longevity indices.
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1 Introduction

In this paper we present a detailed comparative study of the sensitivity and
elasticity of indices of variation in longevity. The longevity experience of a
cohort has long been summarized by its expectation, but recently attention
has expanded to focus on variation in longevity as a natural complement to
describing the average length of life. Indices of variability have been com-
pared across populations to measure the rectangularity of the survival curve
or degree of mortality compression for both human and and non-human pop-
ulations (see for instance Eakin and Witten 1995; Edwards and Tuljapurkar
2005; Smits and Monden 2009; van Raalte et al. 2011; Vaupel, Zhang and van
Raalte 2011). They have also been employed above the modal age at death
to examine whether old-age mortality is being compressed, or whether these
deaths are shifting to higher ages (Brown et al. 2012; Cheung et al. 2005; Che-
ung and Robine 2007; Kannisto 2000; 2001; Ouellette and Bourbeau 2011;
Thatcher et al. 2010). The various indices of lifespan variation have been
compared by Anand et al. (2001); Cheung et al. (2005); Kannisto (2000);
Shkolnikov, Andreev and Begun (2003); Vaupel et al. (2011) and Wilmoth
and Horiuchi (1999). These authors have found such high correlations among
indices as to make them apparently interchangeable.

Our concern here is with a neglected aspect of these indices: their response to
perturbations of the underlying mortality schedule. In general, perturbation
analysis calculates the change in some quantity x due to changes in one
or more parameters θ from which that quantity is calculated. This can be
expressed as a derivative, the sensitivity dx/dθ, which gives the response
of x to an additive perturbation in θ, or as the proportional derivative, or
elasticity x

θ
dx
dθ

, which gives the proportional change in x resulting from a
proportional change in θ.

Sensitivity analysis has a long history in formal demography. Examples in-
clude the sensitivity of the intrinsic growth rate r or λ to changes in mortality
and fertility, first derived by Hamilton (1966), followed by Demetrius (1969),
Keyfitz (1971), and then in general form by Caswell (1978). The sensitiv-
ity of life expectancy to changes in mortality was derived by Keyfitz (1971),
and investigated in more detail by Pollard (1982; 1988) and more recently by
Caswell (2006) and Wrycza and Baudisch (2012). Keyfitz introduced an elas-
ticity of life expectancy in terms of life table entropy (see Keyfitz and Caswell
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2005; chap. 4), which was further developed by Goldman and Lord (1986);
Vaupel (1986) and Vaupel and Canudas Romo (2003). The sensitivity of the
stable population structure to changes in mortality and fertility was investi-
gated numerically by Coale (1972) and analytically by Caswell (2001; 2008).
The sensitivity of short-term projections was analyzed by Caswell (2007).
All of these sensitivity analyses quantify the effect of parameter changes,
permit rigorous comparison of different perturbations, and provide the tools
for decomposing changes in an index into components arising from changes
in each parameter (Caswell 1989; 2001). Until its perturbation analysis is
available, our understanding of any index is incomplete. Indices of variation
in longevity are no exception, but no general perturbation theory is available.

The patterns of sensitivity and elasticity of each index will reveal whether
the correlations among the values of the various indices extend to their re-
sponse to changes in mortality. This includes analytically determining the
age ranges over which mortality reductions lead to increases or decreases in
variation. These age ranges are separated by a “threshold age,” at which the
derivative is zero. Perturbation results can also be used to target age-specific
mortality reductions to ages which best reduce lifespan variation. Moreover,
because the sensitivity results are age-specific, they can be related to norma-
tive concepts of inequality or social preference for actions designed to reduce
mortality at particular ages (Asada 2007; Anand et al. 2001; Gakidou, Mur-
ray and Frenk 2000). This has rarely been done; a notable exception to this
is the WHO attempt to quantify inequality over individuals as part of World
Health Report 2000, using an index similar to a Gini coefficient, modified by
expert opinion (Gakidou et al. 2000; Gakidou and King 2002; WHO 2000).

In this paper, we provide, for the first time, readily computable formulae for
the sensitivities and elasticities of seven of the most commonly used indices
to changes in age-specific mortality and, by extension, to any parameter[s]
affecting age-specific mortality. Our approach is to reformulate the problem
of lifespan variability in terms of an absorbing Markov chain, and to use
methods from matrix calculus (Caswell 2008; 2009; 2010). We will show
how to use the results to decompose differences among populations or over
time into contributions from changes in age-specific mortality, using Life
Table Response Experiment (LTRE) methods (Caswell 2001). We apply
these methods to data from France and Russia, and illustrate instances where
these different sensitivities cause indices to disagree on the magnitude or even
direction of changes in lifespan variation.
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2 Indices of lifespan variation

We compare the following indices of variability:

(1) Life disparity (e†): Life disparity is a life table based index,
defined as the average remaining life expectancy at death, or al-
ternatively the average years of life lost in a population due to
death. The elasticity of life expectancy with respect to mortality
change, also known as Keyfitz’ H (Keyfitz 1977), is e† divided
by the life expectancy at birth (Goldman and Lord 1986; Vaupel
1986; Vaupel and Canudas Romo 2003).

(2) Gini coefficient (G): The Gini coefficient is often used in eco-
nomic inequality research. It ranges from 0 to 1, with higher
numbers signaling greater inequality. It is the mean of the ab-
solute value of the inter-individual differences in age at death,
divided by the life expectancy (Shkolnikov et al. 2003).

(3,4) Theil’s index (T ) and the mean logarithmic deviation (MLD):
Both T and MLD are based on the entropy of the distribution of
age at death, developed from information theory by Henry Theil
in the 1960s (Theil 1967). The entropy of a distribution measures
the amount of information needed to specify the result of sam-
pling; if everyone died at the same age, no information would be
needed and the entropy-based measures would be zero.

(5-7) Standard deviation (S), variance (V ), and inter-quartile
range (IQR) of the distribution of age at death: The indices
S, V and IQR are standard statistical measures of variability
applied to the distribution of age at death.

Different research objectives often call for the use of one index over another
due to their underlying formal properties. The variance V , Theil index T
and the mean logarithmic deviation MLD are all additively decomposable
into between- and within-group variation (Shorrocks 1980; van Raalte 2011).
This decomposition can be used to study the contribution of between-group
differences to the total level of lifespan variation. The Gini coefficient G
can also be decomposed in this way, but contains an overlap term (Lambert
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and Aronson 1993). The MLD index can additionally be additively decom-
posed over time, to account for compositional change to the between- and
within-group variation components (Mookherjee and Shorrocks 1982). The
life disparity index e† has interesting connections to the perturbation theory
of life expectancy. The product of e† and the average rate of progress in re-
ducing age specific death rates is equal to the rate of change in life expectancy
(Vaupel and Canudas Romo 2003).

Indices also differ in whether they measure absolute inequality (the level
of variation would be unaffected by additive gains to everyone’s lifespan) or
relative inequality (the level of variation would be unaffected by proportional
gains to everyone’s lifespan). Additive indices are more easily interpretable,
as they are normally expressed in years.

The sensitivity of indices to changes in mortality at different ages is an impor-
tant and poorly understood property of the indices. In some circumstances,
society might consider variability in ages at death caused by high levels of
premature mortality to be more detrimental than variability caused by dif-
ferences in old age mortality. In such a case, usage of an index with a high
sensitivity to early death would emphasize the response to the mortality
viewed as most important. As economist Paul Allison (1978) noted: “The
choice of an inequality measure is properly regarded as a choice among alter-
native definitions of inequality rather than a choice among alternative ways
of measuring a single theoretical construct.”

The seven indices we examine here are highly correlated across countries
and times. Some of these correlations have been reported by Vaupel et al.
(2011) and Wilmoth and Horiuchi (1999). We present the correlations among
all seven indices, from birth and from age 10 (Table 1), calculated over all
female and male life tables1 currently in the Human Mortality Database
HMD (2012). Thus we expect that all of them will pick up most of the
general patterns in lifespan variation in inter-population comparisons. Our
focus is on the details of the response of the indices to changes in mortality.

1We excluded populations that were double-counted, i.e. we excluded civilian popula-
tion in favour of total national population life tables, and excluded nationally aggregated
life tables in favour of including regional or ethnic-based life tables.
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e† G T MLD S V IQR

e† 1.000
G 0.978 1.000
T 0.947 0.991 1.000
MLD 0.965 0.991 0.992 1.000
S 0.981 0.933 0.893 0.930 1.000
V 0.987 0.945 0.911 0.944 0.996 1.000
IQR 0.967 0.966 0.948 0.956 0.920 0.944 1.000

e†10 G10 T10 MLD10 S10 V10 IQR10

e†10 1.000
G10 0.986 1.000
T10 0.978 0.995 1.000
MLD10 0.979 0.990 0.995 1.000
S10 0.986 0.962 0.961 0.973 1.000
V10 0.984 0.964 0.971 0.980 0.998 1.000
IQR10 0.981 0.978 0.977 0.976 0.958 0.966 1.000

Table 1: Pearson correlation coefficients between pairs of indices, calculated
from birth (ages 0-110+) in the top panel and calculated conditional upon
survival to age 10 (ages 10-110+) in the bottom panel, for all female and
male life tables in the Human Mortality Database (7516 in total).
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3 Markov chain formulations of longevity

To develop perturbation results, we formulate the mortality schedule as a
finite-state absorbing Markov chain (Caswell 2001; 2006; 2009; 2010; Fe-
ichtinger 1973). This formulation lets us express the various indices in ma-
trix notation, and then apply matrix calculus to obtain the sensitivity and
elasticity of each index to changes in parameters (e.g. Caswell 2006; 2009;
2011). Since this study focuses on human demography, we focus on the age-
classified model. Nevertheless, these results could be generalized to apply to
stage-classified populations.

Notation. We use matrix notation in deriving the sensitivities. Matrices
are denoted by upper case bold faced symbols (e.g., X) and vectors by lower
case bold faced symbols (x); vectors are column vectors by default, and xT

denotes the transpose of x. The symbol diag (x) denotes the matrix with the
vector x on the diagonal and zeros elsewhere. The vector e is a vector of ones,
and the vector ei is the ith unit vector; i.e., the vector with a 1 in the ith
location and zeros elsewhere. The Hadamard, or element-by-element product
is denoted by ◦ and the Kronecker product by ⊗. The vec operator (e.g.,
vec X) stacks the columns of a matrix into a column vector. See Caswell
(2001) or Keyfitz and Caswell (2005) for an account of matrix models in
demography.

We consider s age classes. Let U be a matrix (s×s) with survival probabilities
on the subdiagonal and zeros elsewhere; i.e.,

ui+1,i = 1− qi−1 i = 1, . . . , s− 1 (1)

where qi is the probability of death between ages i and i + 1 from the life
table. Note that matrix entries are indexed starting at 1, but age in the
life table (conventionally) starts at 0. Thus, for example, the probability of
surviving from the first to the second age state is the complement of the
probability of death between age 0 and age 1, or u2,1 = 1− q0.

The matrix U describes transitions among the transient states in the Markov
chain. Death is an absorbing state; we classify deaths by the age class at
death with a diagonal matrix M (s× s), where

mi,i = 1− qi−1 i = 1, . . . , s (2)
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The transition matrix2 for the Markov chain is

P =

(
U 0
M I

)
(3)

where 0 is a matrix of zeros and I is an (s× s) identity matrix.

In this Markov chain, absorption corresponds to death, and the time to ab-
sorption corresponds to longevity. The statistical properties of longevity can
be directly calculated from P. The mean time spent in age class i, condi-
tional on starting in age class j is given by the (i, j) entry of the fundamental
matrix

N = (I−U)−1 . (4)

Because absorption corresponds to death, the time to absorption can be
treated as a measure of longevity (Caswell 2001, 2006, 2009). The mean
time to absorption is given by the column sums of N. Let η̃ denote the
vector whose ith entry is the expected time to absorption for an individual
in age class i; it is given by

η̃T = eTN (5)

where e is a vector of ones. However, it can be shown that this exceeds by
0.5 years the life expectancy calculated by the usual life table formulations;
accordingly, we use

η = η̃ − 0.5e (6)

to represent life expectancy. The subtraction of the constant 0.5 does not
affect the calculations of sensitivities.

The vector of variances in longevity satisfies

vT = eTN (2N− I)− ηT ◦ ηT (7)

where ◦ denotes the Hadamard, or element-by-element product.

The complete distribution of age at death, conditional on starting in age
class j, is given by column j of the matrix

B = MN. (8)

2Note that P is column-stochastic and operates on column vectors, to agree with the
orientation of population projection matrices (e.g., Caswell 2001, Keyfitz and Caswell
2005).
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The distribution of age at death for an individual in the first age class is
given by the first column of B;

f = Be1 (9)

The survivorship function `, beginning at age 1 and with a radix `(0) = 1, is
given by

` = e−Cf (10)

where

C =


0 0 · · · 0
1 0 · · · 0
...

...
...

1 1 1 0

 (11)

takes cumulative sums of the vector f .

The vector x contains the average age at death in the age interval (i.e. for
French males in 2005 it is {0.06, 1.5, 2.5, ..., 109.5, 111.32}).

In Table 2 we present the conventional lifetable notation alongside the less
familiar matrix notation for each index. In conventional notation `y is sur-
vivorship, dy the death density, and ey remaining life expectancy for the age
interval y to y+1. We further denote ay as the length of the age interval lived
by those who died. An overbar, for example ēy, is used when adjustments to
the variable are necessary to account for the portion of the age interval lived
by those who died, i.e.

ēy = ey + ay (ey+1 + ey) (12)

By this same logic, x̄y is the average age at death over the interval. Generally
it is the age halfway in between the two age intervals, but in the first year of
life x̄0 = a0. The highest age interval is denoted by ω.

Finally in the IQR formula, x̂1 and x̂3 are the interpolated first and third
age quartiles, at which 25 and 75 percent of the total deaths have occurred.

4 Sensitivity and elasticity analysis

Expressing longevity in terms of an absorbing Markov chain and applying
matrix calculus has greatly expanded the possibilities for perturbation anal-
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conventional LT notation matrix notation

e†
ω∑
y=0

dy ēy fTη

G 1− 1

e0

ω∑
y=0

`2y+1 1− 1

η1
eT [(e−Cf) ◦ (e−Cf)]

T

ω∑
y=0

dy

(
x̄y
e0
ln
x̄y
e0

)
fT
[(

x
η1

)
◦
(

log x
η1

)]

MLD
ω∑
y=0

dy

(
ln
e0
x̄y

)
fT [log (η1) e− logx]

V

ω∑
y=0

dy (x̄y − e0)
2

[eTN (2N− I)− ηT ◦ ηT]
T

S
√
V

√
V

IQR x̂3 − x̂1 x̂3 − x̂1

Table 2: Formulae for calculating indices in conventional life table formula-
tion (discrete, assuming l0 of 1) and their equivalent formulation in matrix
notation.
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ysis (Caswell 2001; 2008; 2009; 2010; Willekens 1977). To assess the absolute
and proportional effects on the indices of changes in the underlying mortal-
ity rates we needed the analytic expressions for the sensitivity and elasticity
of the seven indices of lifespan variability with respect to mortality. The
sensitivity of e† was first derived by Zhang and Vaupel (2009) in an age-
classified model, which was further developed by Wagner (2010). This was
later generalized to an age and stage classified model by Caswell (2010), who
also derived expressions for the sensitivity and elasticity of the variance and
the standard deviation (Caswell 2009). The other expressions were newly
derived for this paper.

As described in detail in Section 9.1, the sensitivity of a n× 1 vector y to a
m× 1 vector of parameters θ is given by the n×m matrix

dy

dθT
=

(
dyi
dθj

)
, (13)

whose (i, j) entry is the derivative of yi with respect to θj. The elasticity of
y to θ is

εy

εθT
= diag (y)−1

dy

dθT
diag (θ) . (14)

The sensitivities and elasticities of each index to age-specific mortality were
derived using matrix calculus (Magnus and Neudecker 1988). These tech-
niques are given extensive treatment in recent papers by Caswell, using most
of the same notation that we have here (Caswell 2008; 2009; 2010). The
derivation of the sensitivities of all the indices to mortality can be found in
the appendix. We performed all numerical calculations in Matlab (version
7.3.0), and include both Matlab and R code as an online appendix. The
formulae resulting from the matrix calculus may appear complicated, but
the complication arises from, and accounts for, the network of interactions
among the variables, and they are easily computed.

We now turn to the demographic applications, especially in comparing the
sensitivities of these indices, examining how they have changed over time as
we have moved from high to low mortality regimes, and using the sensitivities
as a decomposition method.
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5 A comparison of sensitivities: France and

Russia

We used French male data to broadly illustrate the underlying sensitivities
and elasticities of each index. We calculated the indices under four very dif-
ferent mortality regimes: high mortality (1888), medium mortality (1948),
low mortality (2005) and war/epidemic year (1918). The last regime is in-
teresting, in that the distribution of age at death has a second mode around
young adulthood, and a long right tail instead of a long left tail. To help
visualize these differences, all four distributions are plotted in Figure 1.
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Figure 1: The French male death densities for which the sensitivities and
elasticities of the indices are compared

All indices are highly sensitive to changes in infant mortality. For this reason
we calculated the sensitivities and elasticities both at birth (Figures 2 and 3)
and at age 10 (see appendix). Given the different units for each index, the
elasticities are perhaps intuitively easier to interpret. The y axis measures
the percent change in the index from a one percent change in mortality at
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each age on the x axis.

As we would expect from the high correlations between indices, the sensi-
tivities follow similar general age patterns. The primary differences are in
the sensitivity to infant mortality, the slope of the decline from birth to late
adulthood, and in the age at which the sensitivities cross the x-axis (this age
is the same for S and V ). This age has been termed the threshold age or
a† due to its original derivation for the e† index (Zhang and Vaupel 2009).
Reductions in mortality below the threshold age reduce lifespan variation,
while reductions above the threshold age increase the variation. Since it is
the age where the derivative is zero, it can be calculated using either the
sensitivity or elasticity formulae in the appendix. The threshold age has in-
creased over time, and the differences between threshold ages of the indices
have considerably diminished.

In general, conditioning upon survival to age 10 resulted in only minor
changes to the pattern of the sensitivity of each index to age-specific mor-
tality, although it did remove some of the differences between indices found
when examined from birth, see appendix Figure 1. This was particular the
case for the MLD and T indices, which are so highly sensitive to changes at
birth that changes at other ages are largely masked. The IQR index produces
the most unique sensitivity patterns. It is only sensitive to transfers between
quartiles and not to transfers within quartiles. Transfers of course are an
awkward concept in mortality research, particularly as there are no finite
life years that need to be distributed within the population. But in practice
the idea of age rationing in health care, sacrificing facilities and medicine for
older individuals to save younger individuals, comes close.

We imagined a scenario of targeted interventions leading to mortality reduc-
tion, to examine how the different sensitivity profiles of the various indices
could affect our assessment of whether a population is becoming more egali-
tarian in its ages at death. Using French male data from 1888 and 2008, we
calculated the threshold age and the percentage change in the index from a
10 percent decrease in death rates over selected age ranges. This was done
for the indices calculated at birth and conditional upon survival to age 10
(Table 3). The largest differences between the indices occurred for mortality
change at the youngest age ranges, particularly for the 1888 age-at-death
distribution where early death was more common. In the modern distribu-
tion, differences between indices were also large over the middle adult age
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range 60-80. Indices with younger threshold ages such as MLD,S, and V
found that mortality reduction over these ages increased lifespan variation,
while the other indices all measured a decrease in variability. The different
responses to mortality change over adult ages between using an index calcu-
lated at birth or at age 10 was large for the historic population, but made
relatively little difference for the modern population.

Threshold Age Percent increase in index from mortality reduction at ages
0-5 20-40 60-80 85+

Index 1888 2008 1888 2008 1888 2008 1888 2008 1888 2008
e† 43.4 76.2 -2.7 -0.3 -0.3 -0.6 1.0 -1.0 0.2 2.1
G 56.9 74.9 -4.6 -0.4 -0.8 -0.9 0.4 -0.9 0.0 1.2
IQR 2.8 69.7 -3.8 -0.1 0.4 -0.5 1.1 -2.7 0.0 1.6
MLD 24.8 68.7 -6.2 -5.1 0.1 -1.2 0.3 0.2 0.0 0.9
S 16.6 67.1 -1.4 -0.6 0.3 -0.8 0.9 0.3 0.0 0.9
T 46.3 69.7 -8.0 -1.9 -0.6 -1.9 0.4 -0.2 0.0 1.2
V 16.6 67.1 -2.8 -1.1 0.6 -1.6 1.9 0.6 0.1 1.9
Range 54.1 9.1 6.6 5.0 1.4 1.4 1.6 3.4 0.2 1.2

Threshold Age Percent increase in index from mortality reduction at ages
10-15 20-40 60-80 85+

Index 1888 2008 1888 2008 1888 2008 1888 2008 1888 2008

e†10 57.2 76.7 -0.4 0.0 -1.8 -0.7 1.5 -1.0 0.3 2.2
G10 58.8 75.1 -0.6 -0.1 -2.7 -1.0 0.9 -1.1 0.1 1.3
IQR10 43.1 69.8 -0.5 0.0 -4.2 -0.4 2.8 -2.8 0.0 1.7
MLD10 45.5 68.6 -1.6 -0.3 -3.3 -2.7 1.7 0.2 0.1 2.0
S10 42.5 67.2 -0.4 -0.1 -1.2 -1.0 1.5 0.3 0.1 1.0
T10 50.5 70.5 -1.3 -0.2 -3.8 -2.4 1.7 -0.2 0.1 1.5
V10 42.5 67.2 -0.9 -0.2 -2.5 -1.9 3.1 0.5 0.2 2.1
Range 16.3 9.5 1.3 0.3 3.0 2.3 2.2 3.4 0.3 1.1

Table 3: The threshold age (columns 2 and 3) and the percentage increase in
each index resulting from a 10 percent reduction in mortaly over the given
age ranges, for indices calculated from birth (top panel) and conditional upon
survival to age 10 (bottom panel). Results obtained by reducing mortality
by 10% at each age, using French male period lifetable data from Human
Mortality Database, and then re-computing the indices.
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6 Decomposition of temporal trends in vari-

ability

Our perturbation results make it possible to decompose differences or changes
in an index into contributions from differences or changes in any of the pa-
rameters. The approach is known in population biology as Life Table Re-
sponse Experiment (LTRE) analysis, and has been widely used (see review in
Caswell 2001, Chapter 10). It applies to any demographic statistic for which
the sensitivity to the underlying vital rates can be calculated. The version
used here is closely related to the decomposition method independently de-
rived and described by Horiuchi, Wilmoth and Pletcher (2008).

Here, we use LTRE analysis to decompose temporal changes in the indices of
lifespan variability into contributions from changes in age-specific mortality
rates, for Russian males from 1958 to 2006.

Let y be an index, θ a vector of parameters (mortality rates in our applica-
tion) and let t denote time. The decomposition proceeds from noting that,
to first order,

y(t+ ∆t) ≈ y(t) +
dy

dθT

dθ

dt
∆t (15)

The product of the two derivatives in (15) gives the overall change in y due to
the changes in all the parameters over the interval ∆t. Thus the contributions
to that change are given by the entries of the vector

c(t) =

(
dy

dθT

)T

◦
(
dθ

dt

)
(16)

These contributions can be integrated over time to obtain the contributions
to the change in y from t0 to t1,

y(t1) ≈ y(t0) +

t1∑
i=t0

c(i) (17)

We computed the rate of change in the parameters, dθ/dt, using the Matlab
function gradient, which uses a central difference algorithm to compute the
derivatives.

The sequence of age-specific mortality changes experienced by Russian males
(Anand et al. 2001; Shkolnikov et al. 2003) provides an interesting example
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of decomposition analysis. From 1958 to 2006, infant mortality declined sub-
stantially, from around 47 to 12 deaths per thousand live births. This decline
was particularly rapid from 1958–1968. At the same time, adult mortality,
especially between ages 40 and 50 years, fluctuated a great deal. Adult
mortality increased slowly but steadily until the mid-1980s, then declined
rapidly between 1984 and 1987 following the anti-alcohol campaigns, and
then increased steeply with the mortality crisis brought on by the upheavals
of transition to a market economy (Leon et al. 1997).

Figure 4 shows each index relative to its level in 1959, calculated from birth.
Apart from the IQR, all indices show that lifespan variation decreased during
the period, with large fluctuations in the interim. The standard deviation S
and the variance V showed less volatility than the other indices while T , G
and IQR showed the most.

1960 1970 1980 1990 2000 2010

0.
4

0.
6

0.
8

1.
0

1.
2

year

pr
op

or
tio

na
l c

ha
ng

e 
in

 m
ea

su
re

 s
in

ce
 1

95
9

MLD
T

V
G

S
e†

IQR

Figure 4: The indices of lifespan variability for Russian males, measured
relative to their values in 1959. All indices were calculated from period
lifetable data, 1959-2008, from the Human Mortality Database.

Figure 5 presents the LTRE decomposition of life expectancy and of the in-
dices, relative to their starting value, computed using equation (17). Reduc-
tions in infant, child, and adolescent mortality led to gains in life expectancy,
but increased mortality of adults age 20-70 tempered these gains. The pos-
itive contributions to life expectancy from reduced adult mortality during
1984–1987 are also visible.

The indices of variability show a different pattern. Their changes are a bal-
ance of strong negative contributions from infant and, to a lesser extent, child
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Figure 5: The proportional contribution of changes in age-specific mortality
to the changes in life expectancy, e0 and in each index, measured relative
to their values in 1959. Values were calculated by integrating the LTRE
contributions calculated from (15). Note that the color scale changes by
a factor of 10, in order to make contributions from all ages visible on the
graphs. Calculations were based on period lifetable data for Russian males,
1959-2008, from the Human Mortality Database.
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mortality, and positive contributions from changes in mortality in ages 20-50.
Thus the change in variability (no matter how it is measured) is a balance
of contributions from these two age ranges.

7 Discussion

Summary of results

Each of the seven indices of lifespan variation now posseses a directly com-
putable sensitivity and elasticity to changes in age-specific mortality, derived
from a consistent Markov chain formulation, with Matlab and R code sup-
plied as an online appendix for calculation purposes. These formulae can be
applied to any life table mortality schedule, period or cohort. The sensitiv-
ity patterns, applied to period data, showed similar broad patterns. Over
time, the indices have become more sensitive to infant and child mortality,
with MLD, T and V being especially sensitive. Although earlier mortality
regimes produced large differences in the threshold age of the indices, this
age was similar for all indices over recent mortality schedules.

Indices of variability and distributive justice

It is important to remember that the mere fact of variation in age at death
does not imply heterogeneity of individuals or inequality in the conditions
they experience. Indeed, in the extreme case in which every individual expe-
rienced identical age-constant mortality hazards, the standard deviation of
longevity and the life disparity would both equal the life expectancy. This
variation, due to individual stochasticity (Caswell 2009), greatly exceeds the
variation in longevity observed in actual populations. However, although in-
dividual stochasticity leads to variation in ages at death, it is unlikely that
the current distribution is owing entirely to individual stochasticity. If this
were the case then we would not expect to find larger variation among lower
socioeconomic groups (van Raalte et al. 2011) or large differences in variation
between national populations with similar average mortality levels (Edwards
and Tuljapurkar 2005; Smits and Monden 2009; Vaupel et al. 2011). Danish
twin studies have estimated that genetic processes account for about a quar-
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ter of the the total variation in lifespan (Herskind et al. 1996; McGue et al.
1993). Although substantial, this still leaves a large unexplained component.

To the extent that variation does represent the result of inequality in condi-
tions, it may be interesting to think of it in terms of concepts of distributive
justice. Distributive justice is concerned with how a society or group should
allocate its scarce resources or product among individuals with competing
needs or claims (Roemer 1996). Different notions of inequality arise from
two different types of diversity: the basic individual heterogeneity and the
assessment of inequality in terms of different variables (Sen 1992).

Most distributive justice frameworks can broadly fit into four categories:
pro-poor, egalitarian, utilitarian and minimum threshold frameworks (Marc-
hand, Wikler and Landesman 1998). An interesting line of future research
would be to view changes in the age-at-death distribution through the lens
of distributive justice. To this extent, perturbation analysis could be used
to guide the selection of an index depending on how the sensitivity results
align with the aimed-for distributive justice approach. Such delineations are
dependent on the particular mortality schedule. As can be seen in Figure 2,
the interquartile range was most sensitive to infant mortality in the French
male 1918 distribution, but least sensitive in 1948 and 2008.

Once a definition of inequality (and corresponding index) is chosen, pertur-
bation results could further be used to target policy interventions to ages
where reductions in mortality best reduce inequality.

Conclusion

We compared seven indices of lifespan variation, all of which largely corre-
lated with one another over the mortality schedules found in the 7516 unique
lifetables of the Human Mortality Database. Using matrix differentiation
techniques we derived the expressions for the sensitivities and elasticities of
all indices. We highlighted four key uses of these perturbation results: (1)
quantifying the effect of an age-specific mortality intervention on lifespan
variation, (2) analytically determining the threshold age separating deaths
at ages which increase or decrease variation in ages at death, (3) providing
the output for a LTRE decomposition analysis that quantifies the changes in
any lifespan variation index into contributions from mortality change at each
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age, and (4) comparing indices on the basis of their sensitivities to changes
in age-specific mortality.

8 Acknowledgements

AvR is supported by the Max Planck Society. HC acknowledges financial
support from the U.S. National Science Foundation (DEB-0816514 and SES-
1156378), the Woods Hole Oceanographic Institution, and a Research Award
from the Alexander von Humboldt Foundation, and the hospitality of the
Max Planck Institute for Demographic Research. The International Max
Planck Research School of Demography provided support for a course (IM-
PRSD 133) in which some of these ideas were first explored. The authors
would additionally like to thank Jim Vaupel, Johan Mackenbach, Mikko
Myrskyl, and two anonymous reviewers for helpful comments. An earlier
version of this paper was presented at the annual meeting of the Population
Association of America in San Francisco, CA.

22



9 Appendix - Sensitivity Results and Deriva-

tions

This appendix provides details of the derivations. We begin with a summary of
some basic matrix calculus techniques, and then present the derivations of the
sensitivities of the indices of lifespan variation.

9.1 Matrix calculus preliminaries

The indices of lifespan variation in Table 3 are functions of scalars, vectors and
matrices. Matrix calculus permits differentiation of all three. The derivative of a
scalar y with respect to a scalar x is the derivative dy

dx familiar from basic calculus.
The derivative of a n× 1 vector y with respect to a scalar x is the n× 1 vector

dy

dx
=


dy1
dx
...

dyn
dx

 . (18)

The derivative of a scalar y with respect to a m× 1 vector x is the 1×m gradient
vector

dy

dxT
=

(
∂y

dx1
· · · ∂y

dxm

)
. (19)

The derivative of an n× 1 vector y with respect to a m× 1 vector x is the n×m
Jacobian matrix, whose (i, j) entry is the derivative of yi with respect to xj :

dy

dxT
=

(
dyi
dxj

)
. (20)

The derivatives of matrices are computed by transforming the matrices into column
vectors using the vec operator and applying the rules for vector differentiation.
Thus the derivative of the m× n matrix Y with respect to the p× q matrix X is
the mn× pq matrix

dY

dX
=

dvecY

dvecTX
. (21)

For notational simplicity we denote (dvecX)T as dvecTX.

23



These definitions imply the chain rule for matrix calculus; if Y is a function of X,
and X is a function of Z, then

dvecY

dvecTZ
=

dvecY

dvecTX

dvecX

dvecTZ
. (22)

Matrix derivatives are constructed by forming differentials, where the differential
of a matrix (or vector) is the matrix (or vector) of differentials of the elements; i.e.

dX = (dxij) (23)

If, for some matrix Q, it can be shown that

dy = Qdx (24)

then according to the “first identification theorem” of Magnus and Neudecker
(Magnus and Neudecker 1985)

dy

dxT
= Q. (25)

We will frequently obtain expressions of the form (25) using a theorem originally
due to Roth (Roth 1934), that if Y = ABC then

vecY = (CT ⊗A) vecB. (26)

We will also simplify expressions involving Kronecker products using

(A⊗B) (C⊗D) = AC⊗BD. (27)

whenever AC and BD are defined.

More details on matrix calculus can be found in Magnus and Neudecker (1988). A
good mathematical introduction is in Abadir and Magnus (2005), and demographic
discussions appear in Caswell (2007; 2008; 2010).

9.2 Sensitivities of the indices of lifespan variation

9.2.1 Preliminaries

Differentiating the various indices made use of the following sensitivities. The
vector of life expectancies as a function of age is given by

ηT = eTN (28)
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The derivative of this vector with respect to mortality is (Caswell 2006; 2009)

dη

dθT
= (I⊗ eT) (NT ⊗N)

dvecU

dθT
. (29)

The life expectancy at birth is given by

η1 = ηTe1 (30)

and thus its derivative is

dη1
dθT

= (eT
1 ⊗ eT)

dvecN

dθT
(31)

= (eT
1N

T ⊗ eTN)
dvecU

dθT
(32)

The distribution of age at death is given by the vector

f = MNe1. (33)

Its derivative is given by (Caswell 2010),

df

dθT
= (eT

1N
T ⊗ I)

dvecM

dθT
+ (eT

1N
T ⊗B)

dvecU

dθT
(34)

The derivatives of U and M depend on the structure of the life cycle; in the age-
classified case under consideration here, M contains the probabilities of death qi on
the diagonal, and U contains the probabilities of survival 1−qi on the subdiagonal.

9.2.2 Life disparity η†

The disparity can be written
η† = fTη. (35)

As shown in Caswell (2010, 2011),

dηT = (dfT)η + fT (dη) , (36)

and thus
dη†

dθT
= ηT df

dθT
+ fT

dη

dθT
(37)

where df/dθT is given by (34) and dη/dθT is given by (29).
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9.2.3 Gini coefficient

In matrix form, the Gini coefficient is given by

G = 1− 1

η1
eT [` ◦ `] (38)

where the survivorship vector is

` = e−Cf (39)

Differentiating (38), noting that η1 is a scalar, gives

dG =
1

η21
eT (` ◦ `) dη1 −

2

η1
eT [` ◦ (d`)] (40)

We apply the vec operator to both sides of (40) and obtain

dG =
1

η21
eT (` ◦ `) dη1 −

2

η1
`Td` (41)

Differentiating (39) gives d` = −Cdf ; substituting this into (41) and using the
chain rule gives

dG

dθT
=

1

η21
eT (` ◦ `) dη1

dθT
+

2

η1
`TC

df

dθT
(42)

where dη1/dθ
T is given by (32)

9.2.4 Mean Logarithmic Deviation

The mean logarithmic deviation in matrix notation is

MLD = fT [e log η1 − logx] (43)

where the logarithm is applied elementwise. Differentiating (43) gives

dMLD = (dfT) [e log η1 − logx] + fTe (d log η1) (44)

However, fTe = 1 because f is a probability distribution. Using this fact and also
noting that d log η1 = (1/η1)dη1, we obtain

dMLD

dθT
= [eT log η1 − logxT]

df

dθT
+

1

η1

dη1
dθT

. (45)

where dη1/dθ
T is given by (32) and df/dθT is given by (34).
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9.2.5 Theil’s index

The expression for Theil’s index in matrix notation is

T = fT
[
x

η1
◦ log

x

η1

]
(46)

where the logarithm is applied elementwise. Differentiating (46) term by term
yields

dT = (dfT)

[
x

η1
◦ log

x

η1

]
+ fT

[
d

(
x

η1

)
◦ log

x

η1

]
+ fT

[
x

η1
◦ d
(

log
x

η1

)]
. (47)

However,

d

(
x

η1

)
= − x

η21
dη1 (48)

d

(
log

x

η1

)
= d (logx− e log η1)

= − e

η1
dη1 (49)

Substituting (48) and (49) into (47), and transposing the first term, gives

dT =

(
xT

η1
◦ log

xT

η1

)
df − fT

[(
x

η21
◦ log

x

η1

)
+

(
x

η1
◦ e

η1

)]
dη1 (50)

Simplifying equation (50) and expressing the result in terms of a parameter vector
θ gives

dT

dθT
=

(
xT

η1
◦ log

xT

η1

)
df

dθT
−
(
T

η1
+

fTx

η21

)
dη1
dθT

(51)

where dη1/dθ
T is given by (32) and df/dθT is given by (34).

9.2.6 The variance and standard deviation of longevity

The variance in longevity, conditional upon survival to age class i, is given by the
vector v, which satisfies

vT = eTN (2N− I)− ηT ◦ ηT (52)

Caswell (2006, 2009, 2010) shows that

dv

dθT
=

[
2 (NT ⊗ eT) + 2 (I⊗ eTN)− (I⊗ eT)

]
dvecN

dθT
− 2diag (η)

dη

dθT
(53)
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where dη/dθT is given by (29) and

dvecN

dθT
= (NT ⊗N)

dvecU

dθT
. (54)

The standard deviation of longevity is given by the vector

s =
√
v (55)

where the square root is taken elementwise, and its sensitivity was derived in
Caswell (2010),

ds

dθT
=

1

2
diag (s)−1

dv

dθT
. (56)

9.2.7 The inter-quartile range

The inter-quartile range is defined implicitly in terms of the distribution of ages

at death. Let f (x) be a probability density function and F (x) =

∫ x

−∞
f (s) ds be

the cumulative distribution. The qth quantile is the value x̂ satisfying

F (x̂) = q (57)

Let F (x̂1) = q1 and F (x̂2) = q2, assuming that q2 > q1. The inter-quantile range
is

R (q1, q2) = x̂2 − x̂1 (58)

The special case of the inter-quartile range refers to R (0.25, 0.75).

Now we choose a set of probabilities of interest

q =

q1...
qh

 (59)

and let x̂ be the vector of quantiles that satisfy

F [θ, x̂ (θ)] = q, (60)

where the distribution f (·) depends on a parameter vector θ, of dimension p× 1.

Next we differentiate equation (60)

∂F

∂θT
dθ +

∂F

∂x̂T
dx̂ = 0 (61)
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and solve for dx̂, to obtain

dx̂ = −
(
∂F

∂x̂T

)−1( ∂F
∂θT

)
dθ. (62)

The first identification theorem implies that

dx̂

dθT
= −

(
∂F

∂x̂T

)−1( ∂F
∂θT

)
(63)

The first term on the right hand side of of equation (63) is

(
∂F

∂x̂T

)−1
=


1

f(x̂1)
0

. . .

0 1
f(x̂h)

 (64)

while the second term is

(
∂F

∂θT

)
=


∂F (x̂1)
∂θ1

· · · ∂F (x̂1)
∂θp

...
...

∂F (x̂h)
∂θ1

· · · ∂F (x̂h)
∂θp

 (65)

The product of equations (64) and (65, following equation (63) gives

(
dx̂

dθT

)
= −


1

f(x̂1)
∂F (x̂1)
∂θ1

· · · 1
f(x̂1)

∂F (x̂1)
∂θp

...
...

1
f(x̂h)

∂F (x̂h)
∂θ1

· · · 1
f(x̂h)

∂F (x̂h)
∂θp

 (66)

The sensitivity of the inter-quantile range is the difference between row j and row
i of (66).

dR(i,j)

dθT
=
dx̂j
dθT
− dx̂i
dθT

(67)

When f (x) is a discrete distribution, the quantiles will have to be interpolated.
This is what we did to find the sensitivity of the IQR with quartiles x̂3 and x̂1.
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10 Appendix - Matlab code

The perturbation analysis results here are obtained using matrix operations,
and optimally computed using software designed for matrix calculations.
The best such software is Matlab, which is a nearly universal standard
in physics, engineering, and mathematics. The widely used statistical pack-
age R can also perform the calculations, although it is not primarily a matrix
language. In this section we provide Matlab code, and in the next we pro-
vide the corresponding R code, for the calculations.

10.1 Function needed in your working directory, titled
vec.m

function v=vec(x)

v=x(:);

10.2 Main code

% NEED TO HAVE FILE 'vec.m' in working directory
% INPUT DATA are "q" a vector of death probabilities
% (we used ages 0 to 110+ from HMD),
% and "x", a vector of the average age at death within each age interval,
% (i.e. {a0, 1.5, 2.5, ..., 110.5, 110 + a(omega)} − total length = q+1)

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Preliminaries
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% defining survival probabilities
p=1−q;

% # of transient states + 1, because in construction of U first row is zero
s=length(p)+1;

% # transient states only
s2=length(p);
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% other things we will need later
I = speye(s); % identity matrix
e = ones(s,1); % column vector of ones for summations
e1 = [1,linspace(0,0,s2)]';

% C matrix is for calculating cumulative sums
for i=1:s

C(:,i) = [zeros(i,1);ones(s−i,1)];
end

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Markov chain formulation of longevity
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% U matrix describes transient states in the Markov chain
U=sparse(diag(p,−1));

% N matrix, where (i,j) entry is the mean time spent in each age class i,

% conditional upon starting in age class j
N=inv(I−U);

% M matrix has probability of death at each age on diagonal
M=sparse(diag(1−p));
M(s,s)=1;

% The distribution of ages at death
B=M*N; % the complete distribution of ages at death
f = B*e1; % the distribution of ages at death from birth (or first age class)

% survivorship (alternatively ell=N*e1)
ell = e − C*f;

% remaining life expectancy at each age
mean eta = sum(N)' − 0.5;

% life expectancy at birth (or first age class)
eta = e'*N*e1 − 0.5;

% NB: in Markov chain formulations, the life expectancy at birth is always
% 0.5 years higher than that found by conventional life table methods,
% which is why we subtract 0.5 years

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Indices of lifespan variation
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%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% variance in lifespan
V=(sum(N)*(2*N−I) − mean eta'.*mean eta')';

% standard deviation in lifespan
S=sqrt(V);

% e measure
dagger eta=mean eta'*B;

% Theil's index
T = f'*((x*etaˆ(−1)).*(log(x*etaˆ(−1))));

% Mean Log Deviation
MLD = f'*(e*log(eta)−log(x));

% Gini coefficient
G=1−(1/eta)*e'*(ell.*ell);

% IQR calculations
F=[cumsum(f)]; % cumulative deaths
age=[0:s−1]';
xhat1=interp1(F(1:s−10),age(1:s−10),0.25);

% the 's−10' is in the code to handle zero deaths at oldest ages
xhat2=interp1(F(1:s−10),age(1:s−10),0.75);
IQR=xhat2−xhat1;

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% SENSITIVITIES
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% derivatives of U with respect to mortality change
for i=1:s−1

dU dmu=sparse(zeros(s,s));
dU dmu(i+1,i)=−p(i);
dvecU dmu(:,i)=vec(dU dmu);

end

%derivatives of M with respect to mortality change
for i=1:s−1

dM dmu=sparse(zeros(s,s));
dM dmu(i,i)=p(i);
dvecM dmu(:,i)=vec(dM dmu);
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end

%derivative of f with respect to mortality change %should it be B or N
df dmu=kron(e1'*N',I)*dvecM dmu + kron(e1'*N',B)*dvecU dmu;

%sensitivity of expected longevity with respect to mortality change
deta dmu=kron(e1'*N',e'*N)*dvecU dmu;

%sensitivity of variance in longevity with respect to mortality change
dV dmu = (2*kron((N')ˆ2,mean eta')...

+ 2*kron(N',mean eta'*N)...
− (I + 2*sparse(diag(mean eta)))*kron(N',mean eta'))...

* dvecU dmu;

%sensitivity of standard deviation with respect to mortality change
dS dmu=0.5*diag(1./S)*dV dmu;

%sensitivity of eta−dagger with respect to mortality change
deta dagger dmu =(kron(B(:,1)'*N',mean eta') ...

+ kron(N(:,1)',mean eta'*B))*dvecU dmu ...
+ kron(N(:,1)',mean eta')*dvecM dmu;

%sensitivity of Theil's with respect to mortality change
dT dmu = (x'*etaˆ(−1)).*log(x'*etaˆ(−1))*df dmu...

− (T*etaˆ(−1)+f'*x*etaˆ(−2))*deta dmu;

%sensitivity of MLD with respect to mortality change
dMLD dmu = (e'*log(eta)−log(x'))*df dmu+etaˆ(−1)*deta dmu;

%sensitivity of Gini with respect to mortality change
dG dmu = etaˆ(−2)*e'*(ell.*ell)*deta dmu + 2/eta*e'*diag(ell)*C*df dmu;

% sensitivity of IQR with respect to mortality change
% sensitivity of cumulative deaths with respect to mortality change

dF dmu=[zeros(1,s2);cumsum(df dmu)];

% the death density at the quantiles by interpolation
fxhat1=interp1(age,f,xhat1);
fxhat2=interp1(age,f,xhat2);
dFxhat1 dmuT=interp1([0:s]',dF dmu(:,:),xhat1);
dFxhat2 dmuT=interp1([0:s]',dF dmu(:,:),xhat2);

% finally taking sensitivities
dxhat dmu1 = −fxhat1ˆ(−1)*dFxhat1 dmuT;
dxhat dmu2 = −fxhat2ˆ(−1)*dFxhat2 dmuT;
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dIQR dmu=dxhat dmu2−dxhat dmu1;

%%%%%%%%%%%%%%%%%%%%%%%
%ELASTICITIES
%%%%%%%%%%%%%%%%%%%%%%%

% elasticity of standard deviation
ES = (1./S(1))*dS dmu(1,:)*diag(1−p);

% elasticity of variance
EV = (1./V(1))*dV dmu(1,:)*diag(1−p);

% elasticity of edagger
Eedag = (1./dagger eta(1))'*deta dagger dmu*diag(1−p);

% elasticity of Gini
EG = (1./G(1))*dG dmu*diag(1−p);

% elasticity of Theil's
ET = (1./T(1))*dT dmu*diag(1−p);

% elasticity of MLD
EMLD = (1./MLD(1))*dMLD dmu*diag(1−p);

% elasticity of IQR
EIQR = (1./IQR(1))*dIQR dmu*diag(1−p);

%%%%%%%%%%%%%%%%%%%%%%%%
%SAVING THE RESULTS
%%%%%%%%%%%%%%%%%%%%%%%%

res = [stV stedag stS stT stMLD stIQR stG EV Eedag ES ET EMLD EIQR EG];
res=full(res); % MATLAB can't save sparse arrays
save res.txt res −ascii;
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11 Appendix - R code

# R code for paper "Perturbation analysis of indices of lifespan variability"

# This code was designed for readability, not efficiency

rm(list = ls(all = TRUE))

options(scipen=6)

#---------------------------------

#------ Input data

#---------------------------------

#-- "q" a vector of death probabilities (we used ages 0 to 110+ from HMD),

#-- and "x", a vector of the average age at death within each age interval

#-- (i.e. a0, 1.5, 2.5 etc., length qi+1)

#---------------------------------

#----- Packages and preliminaries

#---------------------------------

library(Matrix) # for sparse matrices

library(signal) # for interp1 function

#---------------------------------

#---- special functions

#---------------------------------

#--- function for making subdiagonals (from Bill Venables)

subdiag <- function (v, k) {

n <- length(v) + abs(k)

x <- matrix(0, n, n)

if (k == 0)

diag(x) <- v
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else if (k < 0)

{ ## sub-diagonal

j <- 1:(n+k)

i <- (1 - k):n

x[cbind(i, j)] <- v

}

x

}

#------------------------------------------

# Preliminaries

#------------------------------------------

# defining survival probabilities

p <- 1-q

# number of transient states + 1, (in construction of U first row is zero)

s <- length(p)+1

# number of transient states only

s2 <- length(p)

# other things we will need later

I <- diag(rep(1,s)) # identity matrix

I <- as(I,"sparseMatrix")

e <- rep(1,s) # vector of ones for summations

e1 <- c(1,rep(0,s-1))

age <- 0:s2

# C matrix is for calculating cumulative sums

C <- Matrix(0,nrow=s,ncol=s)

for (i in 1:s){

C[,i] <- c(rep(0,i),rep(1,s-i))

}

C <- as(C,"sparseMatrix")

#--------------------------------------------------
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# Markov chain formulation of longevity

#--------------------------------------------------

# U matrix describes transient states in the Markov chain

U <- subdiag(p,-1)

U <- as(U,"sparseMatrix")

# N matrix, where (i,j) entry is the mean time spent in each age class i,

# conditional upon starting in age class j

N <- solve(I-U)

N <- as(N,"sparseMatrix")

# M matrix has probability of death at each age on diagonal

M <- diag(c(q,1))

M <- as(M,"sparseMatrix")

# The distribution of ages at death

B <- M %*% N # the complete distribution of ages at death

f <- B %*% e1 # the distribution of ages at death from birth (1st age class)

B <- as(B,"sparseMatrix")

# survivorship (alternatively ell <- e-C%*%f )

ell <- N %*% e1

ell <- as(ell,"sparseMatrix")

# remaining life expectancy at each age

mean_eta <- colSums(N)-0.5

# life expectancy at birth (or first age class)

eta <- mean_eta[1]

# NB: in Markov chain formulations, the life expectancy at birth is always

# 0.5 years higher than that found by conventional life table methods,

# which is why we subtract 0.5 years

#------------------------------------

37



# Indices of lifespan variation

#------------------------------------

# variance in lifespan

V <- colSums(N) %*% (2*N-I) - mean_eta*mean_eta

# standard deviation in lifespan

S <- sqrt(V)

# life disparity (e-dagger)

eta_dagger <- mean_eta %*% B

# Theil’s index

T <- sum(f*x*eta^(-1)*log(x*eta^(-1)))

# Mean Log Deviation

MLD <- sum(f*(e*log(eta)-log(x)))

# Gini coefficient

G <- 1-(1/eta) * e %*% (ell*ell)

# Interquartile range

F <- (cumsum(f))

xhat1 <- interp1(F[1:(s-10)],age[1:(s-10)],0.25)

xhat2 <- interp1(F[1:(s-10)],age[1:(s-10)],0.75)

IQR <- xhat2-xhat1

# the "s-10" is in the code to handle zero deaths at oldest ages

#------------------------------

# SENSITIVITIES

#------------------------------

# derivatives of U with respect to mortality change

dvecU_dmu <- Matrix(0,nrow=s*s,ncol=s-1)

r <- seq(2,s*s,s+1) # rows that will contain the elements once stacked

for (i in 1:(s-1)){

dvecU_dmu[r[i],i] <- -p[i]

}
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dvecU_dmu <- as(dvecU_dmu,"sparseMatrix")

# derivatives of M with respect to mortality change

dvecM_dmu <- Matrix(0,nrow=s*s,ncol=s-1)

r2 <- seq(1,s*s,s+1) # rows that will contain the elements once stacked

for (i in 1:(s-1)){

dvecM_dmu[r2[i],i] <- p[i]

}

dvecM_dmu <- as(dvecM_dmu,"sparseMatrix")

# derivative of f with respect to mortality change

df_dmu <- t(kronecker(N[,1],I)) %*% dvecM_dmu +

t(kronecker(N[,1],t(B))) %*% dvecU_dmu

# sensitivity of expected longevity with respect to mortality change

deta_dmu <- t(kronecker(N[,1],colSums(N))) %*% dvecU_dmu

# sensitivity of variance in longevity with respect to mortality change

dV_dmu <- (2*kronecker(t(N) %*% t(N),t(mean_eta)) +

2*kronecker(t(N),mean_eta %*% N) -

(I + 2*(diag(mean_eta))) %*% kronecker(t(N),t(mean_eta))) %*% dvecU_dmu

# sensitivity of standard deviation with respect to mortality change

dS_dmu <- 0.5*diag(as.vector(1/S)) %*% dV_dmu

# sensitivity of e-dagger with respect to mortality change

deta_dagger_dmu <- (kronecker(t(B[,1]) %*% t(N),t(mean_eta)) +

kronecker(t(N[,1]),(t(mean_eta)%*%B))) %*% dvecU_dmu +

kronecker(t(N[,1]),t(mean_eta)) %*% dvecM_dmu

# sensitivity of Theil’s with respect to mortality change

dT_dmu <- (t(x) * eta^(-1) * log(t(x) * eta^(-1))) %*% df_dmu -

(T*eta^(-1) + t(f) %*% x * eta^(-2)) %*% deta_dmu

# sensitivity of MLD with respect to mortality change

dMLD_dmu <- (t(e) * log(eta) - log(t(x))) %*% df_dmu + eta^(-1) %*% deta_dmu

# sensitivity of Gini with respect to mortality change
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dG_dmu <- eta^(-2) * t(e) %*% (ell*ell) %*% deta_dmu +

2/eta * t(e) %*% diag(as.vector(ell)) %*% C %*% df_dmu

# sensitivity of IQR with respect to mortality change

# sensitivity of cumulative deaths with respect to mortality change

dF_dmu <- matrix(0,nrow=s,ncol=s2)

for(i in 1:s2){

dF_dmu[i:s2,i] <- cumsum(df_dmu[i:s2,i])

}

dF_dmu <- rbind(rep(0,s2),dF_dmu)

# the death density at the quantiles by interpolation

fxhat1 <- interp1(age,f,xhat1)

fxhat2 <- interp1(age,f,xhat2)

dFxhat1_dmuT <- rep(0,s2)

dFxhat2_dmuT <- rep(0,s2)

for (i in 1:s2){

dFxhat1_dmuT[i] <- interp1(0:s,dF_dmu[,i],xhat1)

dFxhat2_dmuT[i] <- interp1(0:s,dF_dmu[,i],xhat2)

}

# finally taking sensitivities

dxhat_dmu1 <- -fxhat1^(-1)*dFxhat1_dmuT

dxhat_dmu2 <- -fxhat2^(-1)*dFxhat2_dmuT

dIQR_dmu <- dxhat_dmu2 - dxhat_dmu1

#------------------------------

# ELASTICITIES

#------------------------------

# elasticity of standard deviation

ES <- 1/S[1] * dS_dmu[1,] %*% diag(1-p)

# elasticity of variance

EV <- 1/V[1] * dV_dmu[1,] %*% diag(1-p)
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# elasticity of edagger

EEDAG <- 1/eta_dagger[1] * deta_dagger_dmu %*% diag(1-p)

# elasticity of Gini

EG <- 1/G[1] * dG_dmu %*% diag(1-p)

# elasticity of Theil’s

ET <- 1/T[1] * dT_dmu %*% diag(1-p)

# elasticity of MLD

EMLD <- 1/MLD[1] * dMLD_dmu %*% diag(1-p)

# elasticity of IQR

EIQR <- 1/IQR[1] * dIQR_dmu %*% diag(1-p)

#------------------------------

# PLOTTING THE ELASTICITIES

#------------------------------

ELAS <- cbind(EEDAG[1,],EG[1,],EIQR[1,],EMLD[1,],ES[1,],ET[1,],EV[1,])

indices <- c("edag","G","IQR","MLD","S","T","V")

names(ELAS) <- indices

matplot(ELAS,xlab="Age",ylab="Elasticity of index",

#ylim=c(-0.05,0.1),

t="l",lty=1,lwd=2,col=1:7)

legend(legend=indices,"topright",col=1:7,lty=1,lwd=2)

abline(h=0,lty="dotted")
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12 Appendix figures depicting the sensitivity

and elasticity of indices calculated from

age 10
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Figure 6: The sensitivity of each index conditional upon survival to age 10
with respect to mortality change at different ages. The sensitivities were
standardized to the value of each index, i.e. y10

dy
dθ

, to make them comparable.
Note the difference in scale between the top and bottom panels, plotted
separately to more clearly delineate behaviour of the indices at early and
later ages. French males, period lifetable data from the HMD.
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Figure 7: The proportional change in the index calculated conditional upon
survival to age 10 from a one percent change in mortality at each age on the
x axis. French males, period lifetable data from the HMD.
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